A Comparative Analysis of Standard and Nano-Structured Glass for Enhancing Heat Transfer and Reducing Energy Consumption Using Metal and Oxide Nanoparticles: A Review
Abstract
:1. Introduction
2. The Critical Role of Nanotechnology in Enhancing the Efficacy of Thermal and Mechanical Properties of Glass Materials
2.1. Standard Glass
2.2. Ceramic Glass
2.3. Oxide Glasses/Oxide Coatings
2.4. Nanofabricated and Nanostructured Glasses
3. Nanotechnology of Self-Cleaning Glasses
4. Polymer Glass Coating
5. Superhydrophobic Coatings on a Glass Surface
5.1. Dip Coating
5.2. Spin Coating
5.3. Magnetron Sputtering Deposition
5.4. Antifogging
6. Selective Nanoparticles Used as Nanocatalysts for Enhancing the Optical and Thermal Properties
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diakaki, C.; Grigoroudis, E.; Kolokotsa, D. Towards a multi-objective optimization approach for improving energy efficiency in buildings. Energy Build. 2008, 40, 1747–1754. [Google Scholar] [CrossRef]
- De Paola, A.; Ortolani, M.; Lo Re, G.; Anastasi, G.; Das, S.K. Intelligent management systems for energy efficiency in buildings: A survey. ACM Comput. Surv. 2014, 47, 1–38. [Google Scholar] [CrossRef]
- Noailly, J. Improving the energy efficiency of buildings: The impact of environmental policy on technological innovation. Energy Econ. 2012, 34, 795–806. [Google Scholar] [CrossRef] [Green Version]
- Diakaki, C.; Grigoroudis, E.; Kabelis, N.; Kolokotsa, D.; Kalaitzakis, K.; Stavrakakis, G. A multi-objective decision model for the improvement of energy efficiency in buildings. Energy 2010, 35, 5483–5496. [Google Scholar] [CrossRef]
- Simona, P.L.; Spiru, P.; Ion, I.V. Increasing the energy efficiency of buildings by thermal insulation. Energy Procedia 2017, 128, 393–399. [Google Scholar] [CrossRef]
- Kim, J.T.; Yu, C.W.F. Sustainable development and requirements for energy efficiency in buildings—The Korean perspectives. Indoor Built Environ. 2018, 27, 734–751. [Google Scholar] [CrossRef]
- Mangematin, E.; Pandraud, G.; Roux, D. Quick measurements of energy efficiency of buildings. Comptes Rendus Phys. 2012, 13, 383–390. [Google Scholar] [CrossRef]
- Vogel, J.A.; Lundqvist, P.; Arias, J. Categorizing barriers to energy efficiency in buildings. Energy Procedia 2015, 75, 2839–2845. [Google Scholar] [CrossRef] [Green Version]
- Sayfiddinov, S.; Akhmadiyorov, U.S.; Akhmedov, P.S. Optimizatiom of Modeling While Increasing Energy Efficiency of Building Structures of Public Buildings. Theor. Appl. Sci. 2020, 6, 16–19. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Buddhi, D.P.C.M. PCM thermal storage in buildings: A state of art. Renew. Sustain. Energy Rev. 2007, 11, 1146–1166. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.D.; De Gracia, A.; Fernández, A.I. Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.D.; De Gracia, A.; Fernández, A.I. Review of PCM based cooling technologies for buildings. Energy Build. 2012, 49, 37–49. [Google Scholar]
- Gholamibozanjani, G.; Farid, M. A critical review on the control strategies applied to PCM-enhanced buildings. Energies 2021, 14, 1929. [Google Scholar] [CrossRef]
- Li, D.; Wu, Y.; Wang, B.; Liu, C.; Arıcı, M. Optical and thermal performance of glazing units containing PCM in buildings: A review. Constr. Build. Mater. 2020, 233, 117327. [Google Scholar] [CrossRef]
- Pomianowski, M.; Heiselberg, P.; Zhang, Y. Review of thermal energy storage technologies based on PCM application in buildings. Energy Build. 2013, 67, 56–69. [Google Scholar] [CrossRef]
- Dehkordi, B.S.; Afrand, M. Energy-saving owing to using PCM into buildings: Considering of hot and cold climate region. Sustain. Energy Technol. Assess. 2022, 52, 102112. [Google Scholar]
