Analysis of the Coupling Coordination and Obstacle Factors between Sustainable Development and Ecosystem Service Value in Yunnan Province, China: A Perspective Based on the Production-Living-Ecological Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Methods
2.3.1. SD Evaluation System Based on PLE Functions
2.3.2. PLE Land Classification
2.3.3. Dynamic Evaluation of ESV
2.3.4. Weight Setting and Comprehensive Evaluation
2.3.5. Modifying the Coupling Coordination Degree Model
2.3.6. Obstacle Degree Model
3. Results
3.1. SD Change Analysis
3.1.1. Time Changes of SD
3.1.2. Spatial Changes of SD
3.2. PLE Land and ESV Change Analysis
3.2.1. Temporal and Spatial Changes of PLE Land
3.2.2. Temporal and Spatial Changes of ESV
3.3. Analysis of Coupling Coordination between SD and ESV
3.3.1. Analysis of Coupling Degree between SD and ESV
3.3.2. Analysis of Coupling Coordination Degree between SD and ESV
3.3.3. Analysis of Levels and Types of Coupling Coordination between SD and ESV
3.4. Obstacle Degree Analysis
4. Discussion
4.1. PLE Land and ESV Changes
4.2. Changes in SD
4.3. Coupling Coordination between SD and ESV and Obstacle Factors
4.4. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SD | Sustainable Development |
SDGs | Sustainable Development Goals |
ESs | Ecosystem Services |
PLE | Production-Living-Ecological |
ESV | Ecosystem Service Value |
CCD | Coupling coordination degree |
CD | Coupling degree |
UN | United Nations |
CNY | Chinese Yuan |
DEM | Digital Elevation Model |
NPP | Vegetation net primary productivity |
GDP | Gross Regional Product |
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution Adopted by the General Assembly, Seventieth Session A/RES/70/1. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 17 March 2022).
- Peng, K.F.; Jiang, W.G.; Ling, Z.Y.; Hou, P.; Deng, Y.W. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Hak, T.; Janouskova, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Sarkar, M.S.K.; Okitasari, M.; Ahsan, M.R.; Al-Amin, A.Q. Localisation of Sustainable Development Goals (SDGs) in Bangladesh: An Inclusive Framework under Local Governments. Sustainability 2022, 14, 10817. [Google Scholar] [CrossRef]
- Allen, C.; Nejdawi, R.; El-Baba, J.; Hamati, K.; Metternicht, G.; Wiedmann, T. Indicator-based assessments of progress towards the sustainable development goals (SDGs): A case study from the Arab region. Sustain. Sci. 2017, 12, 975–989. [Google Scholar] [CrossRef]
- Fox, S.; Macleod, A. Localizing the SDGs in cities: Reflections from an action research project in Bristol, UK. Urban Geogr. 2023, 44, 517–537. [Google Scholar] [CrossRef]
- Winans, K.; Dlott, F.; Harris, E.; Dlott, J. Sustainable value mapping and analysis methodology: Enabling stakeholder participation to develop localized indicators mapped to broader sustainable development goals. J. Clean. Prod. 2021, 291, 125797. [Google Scholar] [CrossRef]
- Allen, C.; Reid, M.; Thwaites, J.; Glover, R.; Kestin, T. Assessing national progress and priorities for the Sustainable Development Goals (SDGs): Experience from Australia. Sustain. Sci. 2020, 15, 521–538. [Google Scholar] [CrossRef]
- Phillis, Y.A.; Kouikoglou, V.S.; Verdugo, C. Urban sustainability assessment and ranking of cities. Comput. Environ. Urban Syst. 2017, 64, 254–265. [Google Scholar] [CrossRef]
- Shao, C.F.; Chen, S.; Gao, J.; He, Y.; Zhou, H. Design of China’s sustainable development evaluation index system based on the SDGs. China Popul. Resour. Environ. 2021, 31, 1–12. (In Chinese) [Google Scholar]
- Zhu, J.; Sun, X.; He, Z. Research on China’s sustainable development evaluation indicators in the framework of SDGs. China Popul. Resour. Environ. 2018, 28, 9–18. (In Chinese) [Google Scholar]
