Enhancing Resilience in Coastal Regions from a Socio-Ecological Perspective: A Case Study of Andhra Pradesh, India
Abstract
:1. Introduction
2. Theoretical Background
2.1. Resilience in Coastal SESs
2.2. Methods of Disaster Risk Decision-Making for Resilience in SESs
3. Materials and Methods
3.1. Study Area
3.2. Research Method
3.2.1. Mapping Method
3.2.2. Derivation of Components or Analysis
3.2.3. Cognitive Maps and Inputs from Experts
3.2.4. Establishing a Relationship between the Derived Components
3.2.5. Data Collection and Analysis Method
4. Results and Discussion
4.1. Structural Analysis of the Model
4.2. What-If Scenarios
4.3. Saltwater Inundation Scenario
4.3.1. Sea Fishery Availability
4.3.2. Mangroves
4.3.3. Occupational Change
4.3.4. Quality of Life
4.3.5. Land Degradation and Agricultural Productivity
4.3.6. Literacy Levels
4.3.7. Food Production Variety and Agricultural Productivity
4.4. Governance Scenario
4.5. Combined Scenarios
4.6. Superiority of FCM over Other Methods
4.6.1. Scenario Generation
4.6.2. Dealing with Complexity
4.6.3. Hybridization, Data Types, and Indirect Effects
4.6.4. Community Participation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLennan, M.; SK Group; Zurich Insurance Group. Global Risks Report 2021; World Economic Forum: Cologny, Switzerland, 2021. [Google Scholar]
- Mcbean, G.; Kovacs, P.; Voogt, J.; Kopp, G.; Guilbault, S. Building Climate Resilient Communities: Living Within the Earth’s Carrying Capacity; Western Libraries: London, ON, Canada, 2021. [Google Scholar]
- Hudson, B.; Hunter, D.; Peckham, S. Policy failure and the policy-implementation gap: Can policy support programs help? Policy Des. Pract. 2019, 2, 1–14. [Google Scholar] [CrossRef]
- Doswald, N.; Janzen, S.; Nehren, U.; Vervest, M.J.; Sans, J.; Edbauer, L.; Chavda, S.; Sandholz, S.; Renaud, F.; Ruiz, V.; et al. Words into Action: Nature-Based Solutions for Disaster Risk Reduction; United Nations Office for Disaster Risk Reduction: Cairo, Egypt, 2021. [Google Scholar]
- Kosko, B. Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 1986, 24, 65–75. [Google Scholar] [CrossRef]
- Nations, U. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- IPCC. Special Report, IPCC 2012; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Gray, S.A.; Gray, S.; Cox, L.J.; Henly-Shepard, S. Mental modeler: A fuzzy-logic cognitive mapping modeling tool for adaptive environmental management. In Proceedings of the 46th Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; pp. 965–973. [Google Scholar]
- Park, K.S.; Kim, S.H. Fuzzy cognitive maps considering time relationships. Int. J. Hum.-Comput. Stud. 1995, 42, 157–168. [Google Scholar] [CrossRef]
- Satapathy, D.R.; Krupadam, R.J.; Kumar, L.P.; Wate, S.R. The application of satellite data for the quantification of mangrove loss and coastal management in the Godavari estuary, East Coast of India. Environmental monitoring and assessment. Environ. Monit. Assess. 2007, 134, 453–469. [Google Scholar] [CrossRef] [PubMed]
- Frey, J.; Berkes, F. Can partnerships and community-based conservation reverse the decline of coral reef social-ecological systems? Int. J. Commons 2014, 8, 27–43. [Google Scholar] [CrossRef]
- Alam, M.Z.; Carpenter-Boggs, L.; Haque, M.S.; Halsey, M.; Rokonuzzaman, J.; Saha, M.; Moniruzzaman, B.M. Effect of salinity intrusion on food crops, livestock, and fish species at Kalapara Coastal Belt in Bangladesh. J. Food Qual. 2017, 2017, 2045157. [Google Scholar] [CrossRef] [Green Version]