- Zhou, Q.; Wang, P.; Wu, K.; Cao, J.; Zhang, H.; Zhang, Y.; Niu, B.; Long, D. Performance of high-temperature lightweight multilayer insulations. Appl. Therm. Eng. 2022, 211, 118436. [Google Scholar] [CrossRef]
- Gholamibozanjani, G.; Farid, M. A comparison between passive and active PCM systems applied to buildings. Renew. Energy 2020, 162, 112–123. [Google Scholar] [CrossRef]
- Biswas, K.; Lu, J.; Soroushian, P.; Shrestha, S. Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl. Energy 2014, 131, 517–529. [Google Scholar] [CrossRef]
- Kasaeian, A.; Pourfayaz, F.; Khodabandeh, E.; Yan, W.M. Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review. Energy Build. 2017, 154, 96–112. [Google Scholar] [CrossRef]
- Hwang, R.L.; Shu, S.Y. Building envelope regulations on thermal comfort in glass facade buildings and energy-saving potential for PMV-based comfort control. Build. Environ. 2011, 46, 824–834. [Google Scholar] [CrossRef]
- Al-Sakkaf, A.; Mohammed Abdelkader, E.; Mahmoud, S.; Bagchi, A. Studying energy performance and thermal comfort conditions in heritage buildings: A case study of murabba palace. Sustainability 2021, 13, 12250. [Google Scholar] [CrossRef]
- Chaiyapinunt, S.; Phueakphongsuriya, B.; Mongkornsaksit, K.; Khomporn, N. Performance rating of glass windows and glass windows with films in aspect of thermal comfort and heat transmission. Energy Build. 2005, 37, 725–738. [Google Scholar] [CrossRef]
- Hawila, A.A.W.; Merabtine, A.; Troussier, N.; Bennacer, R. Combined use of dynamic building simulation and metamodeling to optimize glass facades for thermal comfort. Build. Environ. 2019, 157, 47–63. [Google Scholar] [CrossRef]
- Watanabe, T.; Fukayama, S.; Miyauchi, M.; Fujishima, A.; Hashimoto, K. Photocatalytic activity and photo-induced wettability conversion of TiO2 thin film prepared by sol-gel process on a soda-lime glass. J. Sol-Gel Sci. Technol. 2000, 19, 71–76. [Google Scholar] [CrossRef]
- Shah, K.W. A review on enhancement of phase change materials—A nanomaterials perspective. Energy Build. 2018, 175, 57–68. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, W.; Ye, C.; Yu, L.; Qi, S. Preparation and characterization of self-assembled alkanephosphate monolayers on glass substrate coated with nano-TiO2 thin film. Mater. Res. Bull. 2001, 36, 2605–2612. [Google Scholar] [CrossRef]
- Peng, L.; Xu, Z.; Chao, L.; Zheng, D.; Yang, H.; Sun, C.; Cui, H. New energy-saving building developed by using polyethylene glycol/halloysite nanotube energy-storage blanket and heat-insulating glass with NaxWO3@ SiO2 nano-coating. Sol. Energy Mater. Sol. Cells 2023, 250, 112074. [Google Scholar] [CrossRef]
- Adhikary, S.K.; Rudžionis, Ž.; Vaičiukynienė, D. Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. J. Build. Eng. 2020, 31, 101399. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Zeng, Z.; Wang, G.; Liu, G.; Zhao, W.; Ren, T.; Xue, Q. Facile fabrication of antifogging, antireflective, and self-cleaning transparent silica thin coatings. Colloids Surf. A Physicochem. Eng. Asp. 2016, 509, 149–157. [Google Scholar] [CrossRef]
- Du, X.; Li, X.; He, J. Facile fabrication of hierarchically structured silica coatings from hierarchically mesoporous silica nanoparticles and their excellent superhydrophilicity and superhydrophobicity. ACS Appl. Mater. Interfaces 2010, 2, 2365–2372. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D.; Yeo, L.P.; Ong, A.J.; Zhiwei, W.; Mandler, D.; Magdassi, S.; Tok, A.I.Y. Electrochromic smart glass coating on functional nano-frameworks for effective building energy conservation. Mater. Today Energy 2020, 18, 100496. [Google Scholar] [CrossRef]
- Dahlan, A.S. Smart and functional materials based nanomaterials in construction styles in nano-architecture. Silicon 2019, 11, 1949–1953. [Google Scholar] [CrossRef]