- Chen, D.; Zhao, Q.; Jiang, P.; Li, M. Incorporating ecosystem services to assess progress towards sustainable development goals: A case study of the Yangtze River Economic Belt, China. Sci. Total Environ. 2022, 806 Pt 3, 151277. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Q.; Zhao, W.W.; Liu, Y.X.; Cherubini, F.; Fu, B.J.; Pereira, P. Prioritizing sustainable development goals and linking them to ecosystem services: A global expert’s knowledge evaluation. Geogr. Sustain. 2020, 1, 321–330. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, W.; Cherubini, F.; Pereira, P. Integrate ecosystem services into socio-economic development to enhance achievement of sustainable development goals in the post-pandemic era. Geogr. Sustain. 2021, 2, 68–73. [Google Scholar] [CrossRef]
- Cochran, F.; Daniel, J.; Jackson, L.; Neale, A. Earth observation-based ecosystem services indicators for national and subnational reporting of the sustainable development goals. Remote Sens. Environ. 2020, 244, 111796. [Google Scholar] [CrossRef] [PubMed]
- Konstantinova, E.; Brunina, L.; Persevica, A.; Zivitere, M. Assessment of Ecosystems Services for Sustainable Development and Land Use Management. In Proceedings of the Scientific Conference on Society, Integration, Education, Rezekne, Latvia, 26–27 May 2017; pp. 257–269. [Google Scholar] [CrossRef]
- Liu, Y.; Lü, Y.; Fu, B.; Zhang, X. Landscape pattern and ecosystem services are critical for protected areas’ contributions to sustainable development goals at regional scale. Sci. Total Environ. 2023, 881, 163535. [Google Scholar] [CrossRef]
- Palacios, E.; van Beukering, P.P.J.H.; van Zanten, B.; Lacle, F.; Schep, S.; Soellner, I. Linking ecosystem services and the Sustainable Development Goals in Small Island Developing States: The case of Aruba. One Ecosyst. 2021, 6, e71033. [Google Scholar] [CrossRef]
- Reyers, B.; Selig, E.R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 2020, 4, 1011–1019. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Sheng, H.X.; Xu, H.N.; Zhang, L.P.; Chen, W.Q. Ecosystem intrinsic value and its application in decision-making for sustainable development. J. Nat. Conserv. 2019, 49, 27–36. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, C.; Yang, J.; Yang, S. Coupling analysis of environment and economy based on the changes of ecosystem service value. Ecol. Indic. 2022, 144, 109524. [Google Scholar] [CrossRef]
- Zhu, S.; Huang, J.; Zhao, Y. Coupling coordination analysis of ecosystem services and urban development of resource-based cities: A case study of Tangshan city. Ecol. Indic. 2022, 136, 108706. [Google Scholar] [CrossRef]
- Yang, Z.; Zhan, J.; Wang, C.; Twumasi-Ankrah, M.J. Coupling coordination analysis and spatiotemporal heterogeneity between sustainable development and ecosystem services in Shanxi Province, China. Sci. Total Environ. 2022, 836, 155625. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Zhou, M.; Liu, J.; Zhao, J.; Xi, M. Coupling Relationship between Ecosystem Service Value and Socioeconomic Development in the Qinba Mountains, China. Diversity 2022, 14, 1105. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Ji, Z. Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior—A case study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Zhou, Y.; Muhtar, A.; Wang, L. Spatiotemporal Differentiation of the Coupling and Coordination of Production-Living-Ecology Functions in Hubei Province Based on the Global Entropy Value Method. Int. J. Environ. Res. Public Health 2022, 19, 16062. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Fu, J.; Jiang, D. Optimization of Production-Living-Ecological Space in National Key Poverty-Stricken City of Southwest China. Land 2022, 11, 411. [Google Scholar] [CrossRef]
- Ling, Z.; Jiang, W.; Liao, C.; Li, Y.; Ling, Y.; Peng, K.; Deng, Y. Evaluation of Production-Living-Ecological Functions in Support of SDG Target 11.a: Case Study of the Guangxi Beibu Gulf Urban Agglomeration, China. Diversity 2022, 14, 469. [Google Scholar] [CrossRef]
- Li, X.; Fu, J.; Jiang, D.; Lin, G.; Cao, C. Land use optimization in Ningbo City with a coupled GA and PLUS model. J. Clean. Prod. 2022, 375, 134004. [Google Scholar] [CrossRef]
- Lin, G.; Fu, J.; Jiang, D. Production–Living–Ecological Conflict Identification Using a Multiscale Integration Model Based on Spatial Suitability Analysis and Sustainable Development Evaluation: A Case Study of Ningbo, China. Land 2021, 10, 383. [Google Scholar] [CrossRef]