- Shammi, M.; Rahman, M.; Bondad, S.E.; Bodrud-Doza, M. Impacts of salinity intrusion in community health: A review of experiences on drinking water sodium from coastal areas of Bangladesh. Healthcare 2019, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Giabbanelli, P.J.; Crutzen, R. Creating groups with similar expected behavioural response in randomized controlled trials: A fuzzy cognitive map approach. BMC Med. Res. Methodol. 2014, 14, 130. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Teruel, K.; Leyva-Vázquez, M.; Estrada-Sentí, V. Mental models consensus process using fuzzy cognitive maps and computing with words. Ing. Univ. 2015, 19, 173–188. [Google Scholar]
- Azizullah, A.; Khattak, M.N.K.; Richter, P.; Häder, D.P. Water pollution in Pakistan and its impact on public health—A review. Environ. Int. 2011, 37, 479–497. [Google Scholar] [CrossRef]
- Dakey, S.; Joshi, S.; Sukhwani, V.; Deshkar, S. A community-based approach to mainstream human-nature interactions into coastal risk governance: A case of Katrenikona, India. Geogr. Pannonica 2022, 26, 65–78. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Tome, J.A.B. Rule based fuzzy cognitive maps-expressing time in qualitative system dynamics. In Proceedings of the 10th IEEE International Conference on Fuzzy Systems (Cat No 01CH37297), Melbourne, VIC, Australia, 2–5 December 2001. [Google Scholar]
- Stojanovic, T.; Mcnae, H.M.; Tett, P.; Potts, T.W.; Reis, J.; Smith, H.D. The “social” aspect of social-ecological systems: A critique of analytical frameworks and findings from a multisite study of coastal sustainability. Ecol. Soc. 2016, 21, 15. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, E.; Kontogianni, A. Using fuzzy cognitive mapping in environmental decision making and management: A methodological primer and an application. Int. Perspect. Glob. Environ. Chang. 2012, 427–450. [Google Scholar] [CrossRef] [Green Version]
- Aminpour, P.; Gray, S.A.; Jetter, A.J.; Introne, J.E.; Singer, A.; Arlinghaus, R. Wisdom of stakeholder crowds in complex social-ecological systems. Nat. Sustain. 2020, 3, 191–199. [Google Scholar] [CrossRef]
- Adger, W.N.; Hughes, T.P.; Folke, C.; Carpenter, S.R.; Rockstrom, J. Social-ecological resilience to coastal disasters. Science 2005, 309, 1036–1039. [Google Scholar] [CrossRef] [Green Version]
- Marshall, N.R. Signature of Recent Sediment Accumulating in Prince William Sound, Alaska: A Record of Storms, Earthquakes, and Seasonal Inputs; William & Mary: Williamsburg, VA, USA, 2015. [Google Scholar]
- Arkema, K.K.; Griffin, R.; Maldonado, S.; Silver, J.; Suckale, J.; Guerry, A.D. Linking social, ecological, and physical; science to advance natural and nature-based protection for coastal communities. Ann. N. Y. Acad. Sci. 2017, 1399, 5–26. [Google Scholar] [CrossRef]
- Li, Q.; Fan, W.; Huang, M.; Jin, H.; Zhang, J.; Ma, J. Machine Learning-Based Prediction of Dynamic Responses of a Tower Crane under Strong Coastal Winds. J. Mar. Sci. Eng. 2023, 11, 803. [Google Scholar] [CrossRef]
- Li, Q.; Jia, H.; Qiu, Q.; Lu, Y.; Zhang, J.; Mao, J.; Fan, W.; Huang, M. Typhoon-Induced Fragility Analysis of Transmission Tower in Ningbo Area Considering the Effect of Long-Term Corrosion. Appl. Sci. 2022, 12, 4774. [Google Scholar] [CrossRef]
- Farahani, S.; Behnam, B.; Tahershamsi, A. Macrozonation of seismic transient and permanent ground deformation of Iran. Nat. Hazards Earth Syst. Sci. 2020, 20, 2889–2903. [Google Scholar] [CrossRef]
- Karnaen, M.; Suriamihardja, D.A.; Maulana, A.; Jaya, A. Earthquake Macro-zonation Based Peak Ground Acceleration, Modified Mercalli Intensity, And Type of Rocks around Matano Fault. Int. J. Phys. Conf. Ser. 2018, 979, 012050. [Google Scholar] [CrossRef]
