Habitat Quality Assessment under the Change of Vegetation Coverage in the Tumen River Cross-Border Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methodology
2.3.1. Dimidiate Pixel Model
2.3.2. Univariate Linear Trend
2.3.3. Geographic Detector Model
2.3.4. Habitat Quality Assessment
2.3.5. Geographically Weighted Regression Model
2.3.6. Improved InVEST Habitat Quality Model
2.3.7. Spatial Autocorrelation Analysis
3. Results
3.1. Temporal and Spatial Distribution of Fraction Vegetation Cover Changes in the Tumen River Cross-Border Basin
3.2. Analysis of Driving Factors of Vegetation Cover Change in the Tumen River Cross-Border Basin
3.3. Habitat Quality Assessment Results
4. Discussion
4.1. Analysis of Spatio-Temporal Dynamic Variation of Vegetation Coverage
4.2. Effects of Different Driving Factors on Fraction Vegetation Coverage
4.3. Effect of Human Activities and Fraction Vegetation Coverage on Habitat Quality
4.4. Habitat Quality Assessment Coupled with Fraction Vegetation Coverage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Wang, C. Spatio-temporal evolution characteristics of habitat quality in the Loess Hilly Region based on land use change: A case study in Yuzhong County. Acta Ecol. Sin. 2018, 38, 7300–7311. [Google Scholar]
- Li, F.; Wang, L.; Chen, Z.; Clarke, K.C.; Li, M.; Jiang, P. Extending the SLEUTH model to integrate habitat quality into urban growth simulation. J. Environ. Manag. 2018, 217, 486–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Tang, Z.; Liu, D.; He, J. Ecological response to urban development in a changing socio-economic and climate context: Policy implications for balancing regional development and habitat conservation. Land Use Pol. 2020, 97, 104772. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, Q.; Cheng, D.; Xu, C.; Chang, Y.; Lin, Y.; Li, B. Landscape ecological risk projection based on the PLUS model under the localized shared socioeconomic pathways in the Fujian Delta region. Ecol. Indic. 2022, 136, 108642. [Google Scholar] [CrossRef]
- Wu, D.; Wu, H.; Zhao, X.; Zhou, T.; Tang, B.; Zhao, W.; Jia, K. Evaluation of Spatiotemporal Variations of Global Fractional Vegetation Cover Based on GIMMS NDVI Data from 1982 to 2011. Remote Sens. 2014, 6, 4217–4239. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wu, P.; Zhao, X.; Wang, Y.; Gao, X. Changes in vegetation condition in areas with different gradients (1980-2010) on the Loess Plateau, China. Environ. Earth Sci. 2013, 68, 2427–2438. [Google Scholar] [CrossRef]
- Feng, D.; Yang, C.; Fu, M.; Wang, J.; Zhang, M.; Sun, Y.; Bao, W. Do anthropogenic factors affect the improvement of vegetation cover in resource-based region? J. Clean Prod. 2020, 271, 122705. [Google Scholar] [CrossRef]
- Tao, S.; Peng, W.; Xiang, J. Spatiotemporal variations and driving mechanisms of vegetation coverage in the Wumeng Mountainous Area, China. Ecol. Inform. 2022, 70, 101737. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Wang, T.; Chen, G.; Zhu, K.; Wang, Q.; Wang, J. Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. [Google Scholar] [CrossRef]
- North, P.R.J. Estimation of fAPAR, LAI, and vegetation fractional cover from ATSR-2 imagery. Remote Sens. Environ. 2002, 80, 114–121. [Google Scholar] [CrossRef]
- Boyd, D.S.; Foody, G.M.; Ripple, W.J. Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing. Appl. Geogr. 2002, 22, 375–392. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Neinavaz, E.; Schlerf, M.; Darvishzadeh, R.; Gerhards, M.; Skidmore, A.K. Thermal infrared remote sensing of vegetation: Current status and perspectives. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102415. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Bao, Y.; Lai, Q.; Lian, X.; Li, N.; Bao, Y. Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982–2013. J. Geogr. Sci. 2018, 28, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Wang, G.; Zhang, S.; Peng, Y.; Xue, B.; Cao, Y.; Shrestha, S. A novel ecohydrological model by capturing variations in climate change and vegetation coverage in a semi-arid region of China. Environ. Res. 2022, 211, 113085. [Google Scholar] [CrossRef]
