A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources
Abstract
:1. Introduction
- The paper analyzes the integration of AC–MGs and DC–MGs, as well as the use of PCs, through recent studies that contain the latest trends in this field.
- The paper reviews the main power-quality issues present in HMGs, as well as the most innovative devices used to mitigate each of the issues presented. In addition, it suggests state-of-the-art methods and equipment developed in experimentation laboratories for their implementation in HMGs.
- The paper presents a critical analysis of a wide variety of optimization techniques used in HMGs to improve power flow and energy generation, reduce uncertainty, and resolve HMG design and topology issues. In addition, it discusses the latest research areas where significant advances can be made regarding HMGs.
- The paper offers a synthesis of recent control methods and strategies proposed by various researchers to ensure a smooth transition between the HMGs’ operational modes and provide voltage and frequency stability to the electrical grid, as well as improve power quality, minimize operating costs, and ensure effective participation in transitory energy markets.
- Finally, the paper offers a clear discussion of the key parameters associated with HMGs and provides an in-depth comparison with other current reviews on the topic of HMGs by addressing the main areas of research.
2. Microgrids Generalities
2.1. Classification of the Microgrids
2.1.1. AC–Microgrids (AC–MGs)
2.1.2. DC–Microgrids (DC–MGs)
2.1.3. DC–AC MG or Hybrid MG (HMG)
2.2. Characteristics of the Microgrids
2.2.1. Grid Connection
2.2.2. Power Source
2.2.3. ESS
2.2.4. Demand
2.2.5. Voltage and Frequency
2.3. MG Components
- Generation: Like traditional EPSs, MGs admit all types of generation adapted to the power scale. These include diesel generators (typically from backup systems prior to the MG), gas generators, intermittent renewable generation (wind, solar), and non-renewable generation (hydrogen, biogas, mini–hydraulic).
- Demand: This is divided between that which is manageable and that which is not, as well as, in the cases that require it, the loads that are critical and the rest. The demand may be interconnected with the rest of the MG systems, such as heat or biogas generation.
- Grids and subgrids: Mainly electrical, both overhead and underground, but gas and heat may also be included. All their components are included here: cables, transformers, etc.
- PCC: Includes measurement instruments, switches, contactors, synchronization relay, protection and control systems, etc. Due to its sensitivity, and because it does not appear in those islanded MGs, it is included separately from the rest of the electrical grid.
- Management and control elements: Including the elements in charge of these regulation processes (Energy Management System–EMS) for the different states of the MG (connected, islanded, and the transition between both).
- Protection elements: Normally working individually or coordinated with a few other protection elements.
- ESS: Although it is not essential, most MGs include ESSs for the energy management flows between generation and demand; this is particularly important when the MG is regulated in islanded mode.
- Other components: Mainly linked to complementary systems.
3. Issues and Challenges of the HMGs
3.1. Operational Issues
- Power-sharing under different operating conditions is an important issue regarding the stability of HMGs, which depends not only on the AC subsystem but also on the DC subsystem because of the exchange of power through the PC. Therefore, researchers have analyzed the power distribution in HMGs based on droop control. For example, in [57], the design and operation of an HMG is presented to control the operation of the PC and the power losses during charge/discharge scenarios, concluding that the shared power affects the dynamics of the AC and DC subgrids, which creates a system-wide stability issue. In [58], multiple PCs were implemented to increase system reliability and eradicate the issue of [57]. However, the AC subgrid becomes more susceptible to power exchanges, which reduces the overall performance of the system. Therefore, the implementation of ESSs is proposed to improve power transfer between subgrids [59].
- The parallel operation of multiple PCs is another major issue. The operation of PCs in HMGs has many advantages, with the main one being that it offers greater reliability to the system for high-power applications; see Figure 5. However, the operation of PCs connected in parallel generates serious issues, such as the resynchronization required after different operating modes of the grid, circulating current in parallel operation, and harmonic distortion in the system [60].
- The disconnection between generation and demand can lead to voltage and frequency issues, as HMGs tend to constantly switch from grid-connected mode to islanded mode. In addition, the simultaneous interconnection of a large number of DGUs can be a serious problem, as well as the impact of interconnected PCs on the HMGs.
3.2. Power-Quality Issues
3.2.1. Power-Quality Issues in HMGs Connected to the Electrical Grid
3.2.2. Power Quality Issues in Islanded HMG
3.2.3. Frequency Variations
3.3. Communication Challenges
4. Optimization Techniques
4.1. Linear and Non–Linear Technique
4.2. Dynamic and Metaheuristic Optimization
4.3. Genetic Algorithm (GA) and Multi-Agent (MAS) Optimization
4.4. Fuzzy Logic and Others Techniques
4.5. Optimal Power Flow (OPF) Optimization
4.6. Robust and Stochastic Optimization
5. Control Strategies
5.1. Centralized Control Strategy
Control Strategy | Advantage | Disadvantage | Ref. | ||
---|---|---|---|---|---|
Conventional methods | Droop control | Manages the decentralized energy of the DGUs. | Load-dependent frequency variation. | [110] | |
Nonlinear | Sliding Mode Control | Low cost, relaxed scalability, and improves grid stability | Need for an ESS and a load shedding strategy. | [133] | |
Port-Hamiltonian | Manage load balancing and efficient power distribution and stabilize voltage. | Requires passive-based control of damping and interconnect assignment. | [237] | ||
Lyapunov | Present robustness of the LRC against parametric uncertainties | Requires extra components to detect slow and fast modes for dynamic stability. | [238] | ||
Adaptive | Machine Learning | Operational flexibility of the HMG different components and reduction of the impact of uncertainties. | Less sensitive to process parameter changes and system disturbance. | [201] | |
MPC | Ensures upload constraints are met and the economic optimization of the HMG. | Modelling difficulties, sensitivity to load parameter variation and high computational burden. | [239] | ||
