Can Domestic Food Production Provide Future Urban Populations with Food and Nutrition Security?—Insights from Bangladesh, Kenya and Uganda
Abstract
:1. Introduction
- (1)
- Domestic areas needed to produce rice, potatoes and vegetables to an increasing population in Dhaka, Bangladesh;
- (2)
- Domestic areas needed to produce maize, milk and vegetables to an increasing population in Nairobi, Kenya;
- (3)
- Domestic areas needed to produce plantain, cassava and milk to an increasing population in Kampala, Uganda.
2. Research Approach
2.1. A Rural–Urban Food System Approach
2.2. Simplifications Made of Reality
2.3. Defining Scenerios with Domestic Production of Main Crops Consumed in Kenya, Uganda and Bangldesh
Country | Product 1 (Cons. Mkg) | Product 2 (Cons. Mkg) | Product 3 (Cons. Mkg) |
---|---|---|---|
Bangladesh | Rice and processed products (41,910) | Potatoes and processed potato products (8337) | Vegetables and crop-based products (3315) |
Kenya | Maize and products (3874) | Milk equivalents * (4497) | Vegetables and crop-based products (1889) |
Uganda | Plantains (3339) | Cassava and processed cassava products (2673) | Milk equivalents * (1951) |
2.4. Data on Food Production in Kenya, Uganda and Bangladesh
- Dhaka (Bangladesh)—(1) Rice and processed rise products (rice), (2) potatoes and processed potato products (potatoes) and (3) vegetables and crop-based products (vegetables);
- Nairobi (Kenya)—(1) Maize and processed maize products (maize), (2) milk equivalents (see Table 2) (milk) and (3) vegetables and crop-based products (vegetables);
- Kampala (Uganda)—(1) Plantains, (2) cassava and products (cassava) and (3) milk equivalents (see Table 2) (milk).
Food (Mkg) | Production (Mkg) | |||||
---|---|---|---|---|---|---|
Milk | Butter (Ghee) | Cream | Milk | Butter, Ghee | Cream | |
Kenya | 3867 | 16 | 23 | 4950 | 16 | 23 |
Uganda | 1851 | 0 | 10 | 2040 | 0 | 0 |
Country | Product 1 (Mkg) | Product 2 (Mkg) | Product 3 (Mkg) |
---|---|---|---|
Bangladesh | Rice and processed products (54,416) | Potatoes and processed products (9744) | Vegetables and crop-based products (3572) |
Kenya | Maize and processed products (4014) | Milk equivalents * (5580) | Vegetables and crop-based products (2081) |
Uganda | Plantains (3450) | Cassava and processed products (2819) | Milk equivalents * (2040) |
3. Results
3.1. Overall Results in Dhaka, Nairobi and Kampala
3.2. Results for Dhaka, Bangladesh
3.3. Results for Nairobi, Kenya
3.4. Results for Kampala, Uganda
4. Discussion
4.1. Discussion of the Results
4.2. Discussion of Food System Implications
5. Concluding Remarks and Follow-Ups
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Müller, B.; Hoffmann, F.; Heckelei, T.; Müller, C.; Hertel, T.W.; Polhill, J.G.; van Wijk, M.; Achterbosch, T.; Alexander, P.; Brown, C.; et al. Modelling food security: Bridging the gap between the micro and the macro scale. Glob. Environ. Chang. 2020, 63, 102085. [Google Scholar] [CrossRef]
- Graef, F.; Sieber, S.; Mutabazi, K.; Asch, F.; Biesalski, H.K.; Bitegeko, J.; Bokelmann, W.; Bruentrup, M.; Dietrich, O.; Elly, N.; et al. Framework for participatory food security research in rural food value chains. Glob. Food Secur. 2014, 3, 8–15. [Google Scholar] [CrossRef]
- FAO. An Introduction to the Basic Concepts of Food Security; UN, FAO: Rome, Italy, 1996; pp. 1–3. Available online: https://www.fao.org/3/al936e/al936e00.pdf (accessed on 20 October 2021).