- Ren, Z.; Tian, Z.; Wei, H.; Liu, Y.; Yu, Y. Spatiotemporal evolution and driving mechanisms of vegetation in the Yellow River Basin, China during 2000–2020. Ecol. Indic. 2022, 138, 108832. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, Z.; Zhang, Y.; Ao, Y.; Han, L.; Kang, S.; Sun, Y. Effects of human activity intensity on habitat quality based on nighttime light remote sensing: A case study of Northern Shaanxi, China. Sci. Total Environ. 2022, 851, 158037. [Google Scholar] [CrossRef]
- Zheng, W.; Li, S.; Ke, X.; Li, X.; Zhang, B. The impacts of cropland balance policy on habitat quality in China: A multiscale administrative perspective. J. Environ. Manag. 2022, 323, 116182. [Google Scholar] [CrossRef]
- Chen, X.; Yu, L.; Cao, Y.; Xu, Y.; Zhao, Z.; Zhuang, Y.; Liu, X.; Du, Z.; Liu, T.; Yang, B.; et al. Habitat quality dynamics in China’s first group of national parks in recent four decades: Evidence from land use and land cover changes. J. Environ. Manag. 2023, 325, 116505. [Google Scholar] [CrossRef]
- Wei, W.; Bao, Y.; Wang, Z.; Chen, X.; Luo, Q.; Mo, Y. Response of habitat quality to urban spatial morphological structure in multi-mountainous city. Ecol. Indic. 2023, 146, 109877. [Google Scholar] [CrossRef]
- He, F.; Jin, J.; Zhang, H.; Yuan, L. The change of ecological service value and the promotion mode of ecological function in mountain development using invest model. Arab. J. Geosci. 2021, 14, 510. [Google Scholar] [CrossRef]
- Tobisch, C.; Rojas-Botero, S.; Uhler, J.; Kollmann, J.; Müller, J.; Moning, C.; Redlich, S.; Steffan-Dewenter, I.; Benjamin, C.; Englmeier, J.; et al. Conservation-relevant plant species indicate arthropod richness across trophic levels: Habitat quality is more important than habitat amount. Ecol. Indic. 2023, 148, 110039. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, Z.; Wang, D.; Luo, F.; Bai, J.; Fu, Y. Impact of vegetation restoration on ecosystem services in the Loess plateau, a case study in the Jinghe Watershed, China. Ecol. Indic. 2022, 142, 109183. [Google Scholar] [CrossRef]
- Chance, D.P.; McCollum, J.R.; Street, G.M.; Strickland, B.K.; Lashley, M.A. Vegetation characteristics influence fine-scale intensity of habitat use by wild turkey and white-tailed deer in a loblolly pine plantation. Basic Appl. Ecol. 2020, 43, 42–51. [Google Scholar] [CrossRef]
- Muensch, T.; Helbing, F.; Fartmann, T. Habitat quality determines patch occupancy of two specialist Lepidoptera species in well-connected grasslands. J. Insect Conserv. 2019, 23, 247–258. [Google Scholar] [CrossRef]
- Marshall, E.; Valavi, R.; Connor, L.O.; Cadenhead, N.; Southwell, D.; Wintle, B.A.; Kujala, H. Quantifying the impact of vegetation-based metrics on species persistence when choosing offsets for habitat destruction. Conserv. Biol. 2021, 35, 567–577. [Google Scholar] [CrossRef]
- Wu, Y.; Tang, Z.; Xiong, S. A unified geographically weighted regression model. Spat. Stat. 2023, 55, 100753. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Pinho, P.; Llop, E.; Branquinho, C.; Sousa, A.J.; Pereira, M.J. Multivariate geostatistical methods for analysis of relationships between ecological indicators and environmental factors at multiple spatial scales. Ecol. Indic. 2013, 29, 339–347. [Google Scholar] [CrossRef]
