A Review on Adsorbable Organic Halogens Treatment Technologies: Approaches and Application
Abstract
:1. Introduction
2. Methodology
3. Adsorbable Organic Halogens: Origin, Classification, and Determination
3.1. Sources and Formation of AOX
- Chemical wastewaters [39];
3.2. Classification of Organically Bounded Halogens (_OX)
3.3. Determination of AOX
- Adsorption of AOX on activated carbon;
- Washing of the activated carbon by nitrate solution to remove inorganic halides, especially chlorides;
4. Removal and Treatment of AOX
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agbedahin, A.V. Sustainable development, Education for Sustainable Development, and the 2030 Agenda for Sustainable Development: Emergence, efficacy, eminence, and future. Sustain. Dev. 2019, 27, 669–680. [Google Scholar] [CrossRef]
- Xie, Y.W.; Chen, L.-J.; Liu, R.; Tian, J.-P. AOX contamination in Hangzhou Bay, China: Levels, distribution and point sources. Environ. Pollut. 2018, 235, 462–469. [Google Scholar] [CrossRef]
- Craig, G.R.; Orr, P.L.; Robertson, J.L.; Vrooman, W.M. Toxicity and Bioaccumulation of AOX and EOX; Pulp & Paper Canada: Toronto, ON, Canada, 1990. [Google Scholar]
- Paasivirta, J.; Tenhola, H.; Palm, H.; Lammi, R. Free and Bound Chlorophenols in Kraft Pulp Bleaching Effluents. Chemosphere 1992, 24, 1253–1258. [Google Scholar] [CrossRef]
- Marabini, L.; Frigerio, S.; Chiesara, E.; Radice, S. Toxicity evaluation of surface water treated with different disinfectants in HepG2 cells. Water Res. 2006, 40, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Ramjaun, S.N.; Wang, Z.; Liu, J. Photocatalytic degradation and chlorination of azo dye in saline wastewater: Kinetics and AOX formation. Chem. Eng. J. 2012, 192, 171–178. [Google Scholar] [CrossRef]
- Xie, Y.W.; Chen, L.J.; Liu, R. Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system. Chemosphere 2016, 155, 217–224. [Google Scholar] [CrossRef]
- Qin, C.; Liu, B.; Huang, L.; Liang, C.; Gao, C.; Yao, S. Adsorptive removal of adsorbable organic halogens by activated carbon. R. Soc. Open Sci. 2018, 5, 181507. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Komaki, Y.; Kimura, S.Y.; Hu, H.-Y.; Wagner, E.D.; Mariñas, B.J.; Plewa, M.J. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines. Environ. Sci. Technol. 2014, 48, 12362–12369. [Google Scholar] [CrossRef]
- ISO 9562:2004; Water Quality—Determination of Adsorbable Organically Bound Halogens (AOX). German Version EN ISO 9562; Deutsches Institut für Normung: Berlin, Germany, 2005.
- Telliard, W.A. Method 1650 Adsorbable Organic Halides by Adsorption and Coulometric Titration; Revision C; EPA: Washington, DC, USA, 1997. [Google Scholar]
- Peters, R.J.B.; Erkelens, C.; De Leer, E.W.; De Galan, L. The Analysis of Halogenated Acetic-Acids in Dutch Drinking-Water. Water Res. 1991, 25, 473–477. [Google Scholar] [CrossRef]
- Becker, R.; Buge, H.-G.; Nehls, I. The determination of adsorbable organically bound halogens (AOX) in soil: Interlaboratory comparisons and reference materials. Accredit. Qual. Assur. 2007, 12, 647–651. [Google Scholar] [CrossRef]
- Koschuh, B.; Montes, M.; Pereiro, R.; Sanz-Medel, A.; Camuña, J.F. Total organochloride and organobromide determinations in aqueous samples by microwave induced plasma-optical emission spectrometry. Mikrochim. Acta 1998, 129, 217–223. [Google Scholar] [CrossRef]
- Asplund, G.; Grimvall, A.; Pettersson, C. Naturally produced adsorbable organic halogens (AOX) in humic substances from soil and water. Sci. Total Environ. 1989, 81–82, 239–248. [Google Scholar] [CrossRef]
- Gribble, G.W. The diversity of naturally produced organohalogens. Chemosphere 2003, 52, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Enell, M.; Wennberg, L. Distribution of Halogenated Organic Compounds (AOX)—Swedish Transport to Surrounding Sea Areas and Mass Balance Studies in Five Drainage Systems. Water Sci. Technol. 1991, 24, 385–395. [Google Scholar] [CrossRef]
- Laniewski, K.; Boren, H.; Grimvall, A. Fractionation of halogenated organic matter present in rain and snow. Chemosphere 1999, 38, 393–409. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, F.J.M.; Swarts, H.; Wunberg, J.; Field, J. Organohalogen production is a ubiquitous capacity among basidiomycetes. Chemosphere 1998, 37, 2091–2104. [Google Scholar] [CrossRef]
- Verhagen, F.J.; Van Assema, F.B.; Boekema, B.K.; Swarts, H.J.; Wijnberg, J.B.; Field, J.A. Dynamics of organohalogen production by the ecologically important fungus Hypholoma fasciculare. FEMS Microbiol. Lett. 1998, 158, 167–178. [Google Scholar] [CrossRef]
- Leri, A.C.; Myneni, S.C.B. Organochlorine turnover in forest ecosystems: The missing link in the terrestrial chlorine cycle. Glob. Biogeochem. Cycles 2010, 24, GB4021. [Google Scholar] [CrossRef] [Green Version]
- Valencia, S.; Marín, J.M.; Restrepo, G.; Frimmel, F.H. Evaluations of the TiO2/simulated solar UV degradations of XAD fractions of natural organic matter from a bog lake using size-exclusion chromatography. Water Res. 2013, 47, 5130–5138. [Google Scholar] [CrossRef]
- Grøn, C. Organic halogen group parameters in ground water investigations: Part III. Chemosphere 1990, 21, 135–152. [Google Scholar] [CrossRef]
- Langvik, V.A.; Holmbom, B. Formation of mutagenic Organic By-Products and AOX by chlorination of fractions of humic water. Water Res. 1994, 28, 553–557. [Google Scholar] [CrossRef]
- Wigilius, B.; Allard, B.; Borén, H.; Grimvall, A. Determination of Adsorbable Organic Halogens (Aox) and Their Molecular-Weight Distribution in Surface-Water Samples. Chemosphere 1988, 17, 1985–1994. [Google Scholar] [CrossRef]
- Putschew, A.; Mania, M.; Jekel, M. Occurrence and source of brominated organic compounds in surface waters. Chemosphere 2003, 52, 399–407. [Google Scholar] [CrossRef]
- Hjelm, O.; Johansson, M.-B.; Öberg-Asolund, G. Organically bound halogens in coniferous forest soil -Distribution pattern and evidence of in situ production. Chemosphere 1995, 30, 2353–2364. [Google Scholar] [CrossRef]
- Muller, G. Sense or no-sense of the sum parameter for water soluble “adsorbable organic halogens” (AOX) and “absorbed organic halogens” (AOX-S18) for the assessment of organohalogens in sludges and sediments. Chemosphere 2003, 52, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Archibald, F.; Roy-Arcand, L.; Méthot, M. Time, sunlight, and the fate of biotreated kraft mill organochlorines (AOX) in nature. Water Res. 1997, 31, 85–94. [Google Scholar] [CrossRef]