Robust | Enables more reliable power supply for sensitive loads in the absence of grids. | Steady state deviations in the frequency and voltage set-point. | [205] | ||
Intelligent | Fuzzy Logic | Reduce grid fluctuation and increase the ESS lifecycle. | Fine-tuning its parameters is relatively difficult due to the nature of the system. | [187] | |
PSO | Improvement in the local energy efficiency and reduction in the energy consumption costs. | Absence of constraint management strategies. | [162,163,164,165,166,167] | ||
GA | Global optimization, robustness, search speed, computational accuracy and convergence. | They can be difficult to optimize and can be time-consuming to run. | [173,174,175,176] | ||
Hierarchical distributed | Primary | Virtual Impedance | Provide active stabilization and disturbance avoidance, and ancillary services. | Load current transients are only partially reproduced. | [240,241,242] |
Virtual Inertia | Can effectively deal with all kinds of wind speed and ac load mutation and restrain the frequency variation on AC side. | It does not consider the simultaneous effect of DC power control on connected converters on the DC–link side in the presence of ESS. | [243,244,245] | ||
Power Flow | Determines the minimum operating costs considering the limitations of the DGUs. | Uncertainty of parameter selection and slow convergence rate. | [199] | ||
Secondary | Multi–agent | Helps make energy transfers more economical in the event of power outages. | Complex systems composed of several autonomous agents with only local knowledge and limited capabilities. | [180] | |
SMC | Offers robustness for sudden variations in power sources and loads, low cost, and relaxed scalability. | Poor robustness against variation of plant dynamic. | [246] | ||
MPC | Fast control dynamic response and good performance for systems involving non–linearities. | Need for an accurate model of the process to predict the control methodology. | [247] | ||
Tertiary | Predictive Control | Ensures the quality of electrical services and minimizes component profitability. | Communication delays under uncertainty parameters increase the system sensitivity. | [240,241,242,248] | |
EMS | Metaheuristic | Provide a more effective exploration of the search space and simplifies the generation of high-quality optimal solutions. | Low accuracy in several applications due to the leaders’ stochastic movement | [161,162,163] |
5.2. Decentralized Control Strategy
5.3. Distributed Control Strategy
5.4. Hierarchical Control Strategies
5.4.1. Primary Control
Droop Control
Model Predictive Control (MPC)
Converter–Level MPC
MPC for Grid Level
Virtual Impedance Control
Virtual Inertia Control
5.4.2. Secondary Control
5.4.3. Tertiary Control
(15) | ||
Subject to |
5.4.4. Non-Linear Control Strategies
6. Discussion with Recently Conducted Reviews
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Babatunde, O.M.; Munda, J.L.; Hamam, Y. A Comprehensive state-of-the-art survey on Hybrid Renewable Energy System Operations and Planning. IEEE Access 2020, 8, 75313–75346. [Google Scholar] [CrossRef]
- Gong, X.; Dong, F.; Mohamed, M.A.; Abdalla, O.M.; Ali, Z.M. A Secured Energy Management Architecture for Smart Hybrid Microgrids Considering PEM-Fuel Cell and Electric Vehicles. IEEE Access 2020, 8, 47807–47823. [Google Scholar] [CrossRef]
- Yang, L.; Tai, N.; Fan, C.; Meng, Y. Energy regulating and fluctuation stabilizing by air source heat pump and battery energy storage system in microgrid. Renew. Energy 2016, 95, 202–212. [Google Scholar] [CrossRef]
- Bolgouras, V.; Ntantogian, C.; Panaousis, E.; Xenakis, C. Distributed Key Management in Microgrids. IEEE Trans. Ind. Inform. 2020, 16, 2125–2133. [Google Scholar] [CrossRef]
- Yoldas, Y.; Önen, A.; Muyeen, S.M.; Vasilakos, A.V.; Alan, I. Enhancing Smart Grid with Microgrids: Challenges and Opportunities. Renew. Sustain. Energy Rev. 2017, 72, 205–214. [Google Scholar] [CrossRef]
- Cagnano, A.; De Tuglie, E.; Mancarella, P. Microgrids: Overview and Guidelines for Practical Implementations and Operation. Appl. Energy 2020, 258, 114039. [Google Scholar] [CrossRef]
- Hirsch, A.; Parag, Y.; Guerrero, J.M. Microgrids: A Review of Technologies, Key Drivers, and Outstanding Issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.S.; Yeh, C.C.; Yu, C.H.; Lu, X.Y.; Kuan, B.L.; Wu, H.Y.; Prokhorov, A.V. Reduction of three-phase voltage unbalance subject to special winding connections of two single-phase distribution transformers of a microgrid system using a designed D-STATCOM controller. IEEE Trans. Ind. Appl. 2018, 54, 2002–2011. [Google Scholar] [CrossRef]
- Rajesh, K.S.; Dash, S.S.; Rajagopal, R.; Sridhar, R. A review on control of AC microgrid. Renew. Sustain. Energy Rev. 2017, 71, 814–819. [Google Scholar] [CrossRef]
- Zuo, S.; Davoudi, A.; Song, Y.; Lewis, F.L. Distributed finite-time voltage and frequency restoration in islanded AC microgrids. IEEE Trans. Ind. Electron. 2016, 63, 5988–5997. [Google Scholar] [CrossRef]
- Veneri, O. Technologies and Applications for Smart Charging of Electric and Plug-in Hybrid Vehicles, 1st ed.; Springer: Cham, Switzerland, 2017; pp. 39–64. [Google Scholar]
- Lotfi, H.; Khodaei, A. AC versus DC microgrid planning. IEEE Trans. Smart Grid 2017, 8, 296–304. [Google Scholar] [CrossRef]
- Mohamad, A.M.E.I.; Mohamed, Y.A.R.I. Investigation and assessment of stabilization solutions for DC microgrid with dynamic loads. IEEE Trans. Smart Grid 2019, 10, 5735–5747. [Google Scholar] [CrossRef]
- Ma, T.; Cintuglu, M.H.; Mohammed, O.A. Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads. IEEE Trans. Ind. Appl. 2017, 53, 567–575. [Google Scholar] [CrossRef]
- Mehrizi-Sani, A.; Iravani, R. Potential-function based control of a microgrid in islanded and grid-connected modes. IEEE Trans. Power Syst. 2010, 25, 1883–1891. [Google Scholar] [CrossRef]
- Samal, S.; Hota, P.K. Power quality improvement by solar photovoltaic/wind energy integrated system using unified power quality conditioner. Int. J. Power Electron. Drive Syst. 2017, 8, 1424. [Google Scholar]
- Shuai, Z.; Sun, Y.; Shen, Z.J.; Tian, W.; Tu, C.; Li, Y.; Yin, X. Microgrid stability: Classification and a review. Renew. Sustain. Energy Rev. 2016, 58, 167–179. [Google Scholar] [CrossRef]
- Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy 2018, 222, 1033–1055. [Google Scholar] [CrossRef]
- Mumtaz, F.; Bayram, I.S. Planning, operation, and protection of microgrids: An overview. Energy Procedia 2017, 107, 94–100. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Abyaneh, H.A.; Sadeghi, S.H.H.; Razavi, F.; Nasiri, A. An overview of microgrid protection methods and the factors involved. Renew. Sustain. Energy Rev. 2016, 64, 174–186. [Google Scholar] [CrossRef]