- Su, H.; Shen, W.; Wang, J.; Ali, A.; Li, M. Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. For. Ecosyst. 2020, 7, 1–20. [Google Scholar] [CrossRef]
- Zakeri, F.; Mariethoz, G. A review of geostatistical simulation models applied to satellite remote sensing: Methods and applications. Remote Sens. Environ. 2021, 259, 112381. [Google Scholar] [CrossRef]
- Ungaro, F.; Zasada, I.; Piorr, A. Turning points of ecological resilience: Geostatistical modelling of landscape change and bird habitat provision. Landsc. Urban Plan. 2017, 157, 297–308. [Google Scholar] [CrossRef]
- Xu, W.; Collingsworth, P.; Bailey, B.; Carlson Mazur, M.; Schaeffer, J.; Minsker, B. Detecting spatial patterns of rivermouth processes using a geostatistical framework for near-real-time analysis. Environ. Modell. Softw. 2017, 97, 72–85. [Google Scholar] [CrossRef]
- Zawadzki, J.; Cieszewski, C.J.; Zasada, M.; Lowe, R.C. Applying geostatistics for investigations of forest ecosystems using remote sensing imagery. Silva. Fenn. 2005, 39, 599–617. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Wang, X.; Wang, Q.; Qiao, Y.; Wu, H.; Hu, Q. Geographically weighted regression (GWR) and Prediction-area (P-A) plot to generate enhanced geochemical signatures for mineral exploration targeting. Appl. Geochem. 2023, 150, 105590. [Google Scholar] [CrossRef]
- Lv, G.; Cui, G.; Wang, X.; Yu, H.; Huang, X.; Zhu, W.; Lin, Z. Signatures of Wetland Impact: Spatial Distribution of Forest Aboveground Biomass in Tumen River Basin. Remote Sens. 2021, 13, 3009. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, R.; Zhu, W. Conversion of Natural Wetland to Farmland in the Tumen River Basin: Human and Environmental Factors. Remote Sens. 2021, 13, 3498. [Google Scholar] [CrossRef]
- Zheng, X.; Sun, P.; Zhu, W.; Xu, Z.; Fu, J.; Man, W.; Li, H.; Zhang, J.; Qin, L. Landscape dynamics and driving forces of wetlands in the Tumen River Basin of China over the past 50 years. Landsc. Ecol. Eng. 2017, 13, 237–250. [Google Scholar] [CrossRef]
- Quan, D.; Quan, H.; Zhu, W.; Lin, Z.; Jin, R. A Comparative Study on the Drivers of Forest Fires in Different Countries in the Cross-Border Area between China, North Korea and Russia. Forests 2022, 13, 1939. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Duo, A.; Zhao, W.; Qu, X.; Jing, R.; Xiong, K. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 103–117. [Google Scholar]
- Hou, X.; Wu, T.; Yu, L.; Qian, S. Characteristics of multi-temporal scale variation of vegetation coverage in the Circum Bohai Bay Region, 1999–2009. Acta Ecol Sin. 2012, 32, 297–304. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; van den Dool, H. A global monthly land surface air temperature analysis for 1948-present. J. Geophys. Res. 2018, 113, 01103. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Zhang, J.; Zhang, J.; Kong, H. Dynamic changes of vegetation coverage in China-Myanmar economic corridor over the past 20 years. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102378. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS-J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef]
- He, J.; Shi, X.; Fu, Y. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manag. 2021, 289, 112562. [Google Scholar] [CrossRef]
- Xu, X.; Liu, H.; Jiao, F.; Gong, H.; Lin, Z. Nonlinear relationship of greening and shifts from greening to browning in vegetation with nature and human factors along the Silk Road Economic Belt. Sci. Total Environ. 2021, 766, 142553. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, Y.; Wu, P. Robust geographical detector. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102782. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2022, 57, 593–610. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Peng, W.; Kuang, T.; Tao, S. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. J. Clean Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Shui, Y.; Lu, H.; Wang, H. Assessment of habitat quality on the basis of land cover and NDVI changes in Lhasa River Basin. Acta Ecol Sin. 2018, 38, 8946–8954. [Google Scholar]