- Ziervogel, G.; Ericksen, P.J. Adapting to climate change to sustain food security. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 525–540. [Google Scholar] [CrossRef]
- USAID. Global Food Security Response: West Africa Rice Value Chain Analysis; MicroReport 161; USAID: Washington, DC, USA, 2009; pp. 1–83. Available online: https://www.marketlinks.org/sites/default/files/resource/files/GFSR_WA_Rice_VC_Analysis.pdf (accessed on 20 October 2021).
- de Bruin, S.; Dengerink, J.; van Vliet, J. Urbanisation as driver of food system transformation and opportunities for rural livelihoods. Food Secur. 2021, 13, 781–798. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, B.; Tabeau, E.; Soma, K.; van Scheltinga, C.T.; Kuiper, M.; Verma, M.; Stuiver, M. The ‘Water, Food, Energy and Ecosystem Nexus’ and Migration: An Explorative Study of Key Drivers of Migration Flows and Their Impacts; No. 2981; Wageningen Environmental Research: Wageningen, The Netherlands, 2020; p. 58. [Google Scholar]
- van Berkum, S.; Broeze, J.; Herens, M.; de Rooij, B.; Soma, K.; Roosendaal, L. Urbanisation, Migration and Food System Transformations: Concepts and Methodologies for a Better Understanding of the Dynamics of Urban Food Systems and Migration Settlements; REPORT 2020-046; Wageningen University and Research, Wageningen Economic Research: The Hague, The Netherlands, 2020; p. 34. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022; Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022; pp. 1–260. [Google Scholar] [CrossRef]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.-G.; Sapkota, T.; et al. Food Security. In IPCC Special Report on Climate Change and Land; IPCC: Geneva, Switzerland, 2019; p. 105. [Google Scholar] [CrossRef]
- Hunter, R. The Ukraine Crisis: Why and what now? Survival 2022, 64, 7–28. [Google Scholar] [CrossRef]
- Izzeldin, M.; Muradoğlu, Y.G.; Pappas, V.; Petropoulou, A.; Sivaprasad, S. The impact of the Russian-Ukrainian war on global financial markets. Int. Rev. Financ. Anal. 2023, 87, 102598. [Google Scholar] [CrossRef]
- Gutiérrez-Moya, E.; Adenso-Díaz, B.; Lozano, S. Analysis and vulnerability of the international wheat trade network. Food Secur. 2021, 13, 113–128. [Google Scholar] [CrossRef]
- Zhong, W.; An, H.; Shen, L.; Fang, W.; Gao, X.; Dong, D. The roles of countries in the international fossil fuel trade: An energy and network analysis. Energy Policy 2017, 100, 365–376. [Google Scholar] [CrossRef]
- Wang, W.; Fan, L.W.; Zhou, P. Evolution of global fossil fuel trade dependencies. Energy 2022, 238, 121924. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.L.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 2018, 8, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Kansiime, M.K.; Tambo, J.A.; Mugambi, I.; Bundi, M.; Kara, A.; Owuor, C. COVID-19 implications on household income and food security in Kenya and Uganda: Findings from a rapid assessment. World Dev. 2021, 137, 105199. [Google Scholar] [CrossRef] [PubMed]
- Ruszczyk, H.A.; RaHMan, M.F.; Bracken, L.J.; Sudha, S. Contextualizing the COVID-19 pandemic’s impact on food security in two small cities in Bangladesh. Environ. Urban. 2021, 33, 239–254. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environ. Dev. Sustain. 2021, 23, 23–43. [Google Scholar] [CrossRef]
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050; FAO: Rome, Italy, 2018; pp. 1–224. Available online: http://www.fao.org/3/I8429EN/i8429en.pdf (accessed on 20 October 2021).
- Zimmermann, A.; Rapsomanikis, G. Trade and sustainable food systems. In Science and Innovations for Food Systems Transformation; Springer: Berlin/Heidelberg, Germany, 2023; pp. 685–709. [Google Scholar]
- FAO. The State of Agricultural Commodity Markets 2018. Agricultural Trade, Climate Change and Food Security; FAO: Rome, Italy, 2018; pp. 1–112. Available online: http://www.fao.org/3/I9542EN/i9542en.pdf (accessed on 20 October 2021).