- Naikand, L.; Palanisamy, K. Design and performance of a PV–STATCOM for enhancement of power quality in micro grid applications. Int. J. Power Electron. Drive Syst. 2017, 8, 1408–1415. [Google Scholar]
- Hashempour, M.M.; Lee, T.L. Integrated power factor correction and voltage fluctuation mitigation of microgrid using STATCOM. In Proceedings of the IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, Kaohsiung, Taiwan, 3–7 June 2017; pp. 1215–1219. [Google Scholar]
- Thahaand, H.S.; Prakash, T.R.D. Reduction of power quality issues in micro-grid using fuzzy logic-based DVR. Int. J. Appl. Eng. Res. 2018, 13, 9746–9751. [Google Scholar]
- Loureiro, P.C.; Variz, A.M.; Oliveira, L.W.; Oliveira, A.R.; Pereira, J.L.R. ANN-based SVC tuning for voltage and harmonics control in microgrids. J. Control Autom. Electr. Syst. 2017, 28, 114–122. [Google Scholar] [CrossRef]
- Al-Shetwi, A.Q.; Hannan, M.A.; Jern, K.P.; Alkahtani, A.A.; Abas, A.E.P.G. Power quality assessment of grid-connected PV system in compliance with the recent integration requirements. Electronics 2020, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Gayatri, M.T.L.; Parimi, A.M.; Kumar, A.V.P. Utilization of unified power quality conditioner for voltage sag/swell mitigation in microgrid. In Proceedings of the Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), Bengaluru, India, 21–23 January 2016; pp. 1–6. [Google Scholar]
- Hatziargyriou, N.D. Microgrids: Architectures and Control; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Canizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Gabbar, H.A. Smart Energy Grid Engineering; Joe Hayton: Manitoba, CA, USA, 2017. [Google Scholar]
- Dimeas, A.; Tsikalakis, A.; Kariniotakis, G.; Korres, G. Microgrids: Architectures and Control; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Planas, E.; Andreu, J.; Garate, J.I.; De Alegría, I.M.; Ibarra, E. AC and DC technology in microgrids: A review. Renew. Sustain. Energy Rev. 2015, 43, 726–749. [Google Scholar] [CrossRef]
- Jia, L.; Zhu, Y.; Wang, Y. Architecture design for new AC-DC hybrid micro-grid. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 113–118. [Google Scholar]
- Lasseter, R.H.; Eto, J.H.; Schenkman, B.; Stevens, J.; Vollkommer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J. CERTS microgrid laboratory test bed. IEEE Trans. Power Deliv. 2011, 26, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Unamuno, E.; Barrena, J.A. Hybrid ac/dc microgrids—Part I: Review and classification of topologies. Renew. Sustain. Energy Rev. 2015, 52, 1251–1259. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Vasquez, J.C.; Matas, J.; De Vicuña, L.G.; Castilla, M. Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization. IEEE Trans. Ind. Electron. 2011, 58, 158–172. [Google Scholar] [CrossRef]
- Gao, Y.; Ai, Q. Distributed cooperative optimal control architecture for AC microgrid with renewable generation and storage. Int. J. Electr. Power Energy Syst. 2018, 96, 324–334. [Google Scholar] [CrossRef]
- Vega, A.M.; Santamaria, F.; Rivas, E. Modeling for home electric energy management: A review. Renew. Sustain. Energy Rev. 2015, 52, 948–959. [Google Scholar] [CrossRef]
- Lasseter, R.H.; Paigi, P. Microgrid: A conceptual solution. In Proceedings of the 2004 IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 20–25 June 2004; pp. 4285–4290. [Google Scholar]
- Bevrani, H.; François, B.; Ise, T. Microgrid Dynamics and Modeling; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Kelly, A.C.; Merritt, J.A. Hybrid systems: A review of current and future feasibility. Electr. J. 2014, 27, 97–104. [Google Scholar] [CrossRef]
- Hatziargyriou, N.; Asano, H.; Iravani, R.; Marnay, C. Micro-grids: An overview of ongoing research development, and demon-stration projects. IEEE Power Energy Mag. 2007, 12, 78–94. [Google Scholar] [CrossRef]
- Dimarzio, G.; Angelini, L.; Price, W.; Chin, C.; Harris, S. The stillwater triple hybrid power plant: Integrating geothermal, solar photovoltaic and solar thermal power generation. In Proceedings of the Proceedings World Geothermal Congress 2015, Melbourne, Australia, 9–25 April 2015; pp. 1–5. [Google Scholar]
- Peterseim, J.H.; Tadros, A.; White, S.; Hellwig, U.; Landler, J.; Galang, K. Solar tower-biomass hybrid plants-Maximizing plant performance. Energy Procedia 2014, 49, 1197–1206. [Google Scholar] [CrossRef] [Green Version]
- Cot, A.; Amettler, A.; Vall-Llovera, J.; Aguilo, J.; Arque, J.M. Termosolar borges: A thermosolar hybrid plant with biomass. In Proceedings of the Third International Symposium on Energy from Biomass and Waste, Venice, Italy, 8–11 November 2010. [Google Scholar]
- Franco, A.A. Rechargeable Lithium Batteries: From Fundamentals to Application; Woodhead Publishing Elsevier Ltd.: Cambridge, UK, 2015. [Google Scholar]
- Hallam, C.R.A.; Alarco, L.; Karau, G.; Flannery, W.; Leffel, A. Hybrid closed-loop renewable energy systems: El Hierro as a model case for discrete power systems. In Proceedings of the 2012 Proceedings of PICMET ‘12: Technology Management for Emerging Technologies, Vancouver, BC, Canada, 29 July–2 August 2012; pp. 2957–2969. [Google Scholar]
- Ji, P.; Zhou, X.X.; Wu, S. Review on sustainable development of island microgrid. In Proceedings of the APAP 2011—Proceedings: 2011 International Conference on Advanced Power System Automation and Protection, Beijing, China, 16–20 October 2011; Volume 3, pp. 1806–1813. [Google Scholar]
- Galleguillos-Pozo, R.; Domenech, B.; Ferrer-Martí, L.; Pastor, R. Balancing cost and demand in electricity access projects: Case studies in Ecuador, Mexico and Peru. Mathematics 2022, 10, 1995. [Google Scholar] [CrossRef]
- Piesciorovsky, E.C.; Smith, T.; Ollis, T.B. Protection schemes used in North America microgrids. Int. Trans. Electr. Energy Syst. 2020, 30, 12461. [Google Scholar] [CrossRef]
- Liu, G.; Li, Z.; Xue, Y.; Tomsovic, K. Microgrid assisted design for remote areas. Energies 2022, 15, 3725. [Google Scholar] [CrossRef]
- Gordillo, C.; Martínez, J.; Rodríguez, E.; Arau, J.; Capilla, A. Experimental 1 kW DC Micro-Grid based on PV Systems: Strategy based on NI LabVIEW Platform. IEEE Lat. Am. Trans. 2018, 16, 2625–2633. [Google Scholar] [CrossRef]
- Rey, J.M.; Vera, G.A.; Acevedo-Rueda, P.; Solano, J.; Mantilla, M.A.; Llanos, J.; Sáez, D. A review of microgrids in Latin America: Laboratories and Test Systems. IEEE Lat. Am. Trans. 2022, 20, 1000–1011. [Google Scholar] [CrossRef]
- IEEE Standard 1547; IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems-Amendment 1. Institute of Electrical and Electronics Engineers: New York, NY, USA, 2014.