- Deshmukh, N.S.; Lapsiya, K.L.; Savant, D.V.; Chiplonkar, S.A.; Yeole, T.Y.; Dhakephalkar, P.K.; Ranade, D.R. Upflow anaerobic filter for the degradation of adsorbable organic halides (AOX) from bleach composite wastewater of pulp and paper industry. Chemosphere 2009, 75, 1179–1185. [Google Scholar] [CrossRef]
- Hung, Y.-T.; Sumathi, S. Treatment of pulp and paper mill wastes. In Handbook of Industrial and Hazardous Wastes Treatment; CRC Press: Boca Raton, FL, USA, 2004; pp. 507–555. [Google Scholar]
- Mark, M.; Hasegawa, D.A.B. The effects of oxygen delignification, complete chlorine dioxide substitution, and biological treatment on bleached kraft mill effluent quality. Water Sci. Technol. 1997, 35, 1–6. [Google Scholar]
- Xie, Y.W.; Chen, L.C.; Liu, R. AOX contamination status and genotoxicity of AOX-bearing pharmaceutical wastewater. J. Environ. Sci. 2017, 52, 170–177. [Google Scholar] [CrossRef]
- Tóth, A.J.; Gergely, F.; Mizsey, P. Physicochemical treatment of pharmaceutical process wastewater: Distillation and membrane processes. Period. Polytech. Chem. Eng. 2011, 55, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Panizza, M. Chapter 13—Fine Chemical Industry, Pulp and Paper Industry, Petrochemical Industry and Pharmaceutical Industry. In Electrochemical Water and Wastewater Treatment; Martínez-Huitle, C.A., Rodrigo, M.A., Scialdone, O., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 335–364. [Google Scholar]
- Noma, Y.; Yamane, S.; Kida, A. Adsorbable organic halides (AOX), AOX formation potential, and PCDDs/DFs in landfill leachate and their removal in water treatment processes. J. Mater. Cycles Waste Manag. 2001, 3, 126–134. [Google Scholar]
- Asplund, G.; Grimvall, A.; Jonsson, S. Determination of the total and leachable amounts of organohalogens in soil. Chemosphere 1994, 28, 1467–1475. [Google Scholar] [CrossRef]
- Rey, M.D.; Font, R.; Aracil, I. Biogas from MSW landfill: Composition and determination of chlorine content with the AOX (adsorbable organically bound halogens) technique. Energy 2013, 63, 161–167. [Google Scholar] [CrossRef]
- Gellert, G. Relationship between summarizing chemical parameters like AOX, TOC, TNb, and toxicity tests for effluents from the chemical production. Bull. Environ. Contam. Toxicol. 2000, 65, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Catalkaya, E.C.; Kargi, F. Effects of operating parameters on advanced oxidation of diuron by the Fenton’s reagent: A statistical design approach. Chemosphere 2007, 69, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Jaacks, L.M.; Staimez, L.R. Association of persistent organic pollutants and non-persistent pesticides with diabetes and diabetes-related health outcomes in Asia: A systematic review. Environ. Int. 2015, 76, 57–70. [Google Scholar] [CrossRef]
- Braida, W.; Ong, S.K.; Smith, W.L.; McCabe, J.W. Fate of adsorbable organic halides from bleached laundering in septic tank systems. Environ. Toxicol. Chem. 1998, 17, 398–403. [Google Scholar] [CrossRef]
- Putschew, A.; Wischnack, S.; Jekel, M. Occurrence of triiodinated X-ray contrast agents in the aquatic environment. Sci. Total Environ. 2000, 255, 129–134. [Google Scholar] [CrossRef]
- Stieglitz, L.; Vogg, H.; Zwick, G.; Beck, J.; Bautz, H. On formation conditions of organohalogen compounds from particulate carbon of fly ash. Chemosphere 1991, 23, 1255–1264. [Google Scholar] [CrossRef]
- Schwarz, G.; Stieglitz, L. Formation of organohalogen compounds in fly ash by metal-catalyzed oxidation of residual carbon. Chemosphere 1992, 25, 277–282. [Google Scholar] [CrossRef]
- Bendova, H.; Weidlich, T. Application of diffusion dialysis in hydrometallurgical separation of nickel from spent Raney Ni catalyst. Sep. Sci. Technol. 2018, 53, 1218–1222. [Google Scholar] [CrossRef]
- Steger, M.T.; Meißner, W. Drying and low temperature conversion—A process combination to treat sewage sludge obtained from oil refineries. Water Sci. Technol. 1996, 34, 133–139. [Google Scholar] [CrossRef]
- Tewari, P.K.; Batra, V.S.; Balakrishnan, M. Efficient water use in industries: Cases from the Indian agro-based pulp and paper mills. J. Environ. Manag. 2009, 90, 265–273. [Google Scholar] [CrossRef]
- van Loon, W.M.G.M.; Boon, J.J.; de Groot, B. Qualitative analysis of chlorolignins and lignosulphonates in pulp mill effluents entering the river Rhine using pyrolysis—Mass spectrometry and pyrolysis—Gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis 1991, 20, 275–302. [Google Scholar] [CrossRef]
- Mishra, M.; Thakur, I.S. Bioremediation, Bioconversion and Detoxification of Organic Compounds in Pulp and Paper Mill Effluent for Environmental Waste Management. In Microorganisms in Environmental Management: Microbes and Environment; Satyanarayana, T., Johri, B.N., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 263–287. [Google Scholar]
- Van Leeuwen, J.A.; Nicholson, B.C.; Hayes, K.P.; Mulcahy, D.E. Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, South-Eastern South Australia. Environ. Toxicol. Water Qual. 1997, 12, 335–342. [Google Scholar] [CrossRef]
- Ali, M.; Sreekrishnan, T.R. Aquatic toxicity from pulp and paper mill effluents: A review. Adv. Environ. Res. 2001, 5, 175–196. [Google Scholar] [CrossRef]
- Smook, G.A.; Kocurek, M.J. Handbook for Pulp & Paper Technologists; Canadian Pulp and Paper Association: Brossard, QC, Canada, 1982. [Google Scholar]
- Nie, S.; Yao, S.; Qin, C.; Li, K.; Liu, X.; Wang, L.; Song, X.; Wang, S. Kinetics of AOX Formation in Chlorine Dioxide Bleaching of Bagasse Pulp. BioResources 2014, 9, 5604–5614. [Google Scholar] [CrossRef]
- Savant, D.V.; Abdul-Rahman, R.; Ranade, D.R. Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Bioresour. Technol. 2006, 97, 1092–1104. [Google Scholar] [CrossRef]
- Luthe, C. Progress in reducing dioxins and AOX: A Canadian perspective. Chemosphere 1998, 36, 225–229. [Google Scholar] [CrossRef]
- He, J.; Liu, B.; Yao, S.; Chen, C.; Liang, C.; Wang, S.; Qin, C.; Hao, Y.; Liao, T.; Xu, C.; et al. New System for Efficient Removal of Lignin with a High Proportion of Chlorine Dioxide. Sustainability 2023, 15, 3586. [Google Scholar] [CrossRef]