- Blekking, J.; Waldman, K.; Tuholske, C.; Evans, T. Formal/informal employment and urban food security in Sub-Saharan Africa. Appl. Geogr. 2020, 114, 102131. [Google Scholar] [CrossRef]
- Moustier, P.; Holdsworth, M.; Anh, D.T.; Seck, P.A.; Renting, H.; Caron, P.; Bricas, N. The diverse and complementary components of urban food systems in the global South: Characterization and policy implications. Glob. Food Secur. 2023, 36, 100663. [Google Scholar] [CrossRef]
- Vorley, B. Meeting Small-Scale Farmers in Their Markets: Understanding and Improving the Institutions and Governance of Informal Agrifood Trade; International Institute for Environment and Development (IIED): London, UK, 2013; pp. 1–30. [Google Scholar]
- van Berkum, S.; Dengerink, J.; Ruben, R. The Food Systems Approach: Sustainable Solutions for a Sufficient Supply of Healthy Food; Memorandum 2018-064; Wageningen Economic Research: Wageningen, The Netherlands, 2018; p. 34. [Google Scholar]
- Gregory, P.J.; Ingram, J.S.I.; Brklacich, M. Climate change and food security. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2139–2148. [Google Scholar] [CrossRef]
- De Steenhuijsen Piters, B.; Termeer, E.; Bakker, D.; Fonteijn, H.; Brouwer, H. Food System Resilience: Towards a Joint Understanding and Implications for Policy; Wageningen Economic Research, Wageningen University and Research: Wageningen, The Netherlands, 2021; p. 12. [Google Scholar]
- Fantini, A. Urban and peri-urban agriculture as a strategy for creating more sustainable and resilient urban food systems and facing socio-environmental emergencies. Agroecol. Sustain. Food Syst. 2023, 47, 47–71. [Google Scholar] [CrossRef]
- Zasada, I.; Schmutz, U.; Wascher, D.; Kneafsey, M.; Corsi, S.; Mazzocchi, C.; Monaco, F.; Boyce, P.; Doernberg, A.; Sali, G.; et al. Food beyond the city—Analysing foodsheds and self-sufficiency for different food system scenarios in European metropolitan regions. City Cult. Soc. 2019, 16, 25–35. [Google Scholar] [CrossRef]
- Falkendal, T.; Otto, C.; Schewe, J.; Jägermeyr, J.; Konar, M.; Kummu, M.; Watkins, B.; Puma, M.J. Grain export restrictions during COVID-19 risk food insecurity in many low-and middle-income countries. Nat. Food 2021, 2, 11–14. [Google Scholar] [CrossRef]
- de Graaff, J.; Kessler, A.; Nibbering, J.W. Agriculture and food security in selected countries in Sub-Saharan Africa: Diversity in trends and opportunities. Food Secur. 2011, 3, 195–213. [Google Scholar] [CrossRef] [Green Version]
- Mc Carthy, U.; Uysal, I.; Badia-Melis, R.; Mercier, S.; O’Donnell, C.; Ktenioudaki, A. Global food security–Issues, challenges and technological solutions. Trends Food Sci. Technol. 2018, 77, 11–20. [Google Scholar] [CrossRef]
- Mekonnen, D.A.; Termeer, E.; Soma, K.; van Berkum, S.; de Steenhuijsen Piters, B. How to Engage Informal Midstream Agribusiness in Enhancing Food System Outcomes: What We Know and What We Need to Know Better; No. 2022-034; Wageningen Economic Research: Wageningen, The Netherlands, 2022; p. 38. Available online: https://edepot.wur.nl/567791 (accessed on 4 May 2022).