- Gasonoo, A.; Ahn, H.S.; Jang, E.J.; Kim, M.H.; Gwag, J.S.; Lee, J.H.; Choi, Y. Fabrication of Multi-Layer Metal Oxides Structure for Colored Glass. Materials 2021, 14, 2437. [Google Scholar] [CrossRef]
- Park, K.J.; Jung, D. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energy Build. 2007, 39, 1061–1064. [Google Scholar] [CrossRef]
- Lee, H.Y.; Cai, Y.; Bi, S.; Liang, Y.N.; Song, Y.; Hu, X.M. A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows. ACS Appl. Mater. Interfaces 2017, 9, 6054–6063. [Google Scholar] [CrossRef]
- Chen, C.; Wang, X.; Wang, Y.; Yang, D.; Yao, F.; Zhang, W.; Wang, B.; Sewvandi, G.A.; Yang, D.; Hu, D. Additive manufacturing of piezoelectric materials. Adv. Funct. Mater. 2020, 30, 2005141. [Google Scholar] [CrossRef]
- Jia, L.C.; Jin, Y.F.; Ren, J.W.; Zhao, L.H.; Yan, D.X.; Li, Z.M. Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J. Mater. Chem. C 2021, 9, 2904–2911. [Google Scholar] [CrossRef]
- Zhang, K.; Huo, Q.; Zhou, Y.Y.; Wang, H.H.; Li, G.P.; Wang, Y.W.; Wang, Y.Y. Textiles/metal-organic frameworks composites as flexible air filters for efficient particulate matter removal. ACS Appl. Mater. Interfaces 2019, 11, 17368–17374. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, B.; Chen, Y.; Guo, L.; Wei, G. Carbon nanofiber-based three-dimensional nanomaterials for energy and environmental applications. Mater. Adv. 2020, 1, 2163–2181. [Google Scholar] [CrossRef]
- Tan, C.; Cao, X.; Wu, X.J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.H.; et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar] [CrossRef] [PubMed]
- Deepika, D.M.; Singh, H.; Attia, M.S.; Amin, M.A. Recent innovations in properties of nanostructured glasses and composites. J. Exp. Nanosci. 2021, 16, 180–211. [Google Scholar] [CrossRef]
- Septiani, N.L.W.; Kaneti, Y.V.; Fathoni, K.B.; Kani, K.; Allah, A.E.; Yuliarto, B.; Nugraha Dipojono, H.K.; Alothman, Z.A.; Golberg, D.; Yamauchi, Y. Self-assembly of two-dimensional bimetallic nickel–cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction. Chem. Mater. 2020, 32, 7005–7018. [Google Scholar] [CrossRef]
- Singh, A. Recent advancement in metal containing multicomponent chalcogenide glasses. Opto-Electron. Rev. 2012, 20, 226–238. [Google Scholar] [CrossRef]
- He, L.; Li, K.; Xiong, J. Study on the surface segregation evolution of Ag-TiOx nanocomposite coatings. J. Exp. Nanosci. 2020, 15, 381–389. [Google Scholar] [CrossRef]
- Kokenyesi, S. Amorphous chalcogenide nano-multilayers: Research and development. JOAM 2006, 8, 2093–2096. [Google Scholar]
- Abdulhalim, I.; Gelbaor, M.; Klebanov, M.; Lyubin, V. Photoinduced phenomena in nano-dimensional glassy As2S3films. Opt. Mater. Express 2011, 1, 1192–1201. [Google Scholar] [CrossRef]
- Lu, Y.; Su, S.; Zhang, S.; Huang, Y.; Qin, Z.; Lu, X.; Chen, W. Controllable additive manufacturing of gradient bulk metallic glass composite with high strength and tensile ductility. Acta Mater. 2021, 206, 116632. [Google Scholar] [CrossRef]
- Liu, H.; Lin, W.; Hong, M. Hybrid laser precision engineering of transparent hard materials: Challenges, solutions and applications. Light Sci. Appl. 2021, 10, 162. [Google Scholar] [CrossRef]
- Hou, P.; Yin, J.; Ding, M.; Huang, J.; Xu, X. Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives. Small 2017, 13, 1701802. [Google Scholar] [CrossRef] [Green Version]
- Noorasid, N.S.; Arith, F.; Mustafa, A.N.; Azam, M.A.; Mahalingam, S.; Chelvanathan, P.; Amin, N. Current advancement of flexible dye sensitized solar cell: A review. Optik 2022, 254, 168089. [Google Scholar] [CrossRef]
- Zhou, Q.; Han, W.; Luo, D.; Du, Y.; Xie, J.; Wang, X.Z.; Zou, Q.; Zhao, X.; Wang, H.; Beake, B.D. Mechanical and tribological properties of Zr-Cu-Ni-Al bulk metallic glasses with dual-phase structure. Wear 2021, 474, 203880. [Google Scholar] [CrossRef]