- Wang, A.; Liao, X.; Tong, Z.; Du, W.; Zhang, J.; Liu, X.; Liu, M. Spatial-temporal dynamic evaluation of the ecosystem service value from the perspective of “production-living-ecological” spaces: A case study in Dongliao River Basin, China. J. Clean. Prod. 2022, 333, 130218. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, B.; Zhang, Z.; Liang, G. Research on the spatiotemporal evolution and mechanism of ecosystem service value in the mountain-river-sea transition zone based on “production-living-ecological space”—Taking the Karst-Beibu Gulf in Southwest Guangxi, China as an example. Ecol. Indic. 2023, 148, 109889. [Google Scholar] [CrossRef]
- Pan, F.; Shu, N.; Wan, Q.; Huang, Q. Land Use Function Transition and Associated Ecosystem Service Value Effects Based on Production-Living-Ecological Space: A Case Study in the Three Gorges Reservoir Area. Land 2023, 12, 391. [Google Scholar] [CrossRef]
- Wang, F.; Fu, W.; Chen, J. Spatial-Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use. Land 2022, 11, 2217. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Chen, G.; Lin, Y.; Yang, A.; Cheng, J. Coupling PLUS and InVEST Model for Ecosystem Service Research in Yunnan Province, China. Sustainability 2023, 15, 271. [Google Scholar] [CrossRef]
- Xu, K.; Yang, Z. Research on the Value of Land Ecological Service in Yunnan Province Based on the Perspective of Spatial Pattern. Sustainability 2022, 14, 10805. [Google Scholar] [CrossRef]
- Zong, W.; Cheng, L.; Xia, N.; Jiang, P.; Wei, X.; Zhang, F.; Jin, B.; Zhou, J.; Li, M. New technical framework for assessing the spatial pattern of land development in Yunnan Province, China: A “production-life-ecology” perspective. Habitat Int. 2018, 80, 28–40. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhou, S.J.; Ouyang, S.Y. The spatial prediction and optimization of production-living-ecological space based on Markov-PLUS model: A case study of Yunnan Province. Open. Geosci. 2022, 14, 481–493. [Google Scholar] [CrossRef]
- Yunnan Provincial Bureau of Statistics. Yunnan Statistical Yearbook 2021, 1st ed.; China Statistics Press: Beijing, China, 2022. [Google Scholar]
- Liu, C.; Yang, J.; Yin, L. Progress, achievements and prospects of biodiversity protection in Yunnan Province. Biodivers. Sci. 2021, 29, 200–211. (In Chinese) [Google Scholar] [CrossRef]
- Yang, R.; Wu, Q.; Yang, Z.; Yang, S. Study on Spatio-Temporal Changes of Land Use Sustainability in Southwestern Border Mountainous Provinces in Recent 20 Years Based on Remote Sensing Interpretation: A Case Study in Yunnan Province, China. Land 2022, 11, 1957. [Google Scholar] [CrossRef]
- Jin, L.; Xu, Q.; Yi, J.; Zhong, X. Integrating CVOR-GWLR-Circuit model into construction of ecological security pattern in Yunnan Province, China. Environ. Sci. Pollut. Res. 2022, 29, 81520–81545. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.Y.; Zhang, S.; Li, R.; Yan, C.Z.; Wu, S. Multi-period land use and land cover monitoring data set in China(CNLUCC). In Resource and Environment Science Registration and Publication System; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar]
- Xu, S.; Chen, M.; Feng, T.; Zhan, L.; Zhou, L.; Yu, G. Use ggbreak to Effectively Utilize Plotting Space to Deal With Large Datasets and Outliers. Front. Genet. 2021, 12, 2122. [Google Scholar] [CrossRef]
- Lin, G.; Jiang, D.; Fu, J.; Zhao, Y. A Review on the Overall Optimization of Production-Living-Ecological Space: Theoretical Basis and Conceptual Framework. Land 2022, 11, 345. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Y. Synergy/trade-offs and differential optimization of production, living, and ecological functions in the Yangtze River economic Belt, China. Ecol. Indic. 2023, 147, 109925. [Google Scholar] [CrossRef]
- GB/T21010-2017. Current Land Use Classification. Standards Press of China: Beijing, China, 2017. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=224BF9DA69F053DA22AC758AAAADEEAA (accessed on 13 June 2023).