- Yao, S.Q.; Nie, S.; Zhu, H.; Wang, S.; Song, X.; Qin, C. Extraction of hemicellulose by hot water to reduce adsorbable organic halogen formation in chlorine dioxide bleaching of bagasse pulp. Ind. Crops Prod. 2017, 96, 178–185. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, S.; Qin, C.; Zhang, K.; Wang, S. Effect of hot chlorine dioxide delignification on AOX in bagasse pulp wastewater. Cellulose 2018, 25, 2037–2049. [Google Scholar] [CrossRef]
- Gonzalez, P.; Zaror, C. Effect of process modifications on AOX emissions from kraft pulp bleaching, using Chilean pine and eucalyptus. J. Clean. Prod. 2000, 8, 233–241. [Google Scholar] [CrossRef]
- Chen, X.-R. AOX and textiles. Dye. Finish. 2009, 22, 15. [Google Scholar]
- Lai, X.; Ning, X.-A.; Li, Y.; Huang, N.; Zhang, Y.; Yang, C. Formation of organic chloride in the treatment of textile dyeing sludge by Fenton system. J. Environ. Sci. 2023, 125, 376–387. [Google Scholar] [CrossRef]
- Ramjaun, S.N.; Yuan, R.; Wang, Z.; Liu, J. Degradation of reactive dyes by contact glow discharge electrolysis in the presence of Cl-ions: Kinetics and AOX formation. Electrochim. Acta 2011, 58, 364–371. [Google Scholar] [CrossRef]
- Yuan, R.; Ramjaun, S.N.; Wang, Z.; Liu, J. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds. J. Hazard. Mater. 2011, 196, 173–179. [Google Scholar] [CrossRef]
- Höfl, C.; Sigl, G.; Specht, O.; Wurdack, I.; Wabner, D. Oxidative degradation of AOX and COD by different advanced oxidation processes: A comparative study with two samples of a pharmaceutical wastewater. Water Sci. Technol. 1997, 35, 257–264. [Google Scholar] [CrossRef]
- Martz, M. Effective wastewater treatment in the pharmaceutical industry. Pharm. Eng. 2012, 32, 48–62. [Google Scholar]
- Dilla, W.; Dillenburg, H.; Ploenissen, E.; Sell, M. Process for Treating Waste Water Containing Chlorinated Organic Compounds from Production of Epichlorohydrin. U.S. Patent US5393428A, 28 February 1995. [Google Scholar]
- Schiopu, A.-M.; Gavrilescu, M. Options for the Treatment and Management of Municipal Landfill Leachate: Common and Specific Issues. CLEAN Soil Air Water 2010, 38, 1101–1110. [Google Scholar] [CrossRef]
- Morawe, B.; Ramteke, D.S.; Vogelpohl, A. Activated carbon column performance studies of biologically treated landfill leachate. Chem. Eng. Process. Process Intensif. 1995, 34, 299–303. [Google Scholar] [CrossRef]
- Goi, D.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. COD and AOX abatement in catalytic wet oxidation of halogenated liquid wastes using CeO2-based catalysts. J. Alloys Compd. 2006, 408, 1136–1140. [Google Scholar] [CrossRef]
- Goi, D.; De Leitenburg, C.; Trovarelli, A.; Dolcetti, G. Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement. Environ. Technol. 2004, 25, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Nooten, T.V.; Diels, L.; Bastiaens, L. Design of a Multifunctional Permeable Reactive Barrier for the Treatment of Landfill Leachate Contamination: Laboratory Column Evaluation. Environ. Sci. Technol. 2008, 42, 8890–8895. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, R.; Xu, C.-C.; Shu, X.-M.; Xu, J.-J.; Lan, Y.-Q.; Chen, L.-J. AOX pollution in wastewater treatment process of dyeing and dyestuff chemical industries. Huan Jing Ke Xue Huanjing Kexue 2015, 36, 3304–3310. [Google Scholar] [PubMed]
- Curtis, C.F.; Lines, J.D. Should DDT be Banned by International Treaty? Parasitol. Today 2000, 16, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Yeh, R.Y.L.; Farré, M.J.; Stalter, D.; Tang, J.Y.; Molendijk, J.; Escher, B.I. Bioanalytical and chemical evaluation of disinfection by-products in swimming pool water. Water Res. 2014, 59, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Baycan, N.; Thomanetz, E.; Sengül, F. Effect of chloride concentration on the oxidation of EDTA in UV-FSR oxidative system. J. Photochem. Photobiol. A Chem. 2007, 189, 349–354. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, X.; Zhai, H.; Yang, M.; Lo, I.M. Effects of enhanced coagulation on polar halogenated disinfection byproducts in drinking water. Sep. Purif. Technol. 2010, 76, 26–32. [Google Scholar] [CrossRef]
- De Vera, G.A.; Stalter, D.; Gernjak, W.; Weinberg, H.S.; Keller, J.; Farré, M.J. Towards reducing DBP formation potential of drinking water by favouring direct ozone over hydroxyl radical reactions during ozonation. Water Res. 2015, 87, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhu, X.; Liu, Z.; Wang, J.; Chen, B. Occurrence and transformation of unknown organochlorines in the wastewater treatment plant using specific Fragment-Based method with LC Q-TOF MS. Water Res. 2022, 216, 118372. [Google Scholar] [CrossRef]
- Cao, K.-F.; Chen, Z.; Wu, Y.-H.; Mao, Y.; Shi, Q.; Chen, X.-W.; Bai, Y.; Li, K.; Hu, H.-Y. The noteworthy chloride ions in reclaimed water: Harmful effects, concentration levels and control strategies. Water Res. 2022, 215, 118271. [Google Scholar] [CrossRef]
- Gartiser, S.; Brinker, L.; Erbe, T.; Kummerer, K.; Willmund, R. Contamination of hospital wastewater with hazardous compounds as defined by 7a WHG. Acta Hydrochim. Hydrobiol. 1996, 24, 90–97. [Google Scholar] [CrossRef]
- Durmusoglu, E.; Bakoglu, M.; Karademir, A.; Kirli, L. Adsorbable organic halogens (AOXs) in solid residues from hazardous and clinical waste incineration. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2006, 41, 1699–1714. [Google Scholar] [CrossRef]
- Sorti, L.; Vitulano, F.; Carbone, C.; Uggeri, F.; Minguzzi, A.; Vertova, A. Electrochemical Degradation of Contrast Media. Curr. Opin. Electrochem. 2022, 37, 101169. [Google Scholar] [CrossRef]
- Lahl, U. Sintering plants of steel industry—PCCD/F emission status and perspectives. Chemosphere 1994, 29, 1939–1945. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, Y.; Xu, Y.; Wang, H.; Zhang, B.; Liu, H. Characteristic of AOX formation during advanced oxidation of Br–containing wastewater. Huanjing Kexue Xuebao Acta Sci. Circumstantiae 2022, 42, 111–120. [Google Scholar]
- ISO 11480:2017; Pulp, paper and board—Determination of total chlorine and organically bound chlorine. International Organization for Standardization: Geneva, Switzerland, 2017.