- Douvere, F. The importance of marine spatial planning in advancing ecosystem-based sea use management. Mar. Policy 2008, 32, 762–771. [Google Scholar] [CrossRef]
- Jessin, J.; Heinzlef, C.; Long, N.; Serre, D. A Systematic review of UAVs for Island coastal Environment and Risk Monitoring: Towards a Resilience Assessment. Drones 2023, 7, 206. [Google Scholar] [CrossRef]
- Klein, R.J.; Nicholls, R.J.; Thomalla, F. Resilience to natural hazards: How useful is this concept? Environ. Hazards 2010, 9, 249–265. [Google Scholar] [CrossRef]
- Gill, D.A.; Mascia, M.B.; Ahmadia, G.N.; Glew, L.; Lester, S.E.; Barnes, M.; White, A.T. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 2017, 543, 665–669. [Google Scholar] [CrossRef]
- Berkes, F.; Colding, J.; Folke, C. (Eds.) Navigating Social-Ecological Systems: Building Resilience for Complexity and Change; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Cinner, J.E.; McClanahan, T.R.; MacNeil, M.A.; Graham, N.A.; Daw, T.M.; Mukminin, A.; Barnes, M.L. Comanagement of coral reef social-ecological systems. Proc. Natl. Acad. Sci. USA 2012, 109, 5219–5222. [Google Scholar] [CrossRef] [Green Version]
- Biggs, R.; Schlüter, M.; Biggs, D.; Bohensky, E.L.; BurnSilver, S.; Cundill, G.; Dakos, V.; Daw, T.M.; Evans, L.S.; Kotschy, K.; et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Environ. Resour. 2012, 37, 48. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 22. [Google Scholar] [CrossRef]
- Berkes, F. Evolution of Co-Management: Role of Knowledge Generation, Bridging Organizations and Social Learning. J. Environ. Manag. 2009, 90, 1692–1702. [Google Scholar] [CrossRef]
- Binder, C.R.; Hinkel, J.; Bots, P.W.; Pahl-Wostl, C. Comparison of frameworks for analyzing social-ecological systems. Ecol. Soc. 2013, 18, 4. [Google Scholar] [CrossRef] [Green Version]
- Bodin, Ö.; Crona, B.I. The Role of Social Networks in Natural Resource Governance: What Relational Patterns Make a Difference? Glob. Environ. Chang. 2006, 16, 308–317. [Google Scholar] [CrossRef]
- Roy, B. The Outranking Approach and the Foundations of ELECTRE Methods. Theory Decis. 1991, 31, 49–73. [Google Scholar] [CrossRef]
- Boardman, A.E.; Greenberg, D.H.; Vining, A.R.; Weimer, D.L. Cost-Benefit Analysis: Concepts and Practice; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Jensen, F.V.; Nielsen, T.D. Bayesian Networks and Decision Graphs; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Saaty, T.L. The Analytic Hierarchy ProcessTM; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Lempert, R.J.; Popper, S.W.; Bankes, S.C. Shaping the Next One Hundred Years: New Methods for Quantitative, Long-Term Policy Analysis; RAND: Santa Monica, CA, USA, 2003. [Google Scholar]
- Roy, K.; Sasada, K.; Kohno, E. Salinity status of the 2011 Tohoku-oki tsunami affected agricultural lands in northeast Japan. Int. Soil Water Conserv. Res. 2014, 2, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Cantre, C.G.; Pulhin, J.M.; Peras, R.J.J.; Tapia, M. Coastal communities and mangrove forest in the face of a changing climate: The case of Bacacay, Albay, Philippines. In Proceedings of the International Conference on Forestry Education and Research for the Asia Pacific Region, Laguna, Philippines, 23–25 November 2010; p. 46. [Google Scholar]
- Duarte, C.M.; Agusti, S.; Barbier, E.; Britten, G.L.; Castilla, J.C.; Gattuso, J.P. Rebuilding marine life. Nature 2020, 580, 39–51. [Google Scholar] [CrossRef]