- Soma, K.; Obwanga, B.; Kanyuguto, C.M. A New Rural-Urban Fish Food System was Established in Kenya–Learning from Best Practices. Sustainability 2021, 13, 7254. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Mason-D’Croz, D.; Palmer, J.; Bodirsky, B.L.; Pradhan, P.; Barrett, C.B.; Benton, T.G.; Hall, A.; Pikaar, I.; et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet. Health 2021, 5, e50–e62. [Google Scholar] [CrossRef]
- Eyhorn, F.; Müller, A.; Reganold, J.P.; Frison, E.; Herren, H.R.; Luttikholt, L.; Mueller, A.; Sanders, J.; El-Hage Scialabba, N.; Seufert, V.; et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2019, 2, 253–255. [Google Scholar] [CrossRef] [Green Version]
- Niggli, U.; Sonnevelt, M.; Kummer, S. Pathways to advance agroecology for a successful transformation to sustainable food systems. In Science and Innovations for Food Systems Transformation; Springer International Publishing: Cham, Switzerland, 2023; pp. 341–359. [Google Scholar]
- HLPE. Food Losses and Waste in the Context of Sustainable Food Systems; A Report by the High Level of Experts on Food Security and Nutrition of the Committee on World Food Security; HLPE: Rome, Italy, 2014; p. 117. [Google Scholar]
- Berkhout, E.; Sovová, L.; Sonneveld, A. The Role of Urban–Rural Connections in Building Food System Resilience. Sustainability 2023, 15, 1818. [Google Scholar] [CrossRef]
- Mora, O.; Le Mouël, C.; de Lattre-Gasquet, M.; Donnars, C.; Dumas, P.; Réchauchère, O.; Brunelle, T.; Manceron, S.; Marajo-Petitzon, E.; Moreau, C.; et al. Exploring the future of land use and food security: A new set of global scenarios. PLoS ONE 2020, 15, e0235597. [Google Scholar] [CrossRef]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef] [PubMed]
- de Rooij, L.L.; Verweij, P.; Agricola, H. Feeding Cities and Migration: Urban Food Systems in a Spatial Environmental Perspective; No. 3002; Wageningen Environmental Research: Wageningen, The Netherlands, 2020; p. 56. Available online: https://edepot.wur.nl/520018 (accessed on 5 March 2021).
- Hodson de Jaramillo, E.; Niggli, U.; Kitajima, K.; Lal, R.; Sadoff, C. Boost Nature-Positive Production. In Science and Innovations for Food Systems Transformation; Springer International Publishing: Cham, Switzerland, 2023; pp. 319–340. [Google Scholar]
- Termeer, E.E.; Soma, K.; Motovska, N.; Ayuya, O.I.; Kunz, M.; Koster, T. Sustainable Development Ensued by Social Capital Impacts on Food Insecurity: The Case of Kibera, Nairobi. Sustainability 2022, 14, 5504. [Google Scholar] [CrossRef]
- Blay-Palmer, A.; Santini, G.; Dubbeling, M.; Renting, H.; Taguchi, M.; Giordano, T. Validating the city region food system approach: Enacting inclusive, transformational city region food systems. Sustainability 2018, 10, 1680. [Google Scholar] [CrossRef] [Green Version]
- Hennen, W.H.G.J.; Daane, P.A.; Van Duijvendijk, K. Global-Detector; GIS- and Knowledge-based tool for a global detection of the potential for production, supply and demand. In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management, Porto, Portugal, 27–28 April 2017; pp. 161–168. Available online: https://www.wur.nl/en/Publication-details.htm?publicationId=publication-way-353333353634 (accessed on 5 December 2021).
- Hennen, W.H.; Diogo, V.; Polman, N.B.; Dijkshoorn-Dekker, M.W. Comparing cities of the world according to their food security risks and opportunities. WIT Trans. Ecol. Environ. 2018, 217, 953–962. [Google Scholar]
- Earthstat. Grassland Map. 2000. Available online: http://www.earthstat.org/data-download/ (accessed on 22 October 2021).
- FAO. Food Balance. 2021. Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 20 October 2021).