- EPA 9020.B; Total Organic Halides (TOX). U.S. EPA: Washington, DC, USA, 1994.
- DIN 38414-18; German standard methods for the examination of water, waste water and sludge—Sludge and sediments (group S)—Part 18: Determination of adsorbed organically bound halogens in sludge and sediments (AOX). Deutsches Institut für Normung eV: Berlin, Germany, 2017.
- Kinani, A.; Kinani, S.; Bouchonnet, S. Formation and determination of organohalogen by-products in water. Part III. Characterization and quantitative approaches. TrAC Trends Anal. Chem. 2016, 85, 295–305. [Google Scholar] [CrossRef]
- Kinani, A.; Kinani, S.; Richard, B.; Lorthioy, M.; Bouchonnet, S. Formation and determination of organohalogen by-products in water—Part I. Discussing the parameters influencing the formation of organohalogen by-products and the relevance of estimating their concentration using the AOX (adsorbable organic halide) method. TrAC Trends Anal. Chem. 2016, 85, 273–280. [Google Scholar] [CrossRef]
- Murányi, R.; Cserfalvi, T. High Performance Microcoulometry. Mater. Sci. Forum 2007, 537–538, 687–694. [Google Scholar] [CrossRef]
- Wagner, A.; Raue, B.; Brauch, H.J.; Worch, E.; Lange, F.T. Determination of adsorbable organic fluorine from aqueous environmental samples by adsorption to polystyrene-divinylbenzene based activated carbon and combustion ion chromatography. J. Chromatogr. A 2013, 1295, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Muller, G.; Nkusi, G.; Scholer, H.F. Natural organohalogens in sediments. J. Prakt. Chem. Chem. Ztg. 1996, 338, 23–29. [Google Scholar] [CrossRef]
- Jena, A. Multi X®2500—More than Just Analysis of AOX. Application Note · Multi X® 2500; Analytik Jena: Jena, Germany, 2011. [Google Scholar]
- Jena, A. Determination of Adsorbable Organic Halogens in Highly Saline Water Samples after Solid Phase Extraction (SPE-AOX). Application Note · Multi X® 2500; Analytik Jena: Jena, Germany, 2018. [Google Scholar]
- Twiehaus, T.; Evers, S.; Buscher, W.; Cammann, K. Development of an element-selective monitoring system for adsorbable organic halogens (AOX) with plasma emission spectrometric detection for quasi-continuous waste-water analysis. Fresenius J. Anal. Chem. 2001, 371, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Hrich, K.; Groda, B. Content changes of adsorbable organically bound halogens during sludge centrifugation and drying. Res. Agric. Eng. 2011, 57, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Brandt, G.; Kettrup, A. Determination of organic group parameters (AOCl, AOBr, AOs) in water by means of ion-chromatographic detection. Fresenius Z. Anal. Chem. 1987, 327, 213–219. [Google Scholar] [CrossRef]
- Hu, J.; Rohrer, J. Determination of Adsorbable Organic Halogen in Wastewater Using a Combustion Ion Chromatography System; Thermo Fisher Scientific Inc.: Sunnyvale, CA, USA, 2017. [Google Scholar]
- Putschew, A.; Keppler, F.; Jekel, M. Differentiation of the halogen content of peat samples using ion chromatography after combustion (TX/TOX-IC). Anal. Bioanal. Chem. 2003, 375, 781–785. [Google Scholar] [CrossRef]
- Ding, Y.; Cao, L.; Zhou, L.; Qian, K.; Tang, J.; Zhou, J.; Dong, S. Determination of adsorbable organic halogens in textiles by ultrasonic extraction-high temperature combustion absorption-ion chromatography. Se Pu Chin. J. Chromatogr. 2022, 40, 74–81. [Google Scholar] [CrossRef]
- Gether, J.; Lunde, G.; Steinnes, E. Determination of the total amount of organically bound chlorine, bromine and iodine in environmental samples by instrumental neutron activation analysis. Anal. Chim. Acta 1979, 108, 137–147. [Google Scholar] [CrossRef]
- Bottaro, C.S.; Kiceniuk, J.W.; Chatt, A. Spatial distribution of extractable organohalogens in northern pink shrimp in the North Atlantic. Biol. Trace Elem. Res. 1999, 71, 149–166. [Google Scholar] [CrossRef]
- Pereira, J.S.; Moreira, C.M.; Albers, C.; Jacobsen, O.S.; Flores, E. Determination of total organic halogen (TOX) in humic acids after microwave-induced combustion. Chemosphere 2011, 83, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Pontius, C.J.; Kraeger, G.; Lasky, R. Determination of total halogen content in halogen-free fluxes by inductively coupled plasma and some limitations of ion chromatography. In Proceedings of the SMTA International, Rosemont, IL, USA, 27 September–1 October 2015. [Google Scholar]
- Putschew, A.; Schittko, S.; Jekel, M. Quantification of triiodinated benzene derivatives and X-ray contrast media in water samples by liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. A 2001, 930, 127–134. [Google Scholar] [CrossRef]
- Maya, F.; Estela, J.M.; Cerda, V. Flow analysis techniques as effective tools for the improved environmental analysis of organic compounds expressed as total indices. Talanta 2010, 81, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maya, F.; Estela, J.M.; Cerd, V. Completely Automated System for Determining Halogenated Organic Compounds by Multisyringe Flow Injection Analysis. Anal. Chem. 2008, 80, 5799–5805. [Google Scholar] [CrossRef] [PubMed]
- Kinani, A.; Salhi, H.; Bouchonnet, S.; Kinani, S. Determination of adsorbable organic halogens in surface water samples by combustion-microcoulometry versus combustion-ion chromatography titration. J. Chromatogr. A 2018, 1539, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Cherif, S.; Ben Fradj, R.; Jrad, A. Quality of treated wastewater: Method validation of AOX. Accredit. Qual. Assur. 2006, 11, 632–637. [Google Scholar] [CrossRef]
- Bagastyo, A.Y.; Batstone, D.J.; Kristiana, I.; Gernjak, W.; Joll, C.; Radjenovic, J. Electrochemical oxidation if reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH. Water Res. 2012, 46, 6104–6112. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X. Membrane cleaning in membrane bioreactors: A review. J. Membr. Sci. 2014, 468, 276–307. [Google Scholar] [CrossRef]
- Catalkaya, E.C.; Kargi, F. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study. J. Hazard. Mater. 2007, 139, 244–253. [Google Scholar] [CrossRef]
- Xu, R.; Xie, Y.; Tian, J.; Chen, L. Adsorbable organic halogens in contaminated water environment: A review of sources and removal technologies. J. Clean. Prod. 2021, 283, 124645. [Google Scholar] [CrossRef]