- Padilla, H.A.; Boyce, B.L. A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 2010, 50, 5–23. [Google Scholar] [CrossRef]
- Sun, B.A.; Wang, W.H. The fracture of bulk metallic glasses. Prog. Mater. Sci. 2015, 74, 211–307. [Google Scholar] [CrossRef]
- Zhao, J.; Gao, X.; Chen, S.; Lin, H.; Li, Z.; Lin, X. Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review. Compos. Part B Eng. 2022, 243, 110104. [Google Scholar] [CrossRef]
- Geotti-Bianchini, F.; De Riu, L.; Gagliardi, G.; Guglielmi, M.; Pantano, C.G. New interpretation of the IR reflectance spectra of SiO2-rich films on soda-lime glass. Glastech. Berichte 1991, 64, 205–217. [Google Scholar]
- Zhao, J.; Gao, X.; Chen, S.; Lin, H.; Li, Z.; Lin, X. Photocatalytic activity of sol–gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer. Surf. Coat. Technol. 2010, 204, 2570–2575. [Google Scholar]
- Paz, Y.; Heller, A. Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention. J. Mater. Res. 1997, 12, 2759–2766. [Google Scholar] [CrossRef]
- Lin, Y.; Jia, Y.; Alva, G.; Fang, G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew. Sustain. Energy Rev. 2018, 82, 2730–2742. [Google Scholar] [CrossRef]
- Sharma, A.; Aggarwal, S. Optical investigation of soda lime glass with buried silver nanoparticles synthesised by ion implantation. J. Non-Cryst. Solids 2018, 485, 57–65. [Google Scholar]
- Michel, M.D.; Mikowski, A.; Lepienski, C.M.; Foerster, C.E.; Serbena, F.C. High temperature microhardness of soda-lime glass. J. Non-Cryst. Solids 2004, 348, 131–138. [Google Scholar] [CrossRef]
- Adjouadi, N.; Laouar, N.; Bousbaa, C.; Bouaouadja, N.; Fantozzi, G. Study of light scattering on a soda lime glass eroded by sandblasting. J. Eur. Ceram. Soc. 2007, 27, 3221–3229. [Google Scholar] [CrossRef]
- Kumar, P.; Mathpal, M.C.; Tripathi, A.K.; Prakash, J.; Agarwal, A.; Ahmad, M.M.; Swart, H.C. Plasmonic resonance of Ag nanoclusters diffused in soda-lime glasses. Phys. Chem. Chem. Phys. 2015, 17, 8596–8603. [Google Scholar] [CrossRef]
- Correa, G.; Almanza, R. Copper based thin films to improve glazing for energy-savings in buildings. Sol. Energy 2004, 76, 111–115. [Google Scholar] [CrossRef]
- Wang, H.; Lei, C. A numerical investigation of combined solar chimney and water wall for building ventilation and thermal comfort. Build. Environ. 2020, 171, 106616. [Google Scholar] [CrossRef]
- Memon, S.A.; Lo, T.Y.; Cui, H. Utilization of waste glass powder for latent heat storage application in buildings. Energy Build. 2013, 66, 405–414. [Google Scholar] [CrossRef]
- Molinari, C.; Zanelli, C.; Laghi, L.; De Aloysio, G.; Santandrea, M.; Guarini, G.; Conte, S.; Dondi, M. Effect of scale-up on the properties of PCM-impregnated tiles containing glass scraps. Case Stud. Constr. Mater. 2021, 14, e00526. [Google Scholar] [CrossRef]
- Koo, H.; Xu, L.; Ko, K.E.; Ahn, S.; Chang, S.H.; Park, C. Effect of oxide buffer layer on the thermochromic properties of VO2 thin films. J. Mater. Eng. Perform. 2013, 22, 3967–3973. [Google Scholar] [CrossRef]
- Casasola, R.; Rincón, J.M.; Romero, M. Glass-ceramic glazes for ceramic tiles: A review. J. Mater. Sci. 2012, 47, 553–582. [Google Scholar] [CrossRef] [Green Version]
- Colomban, P. Gel technology in ceramics, glass-ceramics and ceramic-ceramic composites. Ceram. Int. 1989, 15, 23–50. [Google Scholar] [CrossRef]
- Beall, G.H.; Pinckney, L.R. Nanophase glass-ceramics. J. Am. Ceram. Soc. 1999, 82, 5–16. [Google Scholar] [CrossRef]
- Tick, P.A.; Borrelli, N.F.; Reaney, I.M. The relationship between structure and transparency in glass-ceramic materials. Opt. Mater. 2000, 15, 81–91. [Google Scholar] [CrossRef]
- Yu, Q. Application of Foam Glass-Ceramic Composite Thermal Insulation Material in Traditional Buildings. J. Chem. 2022, 2022, 9662805. [Google Scholar] [CrossRef]