- Hu, J.; Zhang, J.; Li, Y. Exploring the spatial and temporal driving mechanisms of landscape patterns on habitat quality in a city undergoing rapid urbanization based on GTWR and MGWR: The case of Nanjing, China. Ecol. Indic. 2022, 143, 109333. [Google Scholar] [CrossRef]
- Tao, H. Impacts of Forest Landscape Dynamics on Ecosystem Services in the Transnational Area of Changbai Mountain. Master’s Thesis, Yanbian University, Yanji, China, 2018. [Google Scholar]
- Gan, X. Impacts of Land Degradation on Regional Ecosystem Services in the Transnational Area of China, North Korea and Russia Area. Master’s Thesis, Yanbian University, Yanji, China, 2022. [Google Scholar]
- Liu, C.; Wu, X.; Wang, L. Analysis on land ecological security change and affect factors using RS and GWR in the Danjiangkou Reservoir area, China. Appl. Geogr. 2019, 105, 1–14. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, C.; Fang, S. Application of geographically weighted regression (GWR) in the analysis of the cause of haze pollution in China. Atmos. Pollut. Res. 2019, 10, 835–846. [Google Scholar] [CrossRef]
- Yu, H.; Gong, H.; Chen, B.; Liu, K.; Gao, M. Analysis of the influence of groundwater on land subsidence in Beijing based on the geographical weighted regression (GWR) model. Sci. Total Environ. 2020, 738, 139405. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Dai, W.; Huang, H.; Huang, W.; Wu, X.; Huang, J. Features of spatiotemporal differentiation of landscape ecological security in island ecologically fragile zones in Haitan Island. Ecol. Sci. 2017, 36, 152–159. [Google Scholar]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Kang, C.; Zhang, Y.; Wang, Z.; Liu, L.; Zhang, H.; Jo, Y. The Driving Force Analysis of NDVI Dynamics in the Trans-Boundary Tumen River Basin between 2000 and 2015. Sustainability 2017, 9, 2350. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Aguirre, M.C.; Ortiz, M.A.; Zamorano, J.J.; Reyes, Y. Vegetation and landform relationships at Ajusco volcano Mexico, using a geographic information system (GIS). For. Ecol. Manag. 2007, 239, 1–12. [Google Scholar] [CrossRef]
- Li, Y.; He, D.; Hu, J.; Cao, J. Variability of extreme precipitation over Yunnan Province, China 1960–2012. Int. J. Climatol. 2015, 35, 245–258. [Google Scholar] [CrossRef]
- Plante, S.; Dussault, C.; Richard, J.H.; Côté, S.D. Human disturbance effects and cumulative habitat loss in endangered migratory caribou. Biol. Conserv. 2018, 224, 129–143. [Google Scholar] [CrossRef]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafo, M.; Vizzarri, M.; Marchetti, M. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, R.; Zhu, W.; Zhang, D.; Zhang, X. Impacts of Land Use Changes on Wetland Ecosystem Services in the Tumen River Basin. Sustainability 2020, 12, 9821. [Google Scholar] [CrossRef]
- Pasetto, D.; Arenas-Castro, S.; Bustamante, J.; Casagrandi, R.; Chrysoulakis, N.; Cord, A.F.; Dittrich, A.; Domingo-Marimon, C.; El Serafy, G.; Karnieli, A.; et al. Integration of satellite remote sensing data in ecosystem modelling at local scales: Practices and trends. Methods Ecol. Evol. 2018, 9, 1810–1821. [Google Scholar] [CrossRef] [Green Version]
Type | Name | Code | Resolution | Source |
---|---|---|---|---|
Vegetation | Normalized Digital Vegetation Index | NDVI | 250 m | MOD13Q1-MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid provided by NASA (https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 11 February 2023) |