- Xie, Y.W.; Chen, L.; Liu, R.; Tian, J. Reduction of AOX in pharmaceutical wastewater in the cathode chamber of bio-electrochemical reactor. Bioresour. Technol. 2018, 265, 437–442. [Google Scholar] [CrossRef]
- Osman, W.H.; Abdullah, S.R.S.; Mohamad, A.B.; Kadhum, A.A.H.; Rahman, R.A. Simultaneous removal of AOX and COD from real recycled paper wastewater using GAC-SBBR. J. Environ. Manag. 2013, 121, 80–86. [Google Scholar] [CrossRef]
- Tiku, D.K.; Kumar, A.; Chaturvedi, R.; Makhijani, S.D.; Manoharan, A.; Kumar, R. Holistic bioremediation of pulp mill effluents using autochthonous bacteria. Int. Biodeterior. Biodegrad. 2010, 64, 173–183. [Google Scholar] [CrossRef]
- Stuthridge, T.R.; McFarlane, P.N. Adsorbable Organic Halide Removal Mechanisms in a Pulp and Paper Mill Aerated Lagoon Treatment System. Water Sci. Technol. 1994, 29, 195–208. [Google Scholar] [CrossRef]
- Thakur, I.S. Screening and identification of microbial strains for removal of colour and adsorbable organic halogens in pulp and paper mill effluent. Process Biochem. 2004, 39, 1693–1699. [Google Scholar] [CrossRef]
- Alleman, B.C.; Logan, B.E.; Gilbertson, R.L. Degradation of pentachlorophenol by fixed films of white rot fungi in rotating tube bioreactors. Water Res. 1995, 29, 61–67. [Google Scholar] [CrossRef]
- Royarcand, L.; Archibald, F.S. Direct Dechlorination of Chlorophenolic Compounds by Laccases from Trametes (Coriolus) versicolor. Enzym. Microb. Technol. 1991, 13, 194–203. [Google Scholar] [CrossRef]
- Pallerla, S.; Chambers, R.P. Characterization of a Ca-alginate-immobilized Trametes versicolor bioreactor for decolorization and AOX reduction of paper mill effluents. Bioresour. Technol. 1997, 60, 1–8. [Google Scholar] [CrossRef]
- Pedroza, A.M.; Mosqueda, R.; Alonso-Vante, N.; Rodriguez-Vazquez, R. Sequential treatment via Trametes versicolor and UV/TiO2/Ru(x)Se(y) to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere 2007, 67, 793–801. [Google Scholar] [CrossRef]
- Winter, B.; Fiechter, A.; Zimmermann, W. Degradation of Organochlorine Compounds in Spent Sulfite Bleach Plant Effluents by Actinomycetes. Appl. Environ. Microbiol. 1991, 57, 2858–2863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Chandra, R.; Patel, D.; Reddy, M.; Rai, V. Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture. Bioresour. Technol. 2008, 99, 5703–5709. [Google Scholar] [CrossRef]
- Barton, D.A.; Payne, T.W. Mechanisms of AOX removal during biological treatment. Water Sci. Technol. 1999, 40, 297–303. [Google Scholar] [CrossRef]
- Barton, D.A.; Woodruff, J.D.; Bousquet, T.M.; Parrish, A.M. Treatment system response to transient AOX (adsorbable organic halogen) loadings. Water Sci. Technol. 1997, 35, 85–91. [Google Scholar] [CrossRef]
- Hall, E.R.; Randle, W.G. AOX Removal from Bleached Kraft Mill Wastewater: A Comparison of Three Biological Treatment Processes. Water Sci. Technol. 1992, 26, 387–396. [Google Scholar] [CrossRef]
- Ong, S.K.; DeGraeve, G.M.; Silva-Wilkinson, R.A.; Mccabe, J.W.; Smith, W.L. Toxicity and bioconcentration potential of adsorbable organic halides from bleached laundering in municipal wastewater. Environ. Toxicol. Chem. 1996, 15, 138–143. [Google Scholar] [CrossRef]
- Schnell, A.; Steel, P.; Melcer, H.; Hodson, P.V.; Carey, J.H. Enhanced biological treatment of bleached kraft mill effluents—I. Removal of chlorinated organic compounds and toxicity. Water Res. 2000, 34, 493–500. [Google Scholar] [CrossRef]
- Farooqi, I.H.; Basheer, F. Treatment of Adsorbable Organic Halide (AOX) from pulp and paper industry wastewater using aerobic granules in pilot scale SBR. J. Water Process Eng. 2017, 19, 60–66. [Google Scholar] [CrossRef]
- Katsivela, E.; Bonse, D.; Krüger, A.; Strömpl, C.; Livingston, A.; Wittich, R.-M. An extractive membrane biofilm reactor for degradation of 1,3-dichloropropene in industrial waste water. Appl. Microbiol. Biotechnol. 1999, 52, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Sreekrishnan, T.R. Anaerobic treatment of agricultural residue based pulp and paper mill effluents for AOX and COD reduction. Process Biochem. 2000, 36, 25–29. [Google Scholar] [CrossRef]
- Ying, D.; Xu, X.; Li, K.; Wang, Y.; Jia, J. Design of a novel sequencing batch internal micro-electrolysis reactor for treating mature landfill leachate. Chem. Eng. Res. Des. 2012, 90, 2278–2286. [Google Scholar] [CrossRef]
- Khan, N.A.; Basheer, F.; Farooqi, I.H. Treatment of Pulp and paper mill wastewater by column type sequencing batch reactor. J. Ind. Res. Technol. 2011, 1, 12–16. [Google Scholar]
- Fang, C.; Xiao, D.; Liu, W.; Lou, X.; Zhou, J.; Wang, Z.; Liu, J. Enhanced AOX accumulation and aquatic toxicity during 2,4,6-trichlorophenol degradation in a Co(II)/peroxymonosulfate/Cl(-) system. Chemosphere 2016, 144, 2415–2420. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Huang, Y.; Fang, C.; Xue, Y.; Ai, L.; Liu, J.; Wang, Z. Peroxymonosulfate/base process in saline wastewater treatment: The fight between alkalinity and chloride ions. Chemosphere 2018, 199, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Vinder, A.; Simonic, M. Removal of AOX from waste water with mixed surfactants by MEUF. Desalination 2012, 289, 51–57. [Google Scholar] [CrossRef]
- Vinder, A.; Simonič, M.; Novak-Pintarič, Z. Influence of Surfactants on the Removal of AOX Using Micellar-Enhanced Ultrafiltration. Int. J. Environ. Res. 2014, 8, 205–212. [Google Scholar]
- Verma, A.K.; Dash, R.R.; Bhunia, P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manag. 2012, 93, 154–168. [Google Scholar] [CrossRef]
- Kumar, S.; Saha, T.; Sharma, S. Treatment of pulp and paper mill effluents using novel biodegradable polymeric flocculants based on anionic polysaccharides: A new way to treat the waste water. Int. Res. J. Eng. Technol. 2015, 2, 1–14. [Google Scholar]
- Huang, Y.; Sheng, B.; Wang, Z.; Liu, Q.; Yuan, R.; Xiao, D.; Liu, J. Deciphering the degradation/chlorination mechanisms of maleic acid in the Fe(II)/peroxymonosulfate process: An often overlooked effect of chloride. Water Res. 2018, 145, 453–463. [Google Scholar] [CrossRef]
- Hostachy, J.C.; Lenon, G.; Pisicchio, J.-L.; Coste, C.; Legay, C. Reduction of pulp and paper mill pollution by ozone treatment. Water Sci. Technol. 1997, 35, 261–268. [Google Scholar] [CrossRef]