- Deshkar, S.; Hayashia, Y.; Mori, Y. An alternative approach for planning the resilient cities in developing countries. Int. J. Urban Sci. 2011, 15, 1–14. [Google Scholar] [CrossRef]
- Stylios, C.D.; Groumpos, P.P. Modeling complex systems using fuzzy cognitive maps. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2004, 34, 155–171. [Google Scholar] [CrossRef]
- Özesmi, U.; Özesmi, S.L. Ecological models based on people’s knowledge: A multi-step fuzzy cognitive mapping approach. Ecol. Model. 2004, 176, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, B.F.; Ludsin, S.A.; Knight, R.L.; Ryan, P.A.; Biberhofer, J.; Ciborowski, J.J. Fuzzy cognitive mapping as a tool to define management objectives for complex ecosystems. Ecol. Appl. 2002, 12, 1548–1565. [Google Scholar] [CrossRef]
- Yuan, K.; Liu, J.; Yang, S.; Wu, K.; Shen, F. Time series forecasting based on kernel mapping and high-order fuzzy cognitive maps. Knowl.-Based Syst. 2020, 206, 106359. [Google Scholar] [CrossRef]
- Goswami, R.; Roy, K.; Dutta, S.; Ray, K.; Sarkar, S.; Brahmachari, K. Multi-faceted impact and outcome of COVID-19 on smallholder agricultural systems: Integrating qualitative research and fuzzy cognitive mapping to explore resilient strategies. Agric. Syst. 2021, 189, 103051. [Google Scholar] [CrossRef]
- Folke, C. Traditional knowledge in social-ecological systems. Ecol. Soc. 2004, 9, 7. [Google Scholar] [CrossRef]
- Schlüter, M.; Müller, B.; Frank, K. The potential of models and modeling for social-ecological systems research. Ecol. Soc. 2019, 24, 31. [Google Scholar] [CrossRef] [Green Version]
- Felix, G.; Nápoles, G.; Falcon, R.; Froelich, W.; Vanhoof, K.; Bello, R. A review on methods and software for fuzzy cognitive maps. Artif. Intell. Rev. 2019, 52, 1707–1737. [Google Scholar] [CrossRef] [Green Version]
- Poczeta, K.; Papageorgiou, E.I.; Gerogiannis, V.C. Fuzzy cognitive maps optimization for decision making and prediction. Mathematics 2020, 8, 2059. [Google Scholar] [CrossRef]
- Gray, S.; Cox, L. Mentalmodeler. 2015. Available online: http://www.mentalmodeler.com (accessed on 11 May 2022).
- Papageorgiou, K.; Singh, P.K.; Papageorgiou, E.; Chudasama, H.; Bochtis, D.; Stamoulis, G. Fuzzy cognitive map-based sustainable socio-economic development planning for rural communities. Sustainability 2019, 12, 305. [Google Scholar] [CrossRef] [Green Version]
- Kok, K. The potential of Fuzzy Cognitive Maps for semi-quantitative scenario development, with an example from Brazil. Glob. Environ. Chang. 2009, 19, 122–155. [Google Scholar] [CrossRef]
- Henly-Shepard, S.; Gray, S.A.; Cox, L.J. The use of participatory modeling to promote social learning and facilitate community disaster planning. Environ. Sci. Policy 2015, 45, 109–131. [Google Scholar] [CrossRef]
- Biggs, N.; Lloyd, E.K.; Wilson, R.J. Graph Theory 1736–1936; Oxford University Press: Oxford, UK, 1986; pp. 1736–1936. [Google Scholar]
- Konti, A.; Damigos, D. Exploring strengths and weaknesses of bioethanol production from bio-waste in Greece using Fuzzy Cognitive Maps. Energy Policy 2018, 112, 4–11. [Google Scholar] [CrossRef]
- Alipour, M.; Hafezi, R.; Papageorgiou, E.; Hafezi, M.; Alipour, M. Characteristics and scenarios of solar energy development in Iran: Fuzzy cognitive map-based approach. Renew. Sustain. Energy Rev. 2019, 116, 109410. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, G.; Lu, W.; Pedrycz, W.; Yang, J.; Liu, X. The learning of fuzzy cognitive maps with noisy data: A rapid and robust learning method with maximum entropy. IEEE Trans. Cybern. 2019, 51, 2080–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, B.; Bohn, F.; Dreßler, G.; Groeneveld, J.; Klassert, C.; Martin, R.; Weise, H.; Schulze, J.; Weise, H.; Schwarz, N. Describing human decisions in agent-based models—ODD+ D, an extension of the ODD protocol. Environ. Model. Softw. 2013, 48, 37–48. [Google Scholar] [CrossRef]