- Gao, D.W.; Muljadi, E.; Tian, T.; Miller, M.; Wang, W. Comparison of Standards and Technical Requirements of Grid-Connected Wind Power Plants in China and the United States; Technical Report NREL/TP-5D00-64225; National Renewable Energy Lab.: Golden, CO, USA, 2016. [Google Scholar]
- García-Vera, Y.E.; Dufo-López, R.; Bernal-Agustín, J.L. Optimization of Isolated Hybrid Microgrids with Renewable Energy Based on Different Battery Models and Technologies. Energies 2020, 13, 581. [Google Scholar] [CrossRef] [Green Version]
- Nejabatkhah, F.; Li, Y.W. Overview of Power Management Strategies of Hybrid AC/DC Microgrid. IEEE Trans. Power Electron. 2015, 30, 7072–7089. [Google Scholar] [CrossRef]
- Malik, S.M.; Sun, Y.; Ai, X.; Chen, Z.; Wang, K. Cost-Based Droop Scheme for Converters in Interconnected Hybrid Microgrids. IEEE Access 2019, 7, 82266–82276. [Google Scholar] [CrossRef]
- Loh, P.C.; Li, D.; Chai, Y.K.; Blaabjerg, F. Hybrid AC–DC Microgrids with Energy Storages and Progressive Energy Flow Tuning. IEEE Trans. Power Electron. 2013, 28, 1533–1543. [Google Scholar] [CrossRef]
- Loh, P.C.; Li, D.; Chai, Y.K.; Blaabjerg, F. Autonomous Operation of Hybrid Microgrid with AC and DC Subgrids. IEEE Trans. Power Electron. 2013, 28, 2214–2223. [Google Scholar] [CrossRef]
- Alsiraji, H.A.; El-Shatshat, R. Serious Operation Issues and Challenges Related to Multiple Interlinking Converters Interfacing a Hybrid AC/DC Microgrid. In Proceedings of the 2018 IEEE Canadian Conference on Electrical Computer Engineering (CCECE), Quebec City, QC, Canada, 13–16 May 2018; pp. 1–5. [Google Scholar]
- Li, Y.W.; He, J. Distribution system harmonic compensation method. An overview of DG-interfacing inverters. IEEE Ind. Electron. Mag. 2014, 8, 18–31. [Google Scholar] [CrossRef]
- Kow, K.W.; Wong, Y.W.; Rajkumar, R.K. Power quality analysis for PV grid connected system using PSCAD/EMTDC. Int. J. Renew. Energy Res. 2015, 5, 121–132. [Google Scholar]
- Kaushik, R.A.; Pindoriya, N.M. A Hybrid AC-DC Microgrid: Opportunities Key Issues in Implementation. In Proceedings of the 2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE), Coimbatore, India, 6–8 March 2014; pp. 1–6. [Google Scholar]
- Li, C.; Chaudhary, S.K.; Vasquez, J.C.; Guerrero, J.M. Power Flow Analysis for Droop Controlled LV Hybrid AC-DC Microgrids with Virtual Impedance. In Proceedings of the 2014 IEEE PES General Meeting Conference Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–4. [Google Scholar]
- Hossain, M.A.; Pota, H.R.; Hossain, M.J.; Blaabjerg, F. Evolution of Microgrids with Converter-Interfaced Generations: Challenges and Opportunities. Int. J. Electr. Power Energy Syst. 2019, 109, 160–186. [Google Scholar] [CrossRef]
- Hu, W.X.; Xiao, X.Y.; Zheng, Z.X. Voltage sag/swell waveform analysis method based on multidimension characterization. IET Gener. Transm. Distrib. 2020, 14, 486–493. [Google Scholar] [CrossRef]
- Zheng, F.; Chen, Y.; Zhang, Y.; Lin, Y.; Guo, M. Low voltage ride through capability improvement of microgrid using a hybrid coordination control strategy. J. Renew. Sustain. Energy 2019, 11, 034102. [Google Scholar] [CrossRef]
- Erlich, I.; Bachmann, U. Grid code requirements concerning connection and operation of wind turbines in Germany. In Proceedings of the IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 16–17 June 2005; pp. 1253–1257. [Google Scholar]
- Kim, Y.J. Development and analysis of a sensitivity matrix of a three–phase voltage unbalance factor. IEEE Trans. Power Syst. 2018, 33, 3192–3195. [Google Scholar] [CrossRef]
- Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Secondary control scheme for voltage unbalance compensation in an islanded droop controlled microgrid. IEEE Trans. Smart Grid 2012, 3, 797–807. [Google Scholar] [CrossRef] [Green Version]
- GB/T 19964; Technical Rule for PV Power Station Connected to Power Grid, China Enterprise Standards, Technical Report. State Grid Corporation of China: Beijing, China, 2012.