- Enríquez, E.; Fuertes, V.; Cabrera, M.J.; Seores, J.; Muñoz, D.; Fernández, J.F. New strategy to mitigate urban heat island effect: Energy saving by combining high albedo and low thermal diffusivity in glass ceramic materials. Sol. Energy 2017, 149, 114–124. [Google Scholar] [CrossRef]
- Rawlings, R.D.; Wu, J.P.; Boccaccini, A.R. Glass-ceramics: Their production from wastes—A review. J. Mater. Sci. 2006, 41, 733–761. [Google Scholar] [CrossRef] [Green Version]
- Andreola, F.; Barbieri, L.; Soares, B.Q.; Karamanov, A.; Schabbach, L.M.; Bernardin, A.M.; Pich, C.T. Toxicological analysis of ceramic building materials–Tiles and glasses–Obtained from post-treated bottom ashes. Waste Manag. 2019, 98, 50–57. [Google Scholar] [CrossRef]
- Odewole, O.P.; Kashim, I.B.; Akinbogun, T.L. Investigation into the viability of the properties of porous glass-ceramics produced from granite dust and maize cob for use in thermal insulation of external walls of residential buildings. J. Mech. Eng. Sci. 2022, 16, 8943–8952. [Google Scholar] [CrossRef]
- Binhussain, M.A.; Marangoni, M.; Bernardo, E.; Colombo, P. Sintered and glazed glass-ceramics from natural and waste raw materials. Ceram. Int. 2014, 40, 3543–3551. [Google Scholar] [CrossRef]
- Casini, M. Active dynamic windows for buildings: A review. Renew. Energy 2018, 119, 923–934. [Google Scholar] [CrossRef]
- Arbab, M.; Finley, J.J. Glass in architecture. Int. J. Appl. Glass Sci. 2010, 1, 118–129. [Google Scholar] [CrossRef]
- Granqvist, C.G. Electrochromics and thermochromics: Towards a new paradigm for energy efficient buildings. Mater. Today Proc. 2016, 3, S2–S11. [Google Scholar] [CrossRef]
- Achintha, M. Sustainability of glass in construction. In Sustainability of Construction Materials; Woodhead Publishing: Sawston, UK, 2016; pp. 79–104. [Google Scholar]
- Gasonoo, A.; Ahn, H.S.; Kim, M.H.; Lee, J.H.; Choi, Y.S. Metal Oxide Multi-Layer Color Glass by Radio Frequency Magnetron Sputtering for Building Integrated Photovoltaic System. J. IKEEE 2018, 22, 1056–1061. [Google Scholar]
- Kim, D.; Lee, E.; Lee, H.S.; Yoon, J. Energy efficient glazing for adaptive solar control fabricated with photothermotropic hydrogels containing graphene oxide. Sci. Rep. 2015, 23, 7646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, H.S.; Gasonoo, A.; Jang, E.J.; Kim, M.H.; Lee, J.H.; Choi, Y. Transition Metal Oxide Multi-Layer Color Glass for Building Integrated Photovoltaic System. J. IKEEE 2019, 23, 1128–1133. [Google Scholar]
- Roy, A.; Ghosh, A.; Benson, D.; Mallick, T.K.; Sundaram, S. Emplacement of screen-printed graphene oxide coating for building thermal comfort discernment. Sci. Rep. 2020, 10, 15578. [Google Scholar] [CrossRef]
- Chou, H.T.; Chen, Y.C.; Lee, C.Y.; Chang, H.Y.; Tai, N.H. Switchable transparency of dual-controlled smart glass prepared with hydrogel-containing graphene oxide for energy efficiency. Sol. Energy Mater. Sol. Cells 2017, 166, 45–51. [Google Scholar] [CrossRef]
- Stazi, F.; Giampaoli, M.; Tittarelli, F.; Di Perna, C.; Munafò, P. Durability of different glass coatings in humid and saline environments, ageing impact on heat-light transmission and thermal comfort. Build. Environ. 2016, 105, 210–224. [Google Scholar] [CrossRef]
- Long, L.; Ye, H.; Gao, Y.; Zou, R. Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings. Appl. Energy 2014, 136, 89–97. [Google Scholar] [CrossRef]
- Zeng, Q.; Mao, T.; Li, H.; Peng, Y. Thermally insulating lightweight cement-based composites incorporating glass beads and nano-silica aerogels for sustainably energy-saving buildings. Energy Build. 2018, 174, 97–110. [Google Scholar] [CrossRef]
- Abdin, A.R.; El Bakery, A.R.; Mohamed, M.A. The role of nanotechnology in improving the efficiency of energy use with a special reference to glass treated with nanotechnology in office buildings. Ain Shams Eng. J. 2018, 9, 2671–2682. [Google Scholar] [CrossRef]