- Gray, S.; Sterling, E.J.; Aminpour, P.; Goralnik, L.; Singer, A.; Wei, C.; Akabas, S.; Jordan, R.C.; Giabbanelli, P.J.; Hodbod, J.; et al. Assessing (social-ecological) systems thinking by evaluating cognitive maps. Sustainability 2019, 11, 5753. [Google Scholar] [CrossRef] [Green Version]
- Voinov, A.; Bousquet, F. Modelling with stakeholders. Environ. Model. Softw. 2010, 25, 1268–1281. [Google Scholar] [CrossRef]
- Janssen, M.A.; Ostrom, E. Empirically based, agent-based models. Ecol. Soc. 2006, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Dakey, S.; Deshkar, S. Investigating Socio-Ecological Systems for Gianing Resilience in Rural Settlements. In Proceedings of the World Congress on Disaster Management, Mumbai, India, 24–27 November 2021; Macmillan: New York, NU, USA, 2021; Volume 2, pp. 307–320. [Google Scholar]
- Hoque, M.M.; Hena, A.; Osumanu, M.K.; Hanafi, H.A.M.; Rafiqul, I.; Md, A.; Masum, B. Can mangroves help combat sea level rise through sediment accretion and accumulation? Malays. J. Sci. 2015, 34, 78–86. [Google Scholar]
- Spalding, M.; Mcivor, A.; Tonneijck, F.; Tol, S.; Eijk, P.V. Mangroves for Coastal Defense Guidelines for Coastal Managers & Policy Makers; Wetlands International and the Nature Conservancy: Ede, The Netherlands, 2014. [Google Scholar]
- Taylor, M.; Krüger, N. Changes in salinity of a clay soil after a short-term salt water flood event. Geoderma Reg. 2019, 19, 239. [Google Scholar] [CrossRef]
- Ghawana, T.; Pashova, L.; Zlatanova, S. Geospatial Data Utilisation in National Disaster Management Frameworks and the Priorities of Multilateral Disaster Management Frameworks: Case Studies of India and Bulgaria. ISPRS Int. J. Geo-Inf. 2021, 10, 610. [Google Scholar] [CrossRef]
- Ministry of Agriculture. National Policy for Farmers, 2007; Ministry of Agriculture: New Delhi, India, 2007. [Google Scholar]
- Ministry of Environment and Forests. National Environment Policy 2006; Ministry of Environment and Forests: Delhi, India, 2006. [Google Scholar]
- NDMA. National Disaster Management Plan 2019; NDMA: New Delhi, India, 2019. [Google Scholar]
- Bayer, S.; Sterman, J. Business dynamics: Systems thinking and modeling for a complex world. Interfaces 2004, 34, 324–327. [Google Scholar]
- Eppinga, M.B.; Boer, H.J.D.; Reader, M.O.; Anderies, J.M.; Santos, M.J. Environmental change and ecosystem functioning drive transitions in social-ecological systems: A stylized modelling approach. Ecol. Econ. 2023, 211, 107861. [Google Scholar] [CrossRef]
- Parker-Shames, P.; Bodwitch, H.; Brashares, J.; Butsic, V. Where money grows on trees: A socio-ecological assessment of land use change in an agricultural frontier. Landsc. Urban Plan. 2023, 237, 104783. [Google Scholar] [CrossRef]
- Jahel, C.; Bourgeois, R.; Bourgoin, J.; Lattre-Gasquet, D.; Delay, E.; Dumas, P.; Le Page, C.; Piraux, M.; Prudhomme, R. The future of social-ecological systems at the crossroads of quantitative and qualitative methods. Technol. Forecast. Soc. Chang. 2023, 193, 122624. [Google Scholar] [CrossRef]
- Papageorgiou, E.; Stylios, C.; Groumpos, P. Fuzzy cognitive map learning based on non-linear Hebbian rule. In Proceedings of the AI 2003: Advances in Artificial Intelligence, 16th Australian Conference on AI, Perth, Australia, 3–5 December 2003; Springer: Berlin/Heidelberg, Germany, 2003; Volume 16, pp. 256–268. [Google Scholar]