- Wu, Y.K.; Lin, J.H.; Lin, H.J. Standards and guidelines for grid–connected photovoltaic generation systems: A review and comparison. IEEE Trans. Ind. Appl. 2017, 53, 3205–3216. [Google Scholar] [CrossRef]
- Troester, E. New German grid codes for connecting PV systems to the medium voltage power grid. In Proceedings of the 2nd International Workshop on Concentrating Photovoltaic Power Plants: Optical Design, Production, Grid Connection, Darmstadt, Germany, 9–10 March 2009; pp. 9–10. [Google Scholar]
- Standard CSA C22.3 No. 9-08-R2015; Interconnection of Distributed Resources and Electricity Supply Systems. Canadian Standards Association: Toronto, ON, Canada, 2015. Available online: https://www.csagroup.org (accessed on 29 March 2020).
- Ghassemi, F.; Perry, M. Review of Voltage Unbalance Limit in the GB Grid Code CC.6.1.5 (b). Available online: https://www.nationalgrid.com (accessed on 11 March 2022).
- Xu, L.; Miao, Z.; Fan, L.; Gurlaskie, G. Unbalance and Harmonic Mitigation using Battery Inverts. In Proceedings of the IEEE 2015 North American Power Symposium (NAPS), Charlotte, NC, USA, 4–6 October 2015. [Google Scholar]
- Alwaz, N.; Raza, S.; Ali, S.; Bhatti, M.K.L.; Zahra, S. Harmonic power sharing and power quality improvement of droop controller based low voltage islanded microgrid. In Proceedings of the International Symposium on Recent Advances in Electrical Engineering & Computer Sciences (RAEE), Islamabad, Pakistan, 28–29 August 2019; pp. 1–6. [Google Scholar]
- Astorga, O.A.M.; Silveira, J.L.; Damato, J.C. The influence of harmonics from non-linear loads in the measuring transformers of electrical substations. In Laboratory of High Voltage and Electric Power Quality, Optimization Group of Energy Systems; Sao Paulo State University: São Paulo, Brazil, 2006; Volume 1, pp. 275–280. [Google Scholar]
- Blooming, T.M.; Carnovale, D.J. Application of IEEE STD 519-1992 harmonic limits. In Proceedings of the Conference Record of 2006 Annual Pulp and Paper Industry Technical Conference, Appleton, WI, USA, 18–23 June 2006; pp. 1–9. [Google Scholar]
- Cho, N.; Lee, H.; Bhat, R.; Heo, K. Analysis of harmonic hosting capacity of IEEE Std. 519 with IEC 61000-3-6 in distribution systems. In Proceedings of the 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 19–23 March 2019; pp. 730–734. [Google Scholar]
- Cleveland, F.M. IEC 61850-7-420 communications standard for distributed energy resources (DER). In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–4. [Google Scholar]
- Bollen, M.; Zhong, J.; Zavoda, F.; Meyer, J.; McEachern, A.; Lopez, F.C. Power Quality aspects of Smart Grids. Renew. Energy Power Qual. J. 2017, 1, 1061–1066. [Google Scholar]
- Kaushal, J.; Basak, P. Power quality control based on voltage sag/swell, unbalancing, frequency, THD and power factor using artificial neural network in PV integrated AC microgrid. Sustain. Energy Grids Netw. 2020, 23, 100365. [Google Scholar] [CrossRef]
- Tenti, P.; Paredes, H.K.M.; Mattavelli, P. Conservative power theory, a framework to approach control and accountability issues in smart microgrids. IEEE Trans. Power Electron. 2011, 26, 664–673. [Google Scholar] [CrossRef]
- Padayattil, G.M.; Thobias, T.; Thomas, M.; Sebastian, J.; Pathirikkat, G. Harmonic analysis of microgrid operation in islanded mode with nonlinear loads. In Proceedings of the 2016 International Conference on Computer Communication and Informatics ICCCI, Coimbatore, India, 7–9 January 2016; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Agundis-Tinajero, G.; Segundo-Ramírez, J.; Peña-Gallardo, R.; Visairo-Cruz, N.; Núñez-Gutiérrez, C.; Guerrero, J.M.; Savaghebi, M. Harmonic issues assessment on PWM VS-based controlled microgrids using Newton methods. IEEE Trans. Smart Grid 2018, 9, 1002–1011. [Google Scholar] [CrossRef] [Green Version]
- Garde, R.; Casado, S.; Santamaria, M.; Aguado, M. Power quality and stability analysis during islanded mode operation in a microgrid based on master-slave configuration. In Proceedings of the 2015 Saudi Arabia Smart Grid (SASG), Jeddah, Saudi Arabia, 7–9 December 2015; IEEE: New York, NY, USA, 2015; pp. 1–8. [Google Scholar]
- Laaksonen, H.; Kauhaniemi, K. Voltage and current THD in microgrid with different DG unit and load configurations. In Proceedings of the CIRED Seminar 2008: SmartGrids for Distribution, Frankfurt, Germany, 23–24 June 2008; p. 71. [Google Scholar]
- Nomm, J.; Ronnberg, S.; Bollen, M. Harmonic voltage measurements in a single house microgrid. In Proceedings of the 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 13–16 May 2018; pp. 1–5. [Google Scholar]
- Kulia, G.; Molinas, M.; Lundheim, L.M.; Fosso, O.B. Simple model for understanding harmonics propagation in single-phase microgrids. In Proceedings of the 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 27–29 June 2017; IEEE: New York, NY, USA, 2017; pp. 354–358. [Google Scholar]
- Zhou, N.; Yuan, C.; Wang, Q. Control strategies for microgrid power quality enhancement with back-to-back converters connected to a distribution network. In Proceedings of the 2012 IEEE 15th International Conference on Harmonics and Quality of Power, Hong Kong, China, 17–20 June 2012; IEEE: New York, NY, USA, 2012; pp. 384–389. [Google Scholar]
- Algaddafi, A.; Brown, N.; Gammon, R.; Altuwayjiri, S.A.; Alghamdi, M. Improving off-grid PV system power quality, and comparing with grid power quality. In Proceedings of the International Conference on Electronics, Information, and Communications ICEIC, Danang, Vietnam, 27–30 January 2016. [Google Scholar]