- Drewes, J.E.; Jekel, M. Behavior of DOC and AOX using advanced treated wastewater for groundwater recharge. Water Res. 1998, 32, 3125–3133. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Wang, Y.; Le Roux, J.; Yang, Y.; Croué, J.-P. Efficient Peroxydisulfate Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation. Environ. Sci. Technol. 2014, 48, 5868–5875. [Google Scholar] [CrossRef] [Green Version]
- Allam, B.K.; Musa, N.; Debnath, A.; Usman, U.L.; Banerjee, S. Recent developments and application of bimetallic based materials in water purification. Environ. Chall. 2021, 5, 100405. [Google Scholar] [CrossRef]
- Zhang, X.D.; Hao, J.; Li, W.; Jin, H.; Yang, J.; Huang, Q.; Lu, D.; Xu, H. Synergistic effect in treatment of C.I. Acid Red 2 by electrocoagulation and electrooxidation. J. Hazard. Mater. 2009, 170, 883–887. [Google Scholar] [CrossRef] [PubMed]
- Arslan-Alaton, I.; Kabdaşlı, I.; Vardar, B.; Tünay, O. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes. J. Hazard. Mater. 2009, 164, 1586–1594. [Google Scholar] [CrossRef]
- Sridhar, R.; Sivakumar, V.; Immanuel, V.P.; Maran, J.P. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process. J. Hazard. Mater. 2011, 186, 1495–1502. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, D.; Palanivelu, K. Electrochemical treatment of industrial wastewater. J. Hazard. Mater. 2004, 113, 123–129. [Google Scholar] [CrossRef]
- Naumczyk, J.H.; Kucharska, M.A. Electrochemical treatment of tannery wastewater—Raw, coagulated, and pretreated by AOPs. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng 2017, 52, 649–664. [Google Scholar] [CrossRef] [PubMed]
- Soloman, P.A.; Basha, C.A.; Velan, M.; Balasubramanian, N. Electrochemical Degradation of Pulp and Paper Industry Waste-Water; Wiley Interscience: Hoboken, NJ, USA, 2009. [Google Scholar]
- Aimer, Y.; Benali, O.; Groenen Serrano, K. Study of the degradation of an organophosphorus pesticide using electrogenerated hydroxyl radicals or heat-activated persulfate. Sep. Purif. Technol. 2019, 208, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Turcanu, A.; Bechtold, T. Cathodic decolourisation of reactive dyes in model effluents released from textile dyeing. J. Clean. Prod. 2017, 142, 1397–1405. [Google Scholar] [CrossRef]
- Costa, C.R.; Montilla, F.; Morallón, E.; Olivi, P. Electrochemical oxidation of acid black 210 dye on the boron-doped diamond electrode in the presence of phosphate ions: Effect of current density, pH, and chloride ions. Electrochim. Acta 2009, 54, 7048–7055. [Google Scholar] [CrossRef]
- Eversloh, C.L.; Schulz, M.; Wagner, M.; Ternes, T.A. Electrochemical oxidation of tramadol in low-salinity reverse osmosis concentrates using boron-doped diamond anodes. Water Res. 2015, 72, 293–304. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Keller, J.; Brillas, E.; Radjenovic, J. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J. Hazard. Mater. 2015, 283, 551–557. [Google Scholar] [CrossRef]
- Schmalz, V.; Dittmar, T.; Haaken, D.; Worch, E. Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrode—Contribution for direct reuse of domestic wastewater. Water Res. 2009, 43, 5260–5266. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.A.; Johansen, H.D.; Neto, S.A.; De Andrade, A.R.; Motheo, A.D.J.; Malpass, G.R.P. Photo-assisted Electrochemical Degradation of Textile Effluent to Reduce Organic Halide (AOX) Production. Water Air Soil Pollut. 2014, 225, 2144. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, S.; Bhardwaj, N.K.; Choudhary, A.K. Optimization of process parameters for the photocatalytic treatment of paper mill wastewater. Environ. Eng. Manag. J. 2011, 10, 595–601. [Google Scholar]
- Seiss, M.; Gahr, A.; Niessner, R. Improved AOX Degradation in UV Oxidative Waste Water Treatment by Dialysis with Nanofiltration Membrane. Water Res. 2001, 35, 3242–3248. [Google Scholar] [CrossRef] [PubMed]
- Radhika, M.; Palanivelu, K. Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent–Kinetics and isotherm analysis. J. Hazard. Mater. 2006, 138, 116–124. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. An overview of landfill leachate treatment via activated carbon adsorption process. J. Hazard. Mater. 2009, 171, 54–60. [Google Scholar] [CrossRef]
- Yankovych, H.; Melnyk, I.; Václavíková, M. Understanding of mechanisms of organohalogens removal onto mesoporous granular activated carbon with acid-base properties. Microporous Mesoporous Mater. 2021, 317, 110974. [Google Scholar] [CrossRef]
- Dorner, M.; Lokesh, S.; Yang, Y.; Behrens, S. Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants—A review. Sci. Total Environ. 2022, 852, 158381. [Google Scholar] [CrossRef]
- Papić, S.; Koprivanac, N.; Božić, A.L.; Meteš, A. Removal of some reactive dyes from synthetic wastewater by combined Al(III) coagulation/carbon adsorption process. Dye. Pigment. 2004, 62, 291–298. [Google Scholar] [CrossRef]
- Koh, I.-O.; Chen-Hamacher, X.; Hicke, K.; Thiemann, W. Leachate treatment by the combination of photochemical oxidation with biological process. J. Photochem. Photobiol. A Chem. 2004, 162, 261–271. [Google Scholar] [CrossRef]
- Birke, V. Emerging innovative and versatile mechanochemical techniques for remediation of hazardous wastes and contaminated sites. In Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, 24–27 May 2004. [Google Scholar]
- Cagnetta, G.; Robertson, J.; Huang, J.; Zhang, K.; Yu, G. Mechanochemical destruction of halogenated organic pollutants: A critical review. J. Hazard. Mater. 2016, 313, 85–102. [Google Scholar] [CrossRef] [PubMed]
- Balcioglu, I.A.; Oncu, N.B.; Mercan, N. Beneficial effects of treating waste secondary sludge with thermally activated persulfate. J. Chem. Technol. Biotechnol. 2017, 92, 1192–1202. [Google Scholar] [CrossRef]
- Andrianova, M.J.; Molodkina, L.M.; Chusov, A.N. Changing of Contaminants Content and Disperse State during Treatment and Transportation of Drinking Water. Appl. Mech. Mater. 2014, 587–589, 573–577. [Google Scholar] [CrossRef]