Cultural | Socio-Economic | Ecological | Physical Infra | Anthropogenic Activities | Hydro-Meteorological Hazards | Governance |
---|---|---|---|---|---|---|
Continuity of TKS (C18) | Occupational change (C46) | Groundwater quality (C33) Soil salinity (C65) | Dredging (C23) | Floods (C3) | Vocational training (C51) | |
Customs and Rituals (C21) Innovation (C39) | Income (C38) | Soil salinity (C65) | Washing and hygiene (C57) | Aquaculture (C12) Industrialization (C5) | Saltwater inundation (C53) Tsunami (C11) | Ecosystem conservation (C28) Participatory governance (C47) |
Ecosystem-based livelihoods (C27) | Urbanization (C66) | Storm surge (C58) | Early warning systems (C25) | |||
Climate Adaptive Lifestyles (C16) | Migration (C43) | River water quality (C8) | Housing (C4) | Commercial fisheries (C17) | Sea surface temperature (C55) | Ecosystem knowledge and training (C29) |
Literacy levels (C42) | River fishery availability (C7) | Salt embankments (C50) | Land use change (C41) | Cyclone (C22) | Evacuation (C31) | |
Human life loss (C37) | Food production variety (C32) | Electricity (C30) | Salt embankment(C50) | Sea level rise (C54) | Risk transfer (C48) | |
Cattle loss (C15) | Mangrove ecosystem Mangrove cover (C6) | Multipurpose cyclone shelters (C45) | Bathymetry/ bottom slope (C14) | Ecosystem-based livelihood improvement training (C26) | ||
Craft and gear loss (C19) | Mollusk avail- ability (C44) | Gusty winds (C34) | ||||
Health (C35) | Crustaceans (C20) | Heavy rains (C36) | ||||
Salt pans (C52) | Surface water quality (C59) | River water inundation (C49) Soil erosion (C56) |
Components | Variance (% of the Desired) | Scenario after SWI |
---|---|---|
scenario | Inclusion | |
Sea fishery availability | 45% | Increased |
Ecosystem-based livelihood | 17.85% | Decreased |
availability | ||
Income | 43.95% | Decreased |
Agricultural productivity | 293.33% | Decreased |
Mangrove ecosystem health | 56.61% | Increased |
Innovation | 10.23% | Decreased |
Aquaculture | 288.24% | Decreased |
Climate-adaptive lifestyle | 5.8% | Decreased |
Occupational change | 37.1% | Decreased |
Migration | 34.78% | Decreased |
Low quality of life | 24.72% | Decreased |
Land use degradation | 37.5% | Decreased |
Literacy levels | 42.85% | Decreased |
Mollusks | 48.38% | Increase |
Food production variety | 58.82% | Decreased |
Crustaceans | 48.38% | Increase |
Drinking water supply | 295.45% | Decrease |
Surface water quality | 300% | Decrease |
Health | 90.32% | Decrease |
Soil salinity | 312.9% | Increased |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dakey, S.; Deshkar, S.; Joshi, S.; Sukhwani, V. Enhancing Resilience in Coastal Regions from a Socio-Ecological Perspective: A Case Study of Andhra Pradesh, India. Sustainability 2023, 15, 9565. https://doi.org/10.3390/su15129565
Dakey S, Deshkar S, Joshi S, Sukhwani V. Enhancing Resilience in Coastal Regions from a Socio-Ecological Perspective: A Case Study of Andhra Pradesh, India. Sustainability. 2023; 15(12):9565. https://doi.org/10.3390/su15129565
Chicago/Turabian StyleDakey, Shruthi, Sameer Deshkar, Shreya Joshi, and Vibhas Sukhwani. 2023. "Enhancing Resilience in Coastal Regions from a Socio-Ecological Perspective: A Case Study of Andhra Pradesh, India" Sustainability 15, no. 12: 9565. https://doi.org/10.3390/su15129565
APA StyleDakey, S., Deshkar, S., Joshi, S., & Sukhwani, V. (2023). Enhancing Resilience in Coastal Regions from a Socio-Ecological Perspective: A Case Study of Andhra Pradesh, India. Sustainability, 15(12), 9565. https://doi.org/10.3390/su15129565