- Shah, K.W.; Ong, P.J.; Chua, M.H.; Toh, S.H.G.; Lee, J.J.C.; Soo, X.Y.D.; Png, Z.M.; Ji, R.; Xu, J.; Zhu, Q. Application of phase change materials in building components and the use of nanotechnology for its improvement. Energy Build. 2022, 262, 112018. [Google Scholar] [CrossRef]
- Sev, A.; Ezel, M. Nanotechnology innovations for the sustainable buildings of the future. World Acad. Sci. Eng. Technol. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2014, 8, 886–896. [Google Scholar]
- Huang, C.L.; Ho, C.C.; Chen, Y.B. Development of an energy-saving glass using two-dimensional periodic nano-structures. Energy Build. 2015, 86, 589–594. [Google Scholar] [CrossRef]
- Dey, T. UV-reflecting sintered nano-TiO2 thin film on glass for anti-bird strike application. Surf. Eng. 2021, 37, 688–694. [Google Scholar] [CrossRef]
- Khandve, P. Nanotechnology for building material. Int. J. Basic Appl. Res. 2014, 4, 146–151. [Google Scholar]
- Kim, H.; McSherry, S.; Brown, B.; Lenert, A. Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology. ACS Appl. Mater. Interfaces 2020, 12, 43553–43559. [Google Scholar] [CrossRef] [PubMed]
- Alqaed, S.; Mustafa, J.; Sharifpur, M. Annual energy analysis of a building equipped with CaCl2·6H2O as PCM and CaCl2·6H2O/CsxWO3 as nano PCM—Useless of adding nanoparticles. J. Build. Eng. 2022, 53, 104527. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Q.; Yu, J.; Liu, B. Development of multifunctional photoactive self-cleaning glasses. J. Non-Cryst. Solids 2008, 354, 1424–1430. [Google Scholar] [CrossRef]
- Syafiq, A.; Pandey, A.K.; Adzman, N.N.; Abd Rahim, N. Advances in approaches and methods for self-cleaning of solar photovoltaic panels. Sol. Energy 2018, 162, 597–619. [Google Scholar] [CrossRef]
- Banerjee, S.; Dionysiou, D.D.; Pillai, S.C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B Environ. 2015, 176, 396–428. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wang, C.; Pang, S.; Li, X.; Tao, Y.; Tang, H.; Liu, M. Photocatalytic TiO2 films prepared by chemical vapor deposition at atmosphere pressure. J. Non-Cryst. Solids 2008, 354, 1440–1443. [Google Scholar] [CrossRef]
- Powell, M.J.; Quesada-Cabrera, R.; Taylor, A.; Teixeira, D.; Papakonstantinou, I.; Palgrave, R.G.; Sankar, G.; Parkin, I.P. Intelligent multifunctional VO2/SiO2/TiO2 coatings for self-cleaning, energy-saving window panels. Chem. Mater. 2016, 28, 1369–1376. [Google Scholar] [CrossRef]
- Maharjan, S.; Liao, K.S.; Wang, A.J.; Barton, K.; Haldar, A.; Alley, N.J.; Byrne, H.J.; Curran, S.A. Self-cleaning hydrophobic nanocoating on glass: A scalable manufacturing process. Mater. Chem. Phys. 2020, 239, 122000. [Google Scholar] [CrossRef]
- Ganesh, V.A.; Raut, H.K.; Nair, A.S.; Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Sadasivuni, K.K.; Xing, R.; Liu, S. Self–cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Ren, Y.; Li, W.; Cao, Z.; Jiao, Y.; Xu, J.; Liu, P.; Li, S.; Li, X. Robust TiO2 nanorods-SiO2 core-shell coating with high-performance self-cleaning properties under visible light. Appl. Surf. Sci. 2020, 509, 145377. [Google Scholar] [CrossRef]
- Lukong, V.T.; Ukoba, K.; Jen, T.C. Fabrication of vanadium dioxide thin films and application of its thermochromic and photochromic nature in self-cleaning: A review. Energy Environ. 2022, 1, 1–34. [Google Scholar] [CrossRef]
- Jaen-Cuellar, A.Y.; Elvira-Ortiz, D.A.; Osornio-Rios, R.A.; Antonino-Daviu, J.A. Advances in fault condition monitoring for solar photovoltaic and wind turbine energy generation: A review. Energies 2022, 15, 5404. [Google Scholar] [CrossRef]
- Self-Cleaning-Glass. Available online: https://www.pilkington.com/en/global/knowledge-base/types-of-glass/self-cleaning-glass (accessed on 7 August 2022).