- Savaghebi, M.; Shafiee, Q.; Vasquez, J.C.; Guerrero, J.M. Adaptive virtual impedance scheme for selective compensation of voltage unbalance and harmonics in microgrids. In Proceedings of the IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Golsorkhi, M.S.; Lu, D.; Savaghebi, M.; Vasquez, J.C.; Guerrero, J.M. A GPS-based control method for load sharing and power quality improvement in microgrids. In Proceedings of the 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; IEEE: New York, NY, USA, 2016; pp. 3734–3740. [Google Scholar]
- Yang, J.; Chen, Y.; Dong, M.; Han, H. A harmonic and reactive power sharing control strategy for islanded microgrids. In Proceedings of the 2015 Chinese Automation Congress (CAC), Wuhan, China, 27–29 November 2015; IEEE: New York, NY, USA, 2015; pp. 1422–1427. [Google Scholar]
- Micallef, A.; Apap, M.; Spiteri-Staines, C.; Guerrero, J.M. Cooperative control with virtual selective harmonic capacitance for harmonic voltage compensation in islanded microgrids. In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; Volume 3, pp. 5619–5624. [Google Scholar]
- Blanco, C.; Tardelli, F.; Reigosa, D.; Zanchetta, P.; Briz, F. Design of a cooperative voltage harmonic compensation strategy for islanded microgrids combining virtual admittance and repetitive controller. IEEE Trans. Ind. Appl. 2019, 55, 680–688. [Google Scholar] [CrossRef]
- Zeng, Z.; Yi, H.; Zhai, H.; Zhuo, F.; Wang, Z. Harmonic power sharing and PCC voltage harmonics compensation in islanded microgrids by adopting virtual harmonic impedance method. In Proceedings of the IECON 2017–43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; IEEE: New York, NY, USA, 2017; pp. 263–267. [Google Scholar]
- Thai, T.T.; Raisz, D.; Monti, A.; Ponci, F.; Ahmadifar, A. Voltage harmonic reduction using virtual oscillator–based inverters in islanded microgrids. In Proceedings of the International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 13–16 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Dehghani, M.T.; Vahedi, A.; Savaghebi, M.; Guerrero, J.M. Voltage quality improvement in islanded microgrids supplying nonlinear loads. In Proceedings of the 2012 3rd Power Electronics and Drive Systems Technology (PEDSTC), Tehran, Iran, 15–16 February 2012; Volume 3, pp. 360–365. [Google Scholar]
- Phan, D.M.; Lee, H.H. Interlinking Converter to Improve Power Quality in Hybrid AC-DC Microgrids with Nonlinear Loads. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 7, 1959–1968. [Google Scholar] [CrossRef]
- Lhachimi, H.; Sayouti, Y.; Kouari, Y.E. Control of a flexible microgrid during both modes of operations with presence of nonlinear loads. J. Frankl. Inst. 2020, 357, 6498–6538. [Google Scholar] [CrossRef]
- Hicks, C.; Baghzouz, Y.; Haddad, S. Power quality of residential PV system under low solar irradiance and off-grid operation. In Proceedings of the 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, 13–16 May 2018; pp. 1–5. [Google Scholar]
- Rönnberg, S.; Bollen, M.; Nömm, J. Power quality measurements in a single-house microgrid. CIRED Open Access Proc. J. 2017, 2017, 818–822. [Google Scholar] [CrossRef]
- Bollen, M.H.J.; Das, R.; Djokic, S.; Ciufo, P.; Meyer, J.; Ronnberg, S.K.; Zavodam, F. Power Quality Concerns in Implementing Smart Distribution-Grid Applications. IEEE Trans. Smart Grid 2017, 8, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, Y.; Monteiro, M.; Abdelaziz, M.; Wang, L.; de Souza, A.Z.; Ribeiro, P. Improving the autonomy of islanded microgrids through frequency regulation. Int. J. Electr. Power Energy Syst. 2020, 115, 105499. [Google Scholar] [CrossRef]
- Mahmood, H.; Michaelson, D.; Jiang, J. A Power Management Strategy for PV/Battery Hybrid Systems in Islanded Microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 870–882. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, E.S.; Moon, S. Distributed generation control method for active power sharing and self-frequency recovery in an islanded microgrid. IEEE Trans. Power Electron. 2017, 32, 544–551. [Google Scholar] [CrossRef]
- Wu, D.; Tang, F.; Dragicevic, T. A control architecture to coordinate renewable energy sources and energy storage systems in islanded microgrids. IEEE Trans. Smart Grid 2015, 6, 1156–1166. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, H.; Michaelson, D.; Jiang, J. Decentralized power management of a PV/battery hybrid unit in a droop-controlled islanded microgrid. IEEE Trans. Power Electron. 2015, 30, 7215–7229. [Google Scholar] [CrossRef]
- Klem, A.; Nehrir, M.H.; Dehghanpour, K. Frequency stabilization of an islanded microgrid using droop control and demand response. In Proceedings of the North American Power Symposium, Denver, CO, USA, 18–20 September 2016; pp. 1–6. [Google Scholar]
- Pahasa, J.; Ngamroo, I. Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid. IEEE Syst. J. 2016, 10, 97–105. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Ma, Y. Model predictive control of PMSG-based wind turbines for frequency regulation in an isolated grid. In Proceedings of the IEEE 3rd International Future Energy Electronics Conference and ECCE Asia, Kaohsiung, Taiwan, 4–7 June 2017; pp. 1536–1541. [Google Scholar]
- Pahasa, J.; Ngamroo, I. PHEVs bidirectional charging/discharging and SoC control for microgrid frequency stabilization using multiple MPC. IEEE Trans. Smart Grid 2015, 6, 526–533. [Google Scholar] [CrossRef]
- John, T.; Ping Lam, S. Voltage and frequency control during microgrid islanding in a multi-area multi-microgrid system. IET Gener. Transm. Distrib. 2017, 11, 1502–1512. [Google Scholar]
- Datta, M.; Senjyu, T.; Yona, A. A frequency-control approach by photovoltaic generator in a PV-diesel hybrid power system. IEEE Trans. Energy Convers. 2011, 26, 559–571. [Google Scholar] [CrossRef]