- Zhang, H.; Xu, E.; Zhu, H. An ecological-living-industrial land classification system and its spatial distribution in China. Resour. Sci. 2015, 37, 1332–1338. (In Chinese). Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7ir5D84hng_y4D11vwp0rrtUJIAhozCqn8CJ4ztD2lJIxVyEm_q599_DyIIj-ycPLr&uniplatform=NZKPT&src=copy (accessed on 8 June 2023).
- Dong, Z.H.; Zhang, J.Q.; Si, A.; Tong, Z.J.; Na, L. Multidimensional Analysis of the Spatiotemporal Variations in Ecological, Production and Living Spaces of Inner Mongolia and an Identification of Driving Forces. Sustainability 2020, 12, 7964. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Deng, S. Research on Dynamics of Regional Land Use Change and Ecosystem Service Value. Master’s Thesis, Zhejiang University, Hangzhou, China, 2012. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C475KOm_zrgu4lQARvep2SAkWGEmc0QetxDh64Dt3veMp4TMuTMwgtpFC6yvogxRB3P1gVaUmDgJuwzCWTEkswdP&uniplatform=NZKPT&src=copy (accessed on 8 June 2023).
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Lu, Y.; Yang, L.; Hu, Z.; Li, C.; Yang, X. Temporal and spatial changes in land use and ecosystem service value based on SDGs’ reports: A case study of Dianchi Lake Basin, China. Environ. Sci. Pollut. Res. 2022, 30, 31421–31435. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Qiao, L.; Ni, B.; Cao, J.; Yu, H. Quantitative evaluation on the characteristics of activated sludge granules and flocs using a fuzzy entropy-based approach. Sci. Rep. 2017, 7, 42910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, T.; Yang, S.; Zhang, W.; Zhou, Q. Coupling coordination degree measurement and spatiotemporal heterogeneity between economic development and ecological environment—Empirical evidence from tropical and subtropical regions of China. J. Clean. Prod. 2020, 244, 118739. [Google Scholar] [CrossRef]
- Wang, S.; Kong, W.; Ren, L.; Zhi, D.; Dai, B. Research on misuses and modification of coupling coordination degree model in China. J. Nat. Resour. 2021, 36, 793–810. (In Chinese) [Google Scholar] [CrossRef]
- Qiu, J.; Zhao, J.; Wu, J. Measurement on the Benefits of Regional Land Use in China Based on Coupling Relationship. China Popul. Resour. Environ. 2012, 22, 103–110. (In Chinese) [Google Scholar] [CrossRef]
- Lv, L.L.; Chen, C.J.; Wang, Z.F. Spatiotemporal differentiation and the obstacle factors influencing the coupling coordination between economic development and water pollution control capability in the Yangtze River Economic Belt. Environ. Sci. Pollut. Res. 2022, 29, 75681–75698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Sun, C.; An, Y.; Luo, Y.; Yang, Q.; Su, W.; Gao, L. Coupling coordination and obstacle factors between tourism and the ecological environment in Chongqing, China: A multi-model comparison. Asia Pac. J. Tour. Res. 2021, 26, 811–828. [Google Scholar] [CrossRef]
- Prabhakar, S. A succinct review and analysis of drivers and impacts of agricultural land transformations in Asia. Land Use Policy 2021, 102, 105238. [Google Scholar] [CrossRef]
- Tong, S.; Bao, G.; Rong, A.; Huang, X.; Bao, Y.; Bao, Y. Comparison of the Spatiotemporal Dynamics of Land Use Changes in Four Municipalities of China Based on Intensity Analysis. Sustainability 2020, 12, 3687. [Google Scholar] [CrossRef]