- Tong, S.W.; Goh, W.P.; Huang, X.; Jiang, C. A review of transparent-reflective switchable glass technologies for building facades. Renew. Sustain. Energy Rev. 2021, 152, 111615. [Google Scholar] [CrossRef]
- Oladipo, H.; Garlisi, C.; Al-Ali, K.; Azar, E.; Palmisano, G. Combined photocatalytic properties and energy efficiency via multifunctional glass. J. Environ. Chem. Eng. 2019, 7, 102980. [Google Scholar] [CrossRef]
- Syafiq, A.; Vengadaesvaran, B.; Rahim, N.A.; Pandey, A.K.; Bushroa, A.R.; Ramesh, K.; Ramesh, S. Transparent self-cleaning coating of modified polydimethylsiloxane (PDMS) for real outdoor application. Prog. Org. Coat. 2019, 131, 232–239. [Google Scholar] [CrossRef]
- Zhu, M.X.; Song, H.G.; Li, J.C.; Xue, J.Y.; Yu, Q.C.; Chen, J.M.; Zhang, G.J. Superhydrophobic and high-flashover-strength coating for HVDC insulating system. Chem. Eng. J. 2021, 404, 126476. [Google Scholar] [CrossRef]
- Sutar, R.S.; Latthe, S.S.; Bhosale, A.K.; Xing, R.; Liu, S. Durable Self-Cleaning Superhydrophobic Coating of SiO2—Cyanoacrylate Adhesive via Facile Dip Coat Technique. Macromol. Symp. 2019, 387, 1800218. [Google Scholar] [CrossRef]
- Meena, M.K.; Sinhamahapatra, A.; Kumar, A. Superhydrophobic polymer composite coating on glass via spin coating technique. Colloid Polym. Sci. 2019, 297, 1499–1505. [Google Scholar] [CrossRef]
- Sarkın, A.S.; Ekren, N.; Sağlam, Ş. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol. Energy 2020, 199, 63–73. [Google Scholar] [CrossRef]
- Olugbade, T.O.; Abioye, T.E.; Farayibi, P.K.; Olaiya, N.G.; Omiyale, B.O.; Ogedengbe, T.I. Electrochemical properties of MgZnCa-based thin film metallic glasses fabricated by magnetron sputtering deposition coated on a stainless steel substrate. Anal. Lett. 2020, 54, 1588–1602. [Google Scholar] [CrossRef]
- Ma, L.; Ai, X.; Huang, X.; Ma, S. Effects of the substrate and oxygen partial pressure on the microstructures and optical properties of Ti-doped ZnO thin films. Superlattices Microstruct. 2011, 50, 703–712. [Google Scholar] [CrossRef]
- Son, T.; Yang, E.; Yu, E.; Oh, K.H.; Moon, M.W.; Kim, H.Y. Effects of surface nanostructures on self-cleaning and anti-fogging characteristics of transparent glass. J. Mech. Sci. Technol. 2017, 31, 5407–5414. [Google Scholar] [CrossRef]
- Duran, I.R.; Laroche, G. Current trends, challenges, and perspectives of anti-fogging technology: Surface and material design, fabrication strategies, and beyond. Prog. Mater. Sci. 2019, 99, 106–186. [Google Scholar] [CrossRef]
- Zhou, K. (Ed.) Carbon Nanomaterials: Modeling, Design, and Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Wu, Q.; Miao, W.S.; Zhang, Y.D.; Gao, H.J.; Hui, D. Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 2020, 9, 259–273. [Google Scholar] [CrossRef]
- Cheng, J.; Zhou, Y.; Ma, D.; Li, S.; Zhang, F.; Guan, Y.; Qu, W.; Jin, Y.; Wang, D. Preparation and characterization of carbon nanotube microcapsule phase change materials for improving thermal comfort level of buildings. Constr. Build. Mater. 2020, 244, 118388. [Google Scholar] [CrossRef]
- Balal, M.H.M.A. A Selective Window for Indoor Thermal Comfort in Building. Ph.D. Thesis, Sudan University of Science and Technology, Khartoum, Sudan, 2017. [Google Scholar]
- Zhai, H.; Fan, D.; Li, Q. Dynamic radiation regulations for thermal comfort. Nano Energy 2022, 107435. [Google Scholar] [CrossRef]
- Benitha, V.S.; Jeyasubramanian, K.; Prabhin, V.S. Enhanced near-infrared reflectance and functional characteristics of nano metal oxide embedded alkyd coatings. Mater. Res. Express 2022, 9, 056404. [Google Scholar] [CrossRef]
- Cheela, V.S.; John, M.; Biswas, W.; Sarker, P. Combating urban heat island effect—A review of reflective pavements and tree shading strategies. Buildings 2021, 11, 93. [Google Scholar] [CrossRef]
- D’Oliveira, E.J.; Pereira, S.C.C.; Groulx, D.; Azimov, U. Thermophysical properties of Nano-enhanced phase change materials for domestic heating applications. J. Energy Storage 2022, 46, 103794. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; de Lieto Vollaro, A.; de Lieto Vollaro, R. How high albedo and traditional buildings’ materials and vegetation affect the quality of urban microclimate. A case study. Energy Build. 2015, 99, 32–49. [Google Scholar] [CrossRef]
- Adak, D.; Ghosh, S.; Chakrabarty, P.; Mondal, A.; Saha, H.; Mukherjee, R.; Bhattacharyya, R. Self-cleaning V-TiO2: SiO2 thin-film coatings with enhanced transmission for solar glass cover and related applications. Sol. Energy 2017, 155, 410–418. [Google Scholar] [CrossRef]