- Khooban, M.H.; Niknam, T.; Blaabjerg, F. A new load frequency control strategy for micro-grids with considering electrical vehicles. Elect. Power Syst. Res. 2017, 143, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Vigneysh, T.; Kumarappan, N. Autonomous operation and control of photovoltaic/solid oxide FC/battery energy storage based microgrid using fuzzy logic controller. Int. J. Hydrogen Energy 2015, 41, 1877–1891. [Google Scholar] [CrossRef]
- Oliveira, D.Q.; de Souza, A.C.Z.; Santosa, M.V.; Almeida, A.B.; Lopes, B.I.L.; Saavedra, O.R. A fuzzy-based approach for microgrids islanded operation. Elect. Power Syst. Res. 2017, 149, 178–189. [Google Scholar] [CrossRef]
- Sangawong, N.; Ngamroo, I. Optimal fuzzy logic-based adaptive controller equipped with DFIG wind turbine for frequency control in stand-alone power system. In Proceedings of the 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Bangalore, India, 10–13 November 2013; pp. 1–6. [Google Scholar]
- Bevrani, H.; Feizi, M.R.; Ataee, S. Robust frequency control in an islanded microgrid: H∞ and μ-synthesis approaches. IEEE Trans. Smart Grid 2016, 7, 706–717. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Young, P.M.; Jain, A. Robust control for microgrid frequency deviation reduction with attached storage system. IEEE Trans. Smart Grid 2015, 6, 557–565. [Google Scholar] [CrossRef]
- Vachirasricirikul, S.; Ngamroo, I. Robust controller design of microturbine and electrolyzer for frequency stabilization in a microgrid system with plug-in hybrid electric vehicles. Elect. Power Syst. Res. 2012, 43, 804–811. [Google Scholar] [CrossRef]
- Jian, Z.; Li, W.C. Frequency stability of microgrids based on H∞ methods. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, 27–29 July 2016; pp. 1–6. [Google Scholar]
- Bidram, A.; Davoudi, A. Hierarchical structure of microgrids control system. IEEE Trans. Smart Grid 2012, 3, 1963–1976. [Google Scholar] [CrossRef]
- Díaz-González, F.; Hau, M.; Sumper, A. Coordinated operation of wind turbines and flywheel storage for primary frequency control support. Int. J. Electr. Power Energy Syst. 2015, 68, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Díaz, N.L.; Luna, A.C.; Vasquez, J.C. Centralized control architecture for coordination of distributed renewable generation and energy storage in islanded AC microgrids. IEEE Trans. Power Electron. 2017, 32, 5202–5213. [Google Scholar] [CrossRef] [Green Version]
- La Bella, A.; Cominesi, S.R.; Sandroni, C. Hierarchical predictive control of microgrids in islanded operation. IEEE Trans. Autom. Sci. Eng. 2017, 14, 536–546. [Google Scholar] [CrossRef]
- Riverso, S.; Sarzo, F.; Ferrari-Trecate, G. Plug-and-play voltage and frequency control of islanded microgrids with meshed topology. IEEE Trans. Smart Grid 2015, 6, 1176–1184. [Google Scholar] [CrossRef] [Green Version]
- Dorfler, F.; Vasquez, J.C.; Guerrero, J.M. Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [Google Scholar]
- Coelho, E.A.A.; Wu, D.; Guerrero, J.M. Small-signal analysis of the microgrid secondary control considering a communication time delay. IEEE Trans. Ind. Electron. 2016, 63, 6257–6269. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.M.; Soltani, J. Robust control of an islanded multi-bus microgrid based on input-output feedback linearization and sliding mode control. IET Gener. Transm. Distrib. 2015, 9, 2447–2484. [Google Scholar] [CrossRef]
- Mu, C.; Tang, Y.; He, H. Observer-based sliding mode frequency control for micro-grid with photovoltaic energy integration. In Proceedings of the IEEE Power and Energy Society General Meeting, Boston, MA, USA, 17–21 July 2016; pp. 1–5. [Google Scholar]
- Kalla, U.K.; Singh, B.; Murthy, S.S. Adaptive sliding mode control of standalone single-phase microgrid using hydro, wind and solar PV array-based generation. IEEE Trans. Smart Grid 2018, 9, 6806–6814. [Google Scholar] [CrossRef]
- Qi, Y.; Jia, H.; Mu, Y. Dynamic frequency control of autonomous microgrid based on family-friendly controllable loads. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference, Washington, DC, USA, 24–27 February 2013; pp. 1–6. [Google Scholar]
- Pourmousavi Kani, S.A.; Nehrir, M.H. Real-time central demand response for primary frequency regulation in microgrids. IEEE Trans. Smart Grid 2012, 3, 1988–1996. [Google Scholar] [CrossRef]
- Molina-Garcia, A.; Bouffard, F.; Kirschen, D.S. Decentralized demand-side contribution to primary frequency control. IEEE Trans. Power Syst. 2010, 26, 411–419. [Google Scholar] [CrossRef]
- Molina-Garcia, A.; Munoz-Benavente, I.; Hansen, A.D. Demand-side contribution to primary frequency control with wind farm auxiliary control. IEEE Trans. Power Syst. 2014, 29, 2391–2399. [Google Scholar] [CrossRef]
- Marzal, S.; Salas, R.; González-Medina, R.; Garcerá, G.; Figueres, E. Current challenges and future trends in the field of communication architectures for microgrids. Renew. Sustain. Energy Rev. 2018, 82, 3610–3622. [Google Scholar]
- Serban, I.; Céspedes, S.; Marinescu, C.; Azurdia-Meza, C.A.; Gómez, J.S.; Hueichapan, D.S. Communication Requirements in Microgrids: A Practical Survey. IEEE Access 2020, 8, 47694–47712. [Google Scholar] [CrossRef]
- Lotfi, H.; Khodaei, A. Hybrid AC/DC Microgrid Planning. Energy 2017, 118, 37–46. [Google Scholar] [CrossRef]
- Noh, C.H.; Kim, C.H.; Gwon, G.H.; Khan, M.O.; Jamali, S.Z. Development of Protective Schemes for Hybrid AC/DC Low-Voltage Distribution System. Int. J. Electr. Power Energy Syst. 2019, 105, 521–528. [Google Scholar] [CrossRef]
- Mackiewicz, R. Technical overview and benefits of the IEC 61850 standard for substation automation. In Proceedings of the 2006 Power Systems Conference and Exposition, Atlanta, Georgia, 29 October–1 November 2006. [Google Scholar]
- Ling, L.; Hongyong, Y.; Xia, C. Model Differences between IEC 61970/61968 and IEC 61850. In Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications, Hong Kong, China, 16–18 January 2013. [Google Scholar]