Climatic | Monthly mean air temperature | Tem | 0.5° | CRU TS v. 4.06 provided by the CRU (https://crudata.uea.ac.uk/, accessed on 11 February 2023) |
Monthly total of precipitation | Pre | |||
Monthly mean land surface air temperature | Lst | GHCN_CAMS Gridded V2 by the NOAA Physical Sciences Laboratory (https://psl.noaa.gov/, accessed on 11 February 2023) | ||
Topographic | Elevation | Ele | 30 m | ASTER GDEM 30 m (https://www.gscloud.cn/, accessed on 11 February 2023) |
Slope | Slo | |||
Aspect | Asp | |||
Human activity | Density of population | Pop | 30″ | LandScan Global population dataset (https://landscan.ornl.gov/, accessed on 11 February 2023) |
Land use and land cover | LULC | 30 m | GLOBELAND30 (http://www.globallandcover.com/, accessed on 11 February 2023) | |
Nighttime light satellite data | Light | 15″ | An extended time series (2000–2020) of global NPP-VIIRS-like nighttime light data from across-sensor calibration (https://doi.org/10.7910/DVN/YGIVCD, accessed on 11 February 2023) | |
Railway | Railway | / | China 1:1 million public version basic geographic information database (2021) (https://www.webmap.cn/, accessed on 11 February 2023) | |
Highway | Highway | |||
Settlement | Settlement |
Threat | Max_Dist | Weight | Decay |
---|---|---|---|
Artificial Surfaces | 3 | 1 | exponential |
Cultivated Land | 1 | 0.7 | linear |
Railway | 4 | 0.6 | exponential |
Highway | 3 | 0.5 | exponential |
Settlement | 2 | 0.4 | linear |
Land Cover Type | Habitat Suitability Index | Sensitivity of Habitat Types to Each Threat | ||||
---|---|---|---|---|---|---|
Artificial Surfaces | Cultivated Land | Railway | Highway | Settlement | ||
Cultivated Land | 0.4 | 0.5 | 0.3 | 0.3 | 0.2 | 0.5 |
Forest | 0.8 | 0.5 | 0.4 | 0.6 | 0.5 | 0.3 |
Grassland | 0.6 | 0.6 | 0.5 | 0.7 | 0.6 | 0.4 |
Wetland | 0.9 | 0.7 | 0.6 | 0.8 | 0.7 | 0.5 |
Water Bodies | 0.8 | 0.8 | 0.7 | 0.7 | 0.6 | 0.6 |
Artificial Surfaces | 0 | 0 | 0 | 0 | 0 | 0 |
Bare land | 0.1 | 0.3 | 0.1 | 0.2 | 0.2 | 0.1 |
Evaluation Index | Vegetation Coverage Suitable Range | Mean Vegetation Coverage | ||||
---|---|---|---|---|---|---|
Tumen | China | North Korea | Tumen | China | North Korea | |
LULC | Forest | Forest | Forest | 0.710 | 0.732 | 0.654 |
Tem | 2.91–3.42 °C | 2.98–3.42 °C | 4.66–5.2 °C | 0.713 | 0.754 | 0.612 |
Pre | 661–675 mm | 670–679 mm | 624–636 mm | 0.693 | 0.736 | 0.653 |
Lst | 7.437–7.443 °C | 7.44–7.45 °C | 7.61–7.63 °C | 0.760 | 0.755 | 0.662 |
Ele | 666–824 m | 761–890 m | 1430–1640 m | 0.746 | 0.777 | 0.681 |
Slo | 12.4–17.5° | 11.3–15.8° | 7.62–17.5° | 0.735 | 0.791 | 0.681 |
Asp | West | West | Northwest | 0.676 | 0.716 | 0.616 |
Pop | 0–0.0526 | 0–0.0526 | 0–0.789 | 0.773 | 0.774 | 0.736 |
Light | 0–0.048 | 0–0.0482 | 0–0.0002 | 0.643 | 0.686 | 0.553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Quan, D.; Zhu, W.; Lin, Z.; Jin, R. Habitat Quality Assessment under the Change of Vegetation Coverage in the Tumen River Cross-Border Basin. Sustainability 2023, 15, 9269. https://doi.org/10.3390/su15129269
Wang Y, Quan D, Zhu W, Lin Z, Jin R. Habitat Quality Assessment under the Change of Vegetation Coverage in the Tumen River Cross-Border Basin. Sustainability. 2023; 15(12):9269. https://doi.org/10.3390/su15129269
Chicago/Turabian StyleWang, Yue, Donghe Quan, Weihong Zhu, Zhehao Lin, and Ri Jin. 2023. "Habitat Quality Assessment under the Change of Vegetation Coverage in the Tumen River Cross-Border Basin" Sustainability 15, no. 12: 9269. https://doi.org/10.3390/su15129269
APA StyleWang, Y., Quan, D., Zhu, W., Lin, Z., & Jin, R. (2023). Habitat Quality Assessment under the Change of Vegetation Coverage in the Tumen River Cross-Border Basin. Sustainability, 15(12), 9269. https://doi.org/10.3390/su15129269