- Kuang, W.H.; Liu, J.Y.; Dong, J.W.; Chi, W.F.; Zhang, C. The rapid and massive urban and industrial land expansions in China between 1990 and 2010: A CLUD-based analysis of their trajectories, patterns, and drivers. Landsc. Urban. Plan. 2016, 145, 21–33. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Li, J.; Pan, C.; Wu, J.; Ran, J.; Su, Y. Remarkable improvement of ecosystem service values promoted by land use/land cover changes on the Yungui Plateau of China during 2001–2020. Ecol. Indic. 2022, 142, 109303. [Google Scholar] [CrossRef]
- Fang, J.; Song, H.; Zhang, Y.; Li, Y.; Liu, J. Climate-dependence of ecosystem services in a nature reserve in northern China. PLoS ONE 2018, 13, e0192727. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.S.; Pan, H.Y.; Liu, Y.H.; Tang, Y.P.; Zhang, Z.F.; Ma, H.J. Evolution and driving force of ecosystem service value based on dynamic equivalent in Leshan City. Acta Ecol. Sin. 2022, 42, 76–90. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XfSNy__BMCtyreTqJKr80tAiRcxXH_dGsa9Y-BR26ZrU&uniplatform=NZKPT&src=copy (accessed on 8 June 2023). (In Chinese).
- Mekuria, W.; Diyasa, M.; Tengberg, A.; Haileslassie, A. Effects of Long-Term Land Use and Land Cover Changes on Ecosystem Service Values: An Example from the Central Rift Valley, Ethiopia. Land 2021, 10, 1373. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Zhou, J.; Ma, J. Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit. Land 2021, 10, 1001. [Google Scholar] [CrossRef]
- Sterling, E.J.; Pascua, P.; Sigouin, A.; Gazit, N.; Mandle, L.; Betley, E.; Aini, J.; Albert, S.; Caillon, S.; Caselle, J.E.; et al. Creating a space for place and multidimensional well-being: Lessons learned from localizing the SDGs. Sustain. Sci. 2020, 15, 1129–1147. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Liu, X.Y.; Zhao, C.Y.; Wang, H.; Zang, F. The trade-offs and synergies of the ecological-production-living functions of grassland in the Qilian mountains by ecological priority. J. Environ. Manag. 2023, 327, 116883. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Wang, L.; Cheng, Z.; Wu, X. Obstacle Indicators Diagnosis and Advantage Functions Zoning Optimization Based on “Production-Living-Ecological” Functions of National Territory Space in Jilin Province. Sustainability 2022, 14, 4215. [Google Scholar] [CrossRef]
- Wei, C.; Lin, Q.; Yu, L.; Zhang, H.; Ye, S.; Zhang, D. Research on Sustainable Land Use Based on Production–Living–Ecological Function: A Case Study of Hubei Province, China. Sustainability 2021, 13, 996. [Google Scholar] [CrossRef]
- Lu, C.; Ji, W.; Liu, Z.; Mao, J.; Li, J.; Xue, B. Spatial-temporal Pattern and Influencing Factors of the Production-Living-Ecological Functional Space of the Yellow River Basin at County Level in Gansu, China. Sci. Geogr. Sin. 2022, 42, 579–588. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, Z.; Zhong, F.; Cheng, Q.; Wu, M. Spatio-Temporal Evolution and Influencing Factors of High Quality Development in the Yunnan-Guizhou, Region Based on the Perspective of a Beautiful China and SDGs. Land 2022, 11, 821. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Wang, L.; Pei, Y. Study on the Functional Characteristics and Division Optimization of “Production Living-Ecological” of Geographical Space in Yunnan Province. Ecol. Econ. 2021, 37, 94–101. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iy_Rpms2pqwbFRRUtoUImHQ1InjCUyhUVCr_SKzgOjRKQ-hrO_DLZ0TPvR4ejdkqP&uniplatform=NZKPT&src=copy (accessed on 8 June 2023). (In Chinese).