- Baur, S.; Schmidt, H.; Krämer, A.; Gerber, J. The destruction of industrial aqueous waste containing biocides in supercritical water—Development of the SUWOX process for the technical application. J. Supercrit. Fluids 2005, 33, 149–157. [Google Scholar] [CrossRef]
- Hildebrand, H.; Mackenzie, K.; Kopinke, F.D. Pd/Fe3O4 nano-catalysts for selective dehalogenation in wastewater treatment processes-Influence of water constituents. Appl. Catal. B Environ. 2009, 91, 389–396. [Google Scholar] [CrossRef]
- Rueda-Marquez, J.J.; Sillanpä, M.; Pocostales, P.; Acevedo, A.; Manzano, M.A. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: Photolysis and catalytic wet oxidation. Water Res. 2015, 71, 85–96. [Google Scholar] [CrossRef]
- Fang, C.L.; Lou, X.; Huang, Y.; Feng, M.; Wang, Z.; Liu, J. Monochlorophenols degradation by UV/persulfate is immune to the presence of chloride: Illusion or reality? Chem. Eng. J. 2017, 323, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Calvo, L.; Gilarranz, M.; Casas, J.; Mohedano, A.; Rodríguez, J. Detoxification of Kraft pulp ECF bleaching effluents by catalytic hydrotreatment. Water Res. 2007, 41, 915–923. [Google Scholar] [CrossRef]
- Yankovych, H.; Bodnár, G.; Elsaesser, M.S.; Fizer, M.; Storozhuk, L.; Kolev, H.; Melnyk, I.; Václavíková, M. Carbon composites for rapid and effective photodegradation of 4-halogenophenols: Characterization, removal performance, and computational studies. J. Photochem. Photobiol. A Chem. 2023, 441, 114753. [Google Scholar] [CrossRef]
- Uğurlu, M.; Karaoğlu, M.H. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as photocatalyst. Environ. Sci. Pollut. Res. 2009, 16, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.-F.; Fu, J.; Shi, Y.T.; Xia, D.S.; Zhu, H.L. Adsorbable Organic Halogens Generation and Reduction during Degradation of Phenol by UV Radiation/Sodium Hypochlorite. Water Environ. Res. 2009, 81, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.J.; Cao, S.; Lin, L.; Luo, X.; Chen, L.; Huang, L. Surface characterizations of bamboo substrates treated by hot water extraction. Bioresour. Technol. 2013, 136, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Koczka, K.; Mizsey, P. New area for distillation: Wastewater treatment. Period. Polytech. Chem. Eng. 2010, 54, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Afonso, M.D.; Geraldes, V.; Rosa, M.J.; de Pinho, M.N. Nanofiltration removal of chlorinated organic compounds from alkaline bleaching effluents in a pulp and paper plant. Water Res. 1992, 26, 1639–1643. [Google Scholar] [CrossRef]
- Sharma, A.; Thakur, V.V.; Shrivastava, A.; Jain, R.K.; Mathur, R.M.; Gupta, R.; Kuhad, R.C. Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: A pilot scale study. Bioresour. Technol. 2014, 169, 96–102. [Google Scholar] [CrossRef]
- Nie, S.; Wang, S.; Qin, C.; Yao, S.; Ebonka, J.F.; Song, X.; Li, K. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp. Bioresour. Technol. 2015, 196, 413–417. [Google Scholar] [CrossRef]
- Muhamad, M.H.; Abdullah, S.R.S.; Mohamad, A.B.; Rahman, R.A.; Kadhum, A.A.H. Application of response surface methodology (RSM) for optimisation of COD, NH3–N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR). J. Environ. Manag. 2013, 121, 179–190. [Google Scholar] [CrossRef]
- Muhamad, M.; Abdullah, S.; Mohamad, A.; Rahman, R.; Khadum, A. Treatment of adsorbable organic halides from recycled paper industry wastewater using a GAC-SBBR pilot plant system. J. Appl. Sci. 2011, 11, 2388–2393. [Google Scholar] [CrossRef] [Green Version]
- Mazhar, S.; Ditta, A.; Bulgariu, L.; Ahmad, I.; Ahmed, M.; Nadiri, A.A. Sequential treatment of paper and pulp industrial wastewater: Prediction of water quality parameters by Mamdani Fuzzy Logic model and phytotoxicity assessment. Chemosphere 2019, 227, 256–268. [Google Scholar] [CrossRef]
- Wu, D.X.; Wang, W.-L.; Du, Y.; He, L.; Wu, Q.-Y. Changes in toxicity and adsorbable organic bromine concentrations in ozonated reclaimed water irradiated with sunlight. Water Res. 2023, 230, 119512. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Dubey, B.K.; Gupta, A.K. Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope. Waste Manag. 2017, 69, 250–273. [Google Scholar] [CrossRef] [PubMed]
Name | Abbreviation | Definition |
---|---|---|
Adsorbable Organically Bound Halogens | AOX | The organically bound halogens, chlorine, bromine and iodine (but not fluorine), contained in a sample that can be adsorbed on activated carbon |
Bound Organic Halogen | BOX | The organically bound halogens, chlorine, bromine and iodine (but not fluorine), contained in sediment |
Extractable Organically Bound Halogens | EOX | The organically bound halogens (but not fluorine) that can be extracted with a non-polar organic solvent by liquid/liquid or liquid/solid extraction. EOX and BOX are connected by equation EOX = 0.3 × BOX |
Leachable Organically Bound Halogens | LOX | The organically bound halogens (but not fluorine) contained in sediment samples (soil leachates) |
Purgeable Organically Bound Halogens | POX | Volatile organically bound halogens (except fluorine) contained in water sample |
Total Organically Bound Halogens | TOX | The organically bound halogens (except fluorine) as a sum of all kinds of organic halogens present in sediments and soils, including polyvinylchloride (PVC) |
Volatile Organically Bound Halogens | VOX | The organically bound halogens (but not fluorine) contained in the soil’s air (mainly, chlorinated Cl− and C2-compounds) |
Method | Principle of the Method | Application | Ref. |
---|---|---|---|
Biological | Fungi | ||
Lignocellulosedegrading fungi—Basidiomycetes, Hypholoma fasciculare and Mycena metata | Wastes | [19,20] | |
Nematophagous fungus—Paecilomyces sp. | Pulp and paper industry wastes | [119] | |
White rot fungi—Trametes versicolor, Phanerochaete chrysosporium, Inonotus dryophilus | Pentachlorophenol | [120,121] | |
Fungus Trametes versicolor | Paper industry wastes | [122,123] | |
Fungus Actinomycetes | Paper mill effluents | [124] | |
Bacteria | |||
Bacteria strains Pseudomonas aeruginosa Bacillus megaterium | Pulp mill effluents | [117] | |
Bacteria strains Clostridium, Acetobacterium woodii, Shewanella | Pulp and paper industry wastes | [55] | |
Bacteria strains Bacillus sp. Serratia marcescens | Pulp and paper industry wastes | [125] | |