- Jamil, H.; Alam, M.; Sanjayan, J.; Wilson, J. Investigation of PCM as retrofitting option to enhance occupant thermal comfort in a modern residential building. Energy Build. 2016, 133, 217–229. [Google Scholar] [CrossRef]
- Kean, T.H.; Sidik, N.A.C.; Asako, Y.; Ken, T.L.; Aid, S.R. Numerical study on heat transfer performance enhancement of phase change material by nanoparticles: A review. J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 45, 55–63. [Google Scholar]
- Ali, M.A.; Viegas, R.F.; Kumar, M.S.; Kannapiran, R.K.; Feroskhan, M. Enhancement of heat transfer in paraffin wax PCM using nano graphene composite for industrial helmets. J. Energy Storage 2019, 26, 100982. [Google Scholar] [CrossRef]
- Niu, S.; Cheng, J.; Zhao, Y.; Kang, M.; Liu, Y. Preparation and characterization of multifunctional phase change material microcapsules with modified carbon nanotubes for improving the thermal comfort level of buildings. Constr. Build. Mater. 2022, 347, 128628. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Jabbari, F.; Rajabpour, A.; Saedodin, S. Viscosity of carbon nanotube/water nanofluid: Equilibrium molecular dynamics. J. Therm. Anal. Calorim. 2019, 135, 1787–1796. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Bakak, A.; Lotfi, M.; Heyd, R.; Ammar, A.; Koumina, A. Viscosity and rheological properties of graphene nanopowders nanofluids. Entropy 2021, 23, 979. [Google Scholar] [CrossRef]
- Rashidi, S.; Karimi, N.; Mahian, O.; Abolfazli Esfahani, J. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J. Therm. Anal. Calorim. 2019, 135, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, S.; Karimi, N.; Mahian, O.; Abolfazli Esfahani, J. Influence of TiO2 on viscosity, phase composition and structure of chromium-containing high-titanium blast furnace slag. J. Mater. Res. Technol. 2021, 12, 1615–1622. [Google Scholar]
- Sulgani, M.T.; Karimipour, A. Improve the thermal conductivity of 10w40-engine oil at various temperature by addition of Al2O3/Fe2O3 nanoparticles. J. Mol. Liq. 2019, 283, 660–666. [Google Scholar] [CrossRef]
- Apmann, K.; Fulmer, R.; Soto, A.; Vafaei, S. Thermal conductivity and viscosity: Review and optimization of effects of nanoparticles. Materials 2021, 14, 1291. [Google Scholar] [CrossRef]
- Giolando, D.M. Nano-crystals of titanium dioxide in aluminum oxide: A transparent self-cleaning coating applicable to solar energy. Sol. Energy 2013, 97, 195–199. [Google Scholar] [CrossRef]
Nanoparticle | Specific Heat (J/KG·K) | Thermal Conductivity (W/m·K) | Density | Visocity (kg/ms) | Molecular Weight (g/mol) |
---|---|---|---|---|---|
CNT | 710 | 2–3 [137] | 380 | 0.00125–0.00730 [138] at 25–65 °C | 12.01 |
GO | 509 | 2–5 [139] | 380 | 0.0199–0.0027 [140] at 25–65 °C | 12.01 |
Titanium oxide (TiO) | 683 | 8.5 [141] | 423 | 0.127–0.207 [142] at 25–65 °C | 79.87 |
Iron oxide (FeO) | 104 [143] | 7 [141] | 5240 | 0.007–0.092 [144] at 10–65 °C | 159.69 |
Aluminium oxide (ALO) | 880 [143] | 40 [141] | 2120 | 0.006–0.071 [144] at 25–65 °C | 101.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jastaneyah, Z.; Kamar, H.M.; Alansari, A.; Al Garalleh, H. A Comparative Analysis of Standard and Nano-Structured Glass for Enhancing Heat Transfer and Reducing Energy Consumption Using Metal and Oxide Nanoparticles: A Review. Sustainability 2023, 15, 9221. https://doi.org/10.3390/su15129221
Jastaneyah Z, Kamar HM, Alansari A, Al Garalleh H. A Comparative Analysis of Standard and Nano-Structured Glass for Enhancing Heat Transfer and Reducing Energy Consumption Using Metal and Oxide Nanoparticles: A Review. Sustainability. 2023; 15(12):9221. https://doi.org/10.3390/su15129221
Chicago/Turabian StyleJastaneyah, Zuhair, Haslinda M. Kamar, Abdulrahman Alansari, and Hakim Al Garalleh. 2023. "A Comparative Analysis of Standard and Nano-Structured Glass for Enhancing Heat Transfer and Reducing Energy Consumption Using Metal and Oxide Nanoparticles: A Review" Sustainability 15, no. 12: 9221. https://doi.org/10.3390/su15129221
APA StyleJastaneyah, Z., Kamar, H. M., Alansari, A., & Al Garalleh, H. (2023). A Comparative Analysis of Standard and Nano-Structured Glass for Enhancing Heat Transfer and Reducing Energy Consumption Using Metal and Oxide Nanoparticles: A Review. Sustainability, 15(12), 9221. https://doi.org/10.3390/su15129221