- Chen, W.; Zeng, J.; Zhong, M.; Pan, S. Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [Google Scholar] [CrossRef]
- Wang, Y.; Song, J.; Zhang, X.; Sun, H. Sustainable Development Evaluation and Its Obstacle Factors of the Weihe River Basin in Shaanxi Province, China. Front. Earth Sci. 2021, 9, 744224. [Google Scholar] [CrossRef]
- Cui, F.; Liu, J. Comprehensive evaluation of coastal zone and identification of obstacle factors to its sustainable development: Zhejiang as a case. Trans. Oceanol. Limnol. 2022, 44, 140–148. (In Chinese) [Google Scholar] [CrossRef]
- Lu, Y.; Routray, J.K.; Ahmad, M.M. Multidimensional Poverty Analysis at the Local Level in Northwest Yunnan Province, China: Some Insights and Implications. J. Poverty 2019, 23, 299–316. [Google Scholar] [CrossRef]
- Wei, Y.; Zhong, F.; Song, X.; Huang, C. Exploring the impact of poverty on the sustainable development goals: Inhibiting synergies and magnifying trade-offs. Sustain. Cities Soc. 2023, 89, 104367. [Google Scholar] [CrossRef]
- Zhang, Y. Comprehensive Partitions Based on Landscape Ecological Risk and Ecosystem Service Value in Southwest China. Master’s Thesis, Chinese Research Academy of Environmental Sciences, Beijing, China, 2021. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, R.; Liu, T.; Zhang, Z.; Han, J.; Liu, K. Coordination and obstacle factors of urbanization and ecosystem service value in the Yellow River Basin. Arid Land Geogr. 2022, 45, 1254–1267. (In Chinese) [Google Scholar] [CrossRef]
- Xu, Z.H.; Peng, J.; Liu, Y.X.; Qiu, S.J.; Zhang, H.B.; Dong, J.Q. Exploring the combined impact of ecosystem services and urbanization on SDGs realization. Appl. Geogr. 2023, 153, 102907. [Google Scholar] [CrossRef]
- Xu, Z.H.; Peng, J.; Zhang, H.B.; Liu, Y.X.; Dong, J.Q.; Qiu, S.J. Exploring spatial correlations between ecosystem services and sustainable development goals: A regional-scale study from China. Landsc. Ecol. 2022, 37, 3201–3221. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7ZCYsl4RS_3jwoTxAg_ahuMb6iO9apwhIjawpF6rpSDhH7JTUHTOvMzUczijTeIDY&uniplatform=NZKPT&src=copy (accessed on 13 June 2023). (In Chinese).