- UNEP-WCMC; IUCN. Protected Planet: The World Database on Protected Areas (WDPA) and World Database on Other Effective Area-based Conservation Measures (WD-OECM); UNEP-WCMC; IUCN: Cambridge, UK, 2021; Available online: www.protectedplanet.net (accessed on 22 October 2021).
- Worldometers. Demographics. 2021. Available online: https://www.worldometers.info/ (accessed on 22 October 2021).
- Gao, J. Downscaling Global Spatial Population Projections from 1/8-Degree to 1-km Grid Cells; No. NCAR/TN-537+STR; NCR/UCR: Boulder, CO, USA, 2017; pp. 1–14. [Google Scholar] [CrossRef]
- CIESIN. Global Rural-Urban Mapping Project (GRUMP), Version 1; Palisades, (Center for International Earth Science Information Network, Columbia University); NASA Socioeconomic Data and Applications Center (SEDAC): New York, NY, USA, 2011; Available online: http://sedac.ciesin.columbia.edu/data/collection/grump-v1 (accessed on 14 May 2022).
- Balk, D.; Brickman, M.; Anderson, B.; Pozzi, F.; Yetman, G. Mapping Global Urban and Rural Population Distributions: Estimates of Future Global Population Distribution to 2015; FAO Working Paper: Environment and Natural Resources; FAO: Rome, Italy, 2005; pp. 1–83. Available online: https://www.fao.org/3/A0310E/a0310e.pdf (accessed on 20 October 2021).
- Lambert Azimuthal Equal-Area Projection. Available online: http://wiki.gis.com/wiki/index.php/Lambert_azimuthal_equal-area_projection (accessed on 14 May 2022).
- UN (United Nations, Department of Economic and Social Affairs, Population Division). World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); UN: New York, NY, USA, 2019; pp. 1–126. Available online: https://population.un.org/wup/publications/Files/WUP2018-Report.pdf (accessed on 22 October 2021).
- OECD; FAO. Dairy and dairy products. In Agricultural Outlook 2019–2028; OECD: Paris, France; FAO: Rome, Italy, 2019; Chapter 7; pp. 180–189. Available online: https://www.fao.org/3/CA4076EN/CA4076EN_Chapter7_Dairy.pdf (accessed on 20 October 2021).
- Bereda, A.; Yilma, Z.; Nurfeta, A. Handling, processing and utilization of milk and milk products in Ezha district of the Gurage zone, Southern Ethiopia. J. Agric. Biotechnol. Sustain. Dev. 2013, 5, 91. [Google Scholar] [CrossRef] [Green Version]
- Oldenburg Professional. Available online: https://www.oldenburger-professional.com/from-chef-to-chef/faqs/how-much-milk-is-required-to-produce-1kg-of-cream (accessed on 14 May 2022).
- Mapspam. SPAM 2010 v2.0 Global Data, 2010, Updated 2020-07-15. Available online: https://www.mapspam.info/data/ (accessed on 20 October 2021).
- Worldbank. Rural Population (% of Total Population). 2021. Available online: https://data.worldbank.org/indicator/SP.RUR.TOTL.ZS (accessed on 20 October 2021).
- World Bank. Data. 2023. Available online: https://data.worldbank.org/indicator/ (accessed on 20 October 2021).
- Nechifor, V.; Ramos, M.P.; Ferrari, E.; Laichena, J.; Kihiu, E.; Omanyo, D.; Musamali, R.; Kiriga, B. Food security and welfare changes under COVID-19 in Sub-Saharan Africa: Impacts and responses in Kenya. Glob. Food Secur. 2021, 28, 100514. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, D.A.; Soma, K.; Ruben, R. The ambivalent links between internal migration and food security in Uganda. Migr. Dev. 2022, 11, 917–936. [Google Scholar] [CrossRef]
- Soma, K.; Cornelia Johanna Janssen, V.; Ayuya, O.I.; Obwanga, B. Food Systems in Informal Urban Settlements—Exploring Differences in Livelihood Welfare Factors across Kibera, Nairobi. Sustainability 2022, 14, 11099. [Google Scholar] [CrossRef]
- ILO. Women and Men in the Informal Economy—A Statistical Picture, 3rd ed.; International Labour Office (ILO): Geneva, Switzerland, 2018; p. 164. Available online: https://www.ilo.org/wcmsp5/groups/public/---dgreports/---dcomm/documents/publication/wcms_626831.pdf (accessed on 4 December 2021).