Bacteria activated sludge system | Household bleaching wastes, pulp and paper mill effluents, bleached kraft mill effluents | [126,127,128,129,130] | |
Modified activated sludge system—aerobic granules (GAS) | Pulp and paper industry wastewaters | [131] | |
Bacterial biofilm Rhodococcus erythropolis | 1,3-dichloropropene from industrial wastes | [132] | |
Facultative stabilization basin (FSB) | Bleached kraft mill wastewater | [128] | |
Aerated stabilization basin (ASB) | Bleached kraft mill wastewater | [128] | |
Upflow anaerobic filter (UAF) | Pulp and paper industry wastes | [30] | |
Anaerobic treatment | Paper and pulp mill effluents | [133] | |
Sequencing batch activated sludge reactor (SBR) | Landfill leachate | [134,135] | |
Aerated lagoon treatment | Wastewaters from paper and pulp industry | [118] | |
Chemical | Catalytic wet oxidation (CWO) reactions on CeO2-SiO2 mixed oxide catalyst | Landfill leachate and heavily organic halogen polluted industrial wastewater | [71] |
Catalytic wet oxidation (CWO) reactions on two types of catalyst: pure CeO2 and a SiO2-doped ceria | Landfill leachate, pulp and paper bleaching liquor and heavily organic halogen polluted industrial wastewater | [70] | |
Cobalt/peroxymonosulfate (Co/PMS) advanced oxidation process | Dye wastewater, 2,4,6-trichlorophenol | [64,136] | |
Fenton process | Pharmaceutical wastes, textile dyeing | [7,62] | |
Inhibition of AOX formation by peroxymonosulfate/base/Cl− oxidation system | Dye wastewater | [137] | |
Micellar-enhanced ultrafiltration (MEUF) | Rinsing water | [138,139] | |
Chemical coagulation/flocculation technologies | Textile wastewaters | [140] | |
Chemical reactor | Wastes | [67] | |
Coagulation by anionic polysaccharides | Paper and pulp mill effluents | [141] | |
Fe(II)/peroxymonosulfate (PMS) process | Degradation of maleic acid | [142] | |
Ozone oxidation | Paper and pulp mill effluents | [143,144] | |
NiSO4/KBH4 in alkaline medium | Pharmaceutical wastes (diclofenac) | [46] | |
Peroxydisulfate (PDS)/CuO coupled process | Contaminated groundwater | [145] | |
C@Cu–Ni/peroxymonosulfate (PMS) | 2,4,6-trichlorophenol | [146] | |
Fe-Ag and Fe-Pd | 2,3,4-tribromodiphenyl ether | [146] | |
Chlorine dioxide | Pulp and paper industry wastes | [57] | |
Electrochemical | Electrocoagulation and electrooxidation of dye using carbon steel anode | Dye wastewater | [147] |
Electrocoagulation using aluminum and stainless-steel electrodes | Dye wastewater | [148] | |
Bio-electrochemical reactor (BER) | Pharmaceutical wastes | [115] | |
Electrocoagulation | Wastewaters from paper and pulp industry | [149] | |
Electrooxidation on Ti/TiO2–RuO2–IrO2 electrode | Phenol–formaldehyde resin manufacturing, oil refinery and bulk drug manufacturing industries wastes | [150] | |
Electrooxidation on Ti/SnO2/PdO2/RuO2 (SPR) | Tannery wastes | [151] | |
Electrooxidation on RuO2 coated titanium electrode | Paper and pulp mill effluents | [152] | |
Electrogenerated hydroxyl radicals | Pesticides | [153] | |
Direct cathodic reduction of the azo-chromophores | Dye wastewaters | [154] | |
Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anode | Wastewaters, tramadol wastes | [111,155,156,157,158] | |
Photo-assisted electrochemical degradation | Textile wastes | [159] | |
Boron-doped diamond electrode and others | Municipal wastewaters with AOI | [83] | |
Physicochemical | UV/TiO2 oxidation | Dye wastewaters, pulp and paper mill wastes | [6,160] |
UV/ozone oxidation process | Wastewaters | [161] | |
Adsorption on activated carbon | 4-chlorophenol, 4-bromophenol, 4-iodophenol, 2,4,6-trichlorophenol, landfill leachates | [162,163,164] | |
Biochar remediation | Degradation of halogenated organics | [165] | |
Al(III) coagulation/carbon adsorption process | Dye wastewaters | [166] | |
H2O2/UV oxidation | Pharmaceutical wastes | [65,76,167] | |
Mechanochemistry | Wastes | [168,169] | |
Thermally activated persulfate by microwave heating (S2O82–/MW) | Secondary waste sludge | [170] | |
Anionic exchanger DEAE-cellulose | Drinking water | [171] | |
Supercritical water oxidation (SUWOX) | Industrial wastes | [172] | |
Magnetically re-extractable nanoscale Pd-on-magnetite catalyst (Pd/Fe3O4) | Wastewaters | [173] | |
Multi-barrier treatment | Municipal wastewaters | [174] | |
Photo-Fenton process UV/H2O2/Fe2+ | Pulp mill effluents | [40] | |
UV/persulfate oxidation process | Saline wastewater | [175] | |
UV/TiO2/RuxSey oxidation system | Paper industry wastes | [123] | |
Pd/AC catalyst | Kraft pulp bleaching wastes | [176] | |
UV/TiO2/granular activated carbon | 4-halogenophenols | [177] | |
UV/H2O2/TiO2 system | Pulp and paper wastes | [178] | |
UV/sodium hypochlorite | Phenol’s degradation | [179] | |
Physical | Hot water extraction of hemicellulose | Paper and pulp industry wastewaters | [58,180] |
Distillation and membrane processes | Pharmaceutical wastes | [34] | |
Distillation | Chemical wastes | [181] | |
Centrifugation and drying | Sludge | [97] | |
Nanofiltration | Paper and pulp industry wastes | [182] | |
Biochemical | Xylanase and laccase enzymes (obtained from Bacillus pumilus and Ganoderma sp., respectively) | Wastewaters from paper and pulp industry | [183,184] |
A lab-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) | Paper mill effluents | [116,185,186] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yankovych, H.; Vaclavikova, M.; Melnyk, I. A Review on Adsorbable Organic Halogens Treatment Technologies: Approaches and Application. Sustainability 2023, 15, 9601. https://doi.org/10.3390/su15129601
Yankovych H, Vaclavikova M, Melnyk I. A Review on Adsorbable Organic Halogens Treatment Technologies: Approaches and Application. Sustainability. 2023; 15(12):9601. https://doi.org/10.3390/su15129601
Chicago/Turabian StyleYankovych, Halyna, Miroslava Vaclavikova, and Inna Melnyk. 2023. "A Review on Adsorbable Organic Halogens Treatment Technologies: Approaches and Application" Sustainability 15, no. 12: 9601. https://doi.org/10.3390/su15129601
APA StyleYankovych, H., Vaclavikova, M., & Melnyk, I. (2023). A Review on Adsorbable Organic Halogens Treatment Technologies: Approaches and Application. Sustainability, 15(12), 9601. https://doi.org/10.3390/su15129601