Target Layer | Criterion Layer | Indicator Layer | Unit | Owned SDGs | Nature of Index |
---|---|---|---|---|---|
Sustainable development | Production sustainability | Per capita cultivated area (S1) | mu/person | SDG2 | + |
Per capita grain output (S2) | kg/person | SDG2 | + | ||
Per capita gross output value of agriculture, forestry, animal husbandry, and fishery (S3) | CNY/person | SDG8 | + | ||
Proportion of secondary industry (S4) | % | SDG8 | + | ||
Proportion of third industry (S5) | % | SDG8 | + | ||
Total labor productivity (S6) | 104 CNY/person | SDG8 | + | ||
Number of scientific and technical personnel (S7) | person | SDG9 | + | ||
Density of economy (S8) | 104 CNY/km2 | SDG8 | + | ||
Financial contribution rate (S9) | 104 CNY/km2 | SDG8 | + | ||
Total import and export trade (S10) | 104 dollars | SDG8 | + | ||
Living sustainability | Civilian vehicle ownership (S11) | car | SDG11 | + | |
Road mileage (S12) | km | SDG9 | + | ||
Urban disposable income (S13) | CNY | SDG10 | + | ||
GDP per capita (S14) | CNY | SDG8 | + | ||
Rate of urbanization (S15) | % | SDG11 | + | ||
Per capita total retail sales of consumer goods (S16) | 108 CNY/104 people | SDG2 | + | ||
Population mortality rate (S17) | ‰ | SDG3 | – | ||
Number of hospital beds per 10,000 people (S18) | Per 10,000 people | SDG3 | + | ||
Average wage of working staff (S19) | CNY | SDG8 | + | ||
Urban registered unemployment rate (S20) | % | SDG8 | – | ||
Gas penetration rate (S21) | % | SDG9 | + | ||
Per capita park green area (S22) | m2/person | SDG11 | + | ||
Number of full-time teachers in primary schools (S23) | person | SDG4 | + | ||
Number of full-time teachers in secondary schools (S24) | person | SDG4 | + | ||
Ecological sustainability | Industrial exhaust emissions (S25) | Ten thousand cubic meter | SDG12 | – | |
Sulfur dioxide emission level (S26) | Ten thousand tons | SDG12 | – | ||
Fertilizer application rate (S27) | Ten thousand tons | SDG2 | – | ||
Industrial wastewater discharge (S28) | Ten thousand tons | SDG12 | – | ||
Centralized treatment rate of sewage treatment plant (S29) | % | SDG6 | + | ||
Harmless disposal rate of household garbage (S30) | % | SDG11 | + | ||
General industrial solid waste comprehensive utilization rate (S31) | % | SDG12 | + | ||
Forest coverage rate (S32) | % | SDG15 | + | ||
Water resources per capita (S33) | m3/person | SDG6 | + |
SD System/% | ESV System/% | ||||||
---|---|---|---|---|---|---|---|
Year | Production Sustainability | Living Sustainability | Ecological Sustainability | Supply Services | Regulation Services | Support Services | Cultural Services |
2005 | 55.50 | 34.50 | 10.00 | 28.61 | 36.13 | 26.30 | 8.96 |
2010 | 56.53 | 33.36 | 10.11 | 27.23 | 35.34 | 28.47 | 8.95 |
2015 | 56.59 | 31.43 | 11.99 | 29.29 | 34.50 | 27.06 | 9.15 |
2020 | 59.19 | 27.61 | 13.20 | 28.69 | 35.24 | 27.06 | 9.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, C.; Liu, C.; Ge, H.; Hu, Z.; Zhang, Z.; Tang, X. Analysis of the Coupling Coordination and Obstacle Factors between Sustainable Development and Ecosystem Service Value in Yunnan Province, China: A Perspective Based on the Production-Living-Ecological Functions. Sustainability 2023, 15, 9664. https://doi.org/10.3390/su15129664
Li J, Li C, Liu C, Ge H, Hu Z, Zhang Z, Tang X. Analysis of the Coupling Coordination and Obstacle Factors between Sustainable Development and Ecosystem Service Value in Yunnan Province, China: A Perspective Based on the Production-Living-Ecological Functions. Sustainability. 2023; 15(12):9664. https://doi.org/10.3390/su15129664
Chicago/Turabian StyleLi, Jiaxi, Changyuan Li, Chenyang Liu, Hailong Ge, Zheneng Hu, Zhuoya Zhang, and Xueqiong Tang. 2023. "Analysis of the Coupling Coordination and Obstacle Factors between Sustainable Development and Ecosystem Service Value in Yunnan Province, China: A Perspective Based on the Production-Living-Ecological Functions" Sustainability 15, no. 12: 9664. https://doi.org/10.3390/su15129664
APA StyleLi, J., Li, C., Liu, C., Ge, H., Hu, Z., Zhang, Z., & Tang, X. (2023). Analysis of the Coupling Coordination and Obstacle Factors between Sustainable Development and Ecosystem Service Value in Yunnan Province, China: A Perspective Based on the Production-Living-Ecological Functions. Sustainability, 15(12), 9664. https://doi.org/10.3390/su15129664