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global trends in wheat production, consumption and trade. In Wheat Improvement: Food Security in a Changing Climate; Springer International Publishing: Cham, Switzerland, 2022; pp. 47–66. [Google Scholar]
- Monroy, L.; Mulinge, W.; Witwer, M. Analysis of incentives and disincentives for tea in Kenya. Gates Open Res. 2019, 3, 586. [Google Scholar]
- Adeola, O.; Meru, A.K.; Kinoti, M.W. Kenya’s blooming flower industry: Enhancing global competitiveness. In Africa’s Competitiveness in the Global Economy; Palgrave Macmillan: Cham, Switzerland, 2018; pp. 331–349. [Google Scholar]
- Ksoll, C.; Macchiavello, R.; Morjaria, A. Guns and Roses: Flower Exports and Electoral Violence in Kenya. Global Poverty Research Lab Working Paper, UK. 2021, pp. 17–102. Available online: https://gala.gre.ac.uk/id/eprint/31358/1/31358_KSOLL_Guns_and_roses_Flower_exports_and_electoral_violence_in_Kenya.pdf (accessed on 4 December 2021).
- Angélique, N.C.; Stany, V.; Lebailly, P.; Azadi, H. Agricultural Development in the Fight against Poverty: The Case of South Kivu, DR Congo. Land 2022, 11, 472. [Google Scholar] [CrossRef]
- Amusan, L.; Oyewole, S. Precision agriculture and the prospects of space strategy for food security in Africa. Afr. J. Sci. Technol. Innov. Dev. 2022, 1–12. [Google Scholar] [CrossRef]
- Saha, S.K. Soilless Cultivation for Landless People: An Alternative Livelihood Practice through Indigenous Hydroponic Agriculture in Flood-Prone Bangladesh; Ritsumeikan Asia Pacific University: Beppu, Japan, 2010; pp. 1–14. Available online: https://en.apu.ac.jp/rcaps/uploads/fckeditor/publications/journal/RJAPS_V27_Saha.pdf (accessed on 4 December 2021).
- Djoumessi, Y.F. New trend of agricultural productivity growth in sub-Saharan Africa. Sci. Afr. 2022, 18, e01410. [Google Scholar] [CrossRef]
- Adenle, A.A.; Wedig, K.; Azadi, H. Sustainable agriculture and food security in Africa: The role of innovative technologies and international organizations. Technol. Soc. 2019, 58, 101143. [Google Scholar] [CrossRef]
- Soma, K.; Vernooij, A.; Barbosa, M.; Opiyo, M.; Kals, J.; Cubero, R.; Pishgar Komleh, H.; Rurangwa, E.; Ndambi, A.; Schrijver, R.; et al. The Protein Transition—How to Operationalise Use of Black Soldier Fly Larvae (BSFL) and Spirulina as Feed Ingrediencies in Kenya and Uganda? No. 2023-008; Wageningen Economic Research: Wageningen, The Netherlands, 2023; p. 23. [Google Scholar]
- Govorushko, S. Global status of insects as food and feed source: A review. Trends Food Sci. Technol. 2019, 91, 436–445. [Google Scholar] [CrossRef]
- Wachira, M.N.; Osuga, I.M.; Munguti, J.M.; Ambula, M.K.; Subramanian, S.; Tanga, C.M. Efficiency and improved profitability of insect-based aquafeeds for farming Nile tilapia fish (Oreochromis niloticus L.). Animals 2021, 11, 2599. [Google Scholar] [CrossRef] [PubMed]
- Amankwah, A.; Quagrainie, K.K.; Preckel, P.V. Impact of aquaculture feed technology on fish income and poverty in Kenya. Aquac. Econ. Manag. 2018, 22, 410–430. [Google Scholar] [CrossRef]
- Bon, B. Invisible Sprawl: Land, Money and Politics at the Rural-Urban Interface in Kenya. Disp-Plan. Rev. 2021, 57, 33–49. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
Yield/ha Increase Required * | 2020 | 2050 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
City | Product | Pop. [mil.] | Demand = Supply | Radius [km] | Area [1000 km2] | Pop. [mil.] | Demand = Supply | Radius [km] | Area [1000 km2] | |
Dhaka | Rice | 64% | 22.1 | 5623 | 68 | 14.5 | 26.9 | 6314 | 87 | 23.8 |
Dhaka | Potato | 30% | 22.1 | 1119 | 80 | 20.4 | 26.9 | 1256 | 92 | 26.6 |
Dhaka | Vegs | 114% | 22.1 | 445 | 57 | 10.2 | 26.9 | 499 | 84 | 21.9 |
Total Area Dhaka | 45.1 | 72.3 | ||||||||
Nairobi | Maize | 87% | 6.1 | 213 | 60 | 11.3 | 8.7 | 290 | 82 | 21.1 |
Nairobi | Milk | 47% | 6.1 | 507 | 138 | 59.4 | 8.7 | 690 | 171 | 91.9 |
Nairobi | Vegs | 106% | 6.1 | 437 | 102 | 33.0 | 8.7 | 595 | 150 | 71.2 |
Total Area Nairobi | 103.7 | 184.2 | ||||||||
Kampala | Plantain | 134% | 4.9 | 357 | 102 | 32.7 | 8.7 | 617 | 157 | 77.4 |
Kampala | Cassava | 115% | 4.9 | 286 | 119 | 44.5 | 8.7 | 494 | 180 | 101.0 |
Kampala | Milk | 109% | 4.9 | 209 | 107 | 36.0 | 8.7 | 361 | 156 | 76.0 |
Total Area Kampala | 113.2 | 254.4 |
Variable | Population (Pop) (Mill) [62] | Area (km2) [63] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2020 | 2050 | 2020 | 2050 | 2020 | 2050 | Total Area (km2) | 2020 | 2050 | 2020 | 2050 |
Total Pop | Total Pop | City Pop | City Pop | Share Pop | Share Pop | City Area | City Area | Share Area | Share Area | ||
Bangladesh/Dhaka | 164.7 | 202.0 | 22.1 | 26.9 | 13% | 13% | 148.5 | 45.1 | 72.3 | 30% | 49% |
Kenya/Nairobi | 53.8 | 85.0 | 6.1 | 8.7 | 11% | 10% | 580.4 | 103.7 | 184.2 | 18% | 32% |
Uganda/Kampala | 45.7 | 105.6 | 4.9 | 8.7 | 11% | 8% | 241.0 | 113.2 | 254.4 | 47% | 106% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soma, K.; Hennen, W.; van Berkum, S. Can Domestic Food Production Provide Future Urban Populations with Food and Nutrition Security?—Insights from Bangladesh, Kenya and Uganda. Sustainability 2023, 15, 9005. https://doi.org/10.3390/su15119005
Soma K, Hennen W, van Berkum S. Can Domestic Food Production Provide Future Urban Populations with Food and Nutrition Security?—Insights from Bangladesh, Kenya and Uganda. Sustainability. 2023; 15(11):9005. https://doi.org/10.3390/su15119005
Chicago/Turabian StyleSoma, Katrine, Wil Hennen, and Siemen van Berkum. 2023. "Can Domestic Food Production Provide Future Urban Populations with Food and Nutrition Security?—Insights from Bangladesh, Kenya and Uganda" Sustainability 15, no. 11: 9005. https://doi.org/10.3390/su15119005
APA StyleSoma, K., Hennen, W., & van Berkum, S. (2023). Can Domestic Food Production Provide Future Urban Populations with Food and Nutrition Security?—Insights from Bangladesh, Kenya and Uganda. Sustainability, 15(11), 9005. https://doi.org/10.3390/su15119005