- Cheng, L. Study and Application of DNP3.0 in SCADA system. In Proceedings of the 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, Harbin, China, 12–14 August 2011. [Google Scholar]
- Skoko, V.; Atlagic, B.; Isakov, N. Comparative realization of IEC 60870-5 industrial protocol stantards. In Proceedings of the 2014 22nd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 25–27 November 2014. [Google Scholar]
- Ahmed, M.A.; Song, M.; Pan, J.K.; Kim, Y.C. Remote Monitoring with Hierarchical Network Architectures for Large-Scale Wind Power Farms. J. Electr. Eng. Technol. 2015, 10, 1319–1327. [Google Scholar] [CrossRef] [Green Version]
- Nejabatkhah, F.; Li, Y.W.; Tian, H. Power Quality Control of Smart Hybrid AC/DC Microgrids: An Overview. IEEE Access 2019, 7, 52295–52318. [Google Scholar] [CrossRef]
- Ortiz, L.; Orizondo, R.; Águila, A.; González, J.W.; López, G.J.; Isaac, I. Hybrid AC/DC Microgrid Test System Simulation: Grid-Connected Mode. Heliyon 2019, 5, e02862. [Google Scholar] [CrossRef] [Green Version]
- Valta, J.; Mäkinen, S.; Kotilainen, K.; Järventausta, P.; Mendes, G. Comparison of Regulatory Challenges Faced by Different Microgrid Ownership Models. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018; pp. 1–9. [Google Scholar]
- Ribó-Pérez, D.; Bastida-Molina, P.; Gómez-Navarro, T.; Hurtado-Pérez, E. Hybrid Assessment for a Hybrid Microgrid: A Novel Methodology to Critically Analyse Generation Technologies for Hybrid Microgrids. Renew. Energy 2020, 157, 874–887. [Google Scholar] [CrossRef]
- Mulla, A.; Baviskar, J.; Khare, S.; Kazi, F. The Wireless Technologies for Smart Grid Communication: A Review. In Proceedings of the 2015 Fifth International Conference on Communication Systems and Network Technologies, Gwalior, India, 4–6 April 2015; pp. 442–447. [Google Scholar]
- Ahmed, A.; Nadeem, M.F.; Kiani, A.T.; Khan, I. An overview on optimal planning of distributed generation in distribution system and key issues. In Proceedings of the 2021 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 2–5 February 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Moya, F.D.; Torres-Moreno, J.L.; Álvarez, J.D. Optimal model for energy management strategy in smart building with energy storage systems and electric vehicles. Energies 2020, 13, 3605. [Google Scholar] [CrossRef]
- Torres-Moreno, J.L.; Gimenez-Fernandez, A.; Perez-Garcia, M.; Rodríguez, F. Energy management strategy for micro-grids with PV-battery systems and electric vehicles. Energies 2018, 11, 522. [Google Scholar] [CrossRef] [Green Version]
- Murty, V.V.; Kumar, A. Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Prot. Control Mod. Power Syst. 2020, 5, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bussieck, M.R.; Meeraus, A. General algebraic modeling system (GAMS). In Modeling Languages in Mathematical Optimization; Springer: Boston, MA, USA, 2004; pp. 137–157. [Google Scholar]
- Bisschop, J.; Roelofs, M. The modeling language AIMMS. In Modeling Languages in Mathematical Optimization; Springer: Boston, MA, USA, 2004; pp. 71–104. [Google Scholar]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. MOPSO/FDMT-based Pareto-optimal solution for coordination of overcurrent relays in interconnected networks and multi-DER microgrids. IET Gener. Transmiss. Distrib. 2018, 12, 2871–2886. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Lian, R.C. Optimal sizing of hybrid wind/pv/diesel generation in a stand-alone power system using Markov-based genetic algorithm. IEEE Trans. Power Deliv. 2012, 27, 640–647. [Google Scholar] [CrossRef]
- Li, P.; Zheng, M. Multi-Objective Optimal Operation of Hybrid AC/DC Microgrid Considering Source-Network-Load Coordination. J. Mod. Power Syst. Clean Energy 2019, 7, 1229–1240. [Google Scholar] [CrossRef] [Green Version]
- Pooranian, Z.; Nikmehr, N.; Najafi-Ravadanegh, S.; Mahdin, H.; Abawajy, J. Economical and environmental operation of smart networked microgrids under uncertainties using NSGA-II. In Proceedings of the 2016 24th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 22–24 September 2016; pp. 1–6. [Google Scholar]
- Li, B.; Roche, R.; Miraoui, A. Microgrid sizing with combined evolutionary algorithm and MILP unit commitment. Appl. Energy 2017, 188, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Berti, S. New optimization method based on energy management in microgrids based on energy storage systems and combined heat and power. Comput. Intell. 2020, 36, 55–79. [Google Scholar] [CrossRef]
- Borhanazad, H.; Mekhilef, S.; Ganapathy, V.G.; Modiri-Delshad, M.; Mirtaheri, A. Optimization of micro-grid system using MOPSO. Renew. Energy 2014, 71, 295–306. [Google Scholar] [CrossRef]
- Indragandhi, V.; Logesh, R.; Subramaniyaswamy, V.; Vijayakumar, V.; Siarry, P.; Uden, L. Multi-objective optimization and energy management in renewable based AC/DC microgrid. Comput. Electr. Eng. 2018, 70, 179–198. [Google Scholar]
- Elgammal, A.; El-Naggar, M. Energy management in smart grids for the integration of hybrid wind–PV–FC–battery renewable energy resources using multi-objective particle swarm optimisation (MOPSO). J. Eng. 2018, 20, 1806–1816. [Google Scholar] [CrossRef]
- Jafari, M.; Malekjamshidi, Z. Optimal energy management of a residential-based hybrid renewable energy system using rule-based real-time control and 2D dynamic programming optimization method. Renew. Energy 2020, 146, 254–266. [Google Scholar] [CrossRef]
- Park, K.; Lee, W.; Won, D. Optimal Energy Management of DC Microgrid System using Dynamic Programming. IFAC Pap. 2019, 52, 194–199. [Google Scholar] [CrossRef]
- Ye, B.; Shi, X.; Wang, X.; Wu, H. Optimisation configuration of hybrid AC/DC microgrid containing electric vehicles based on the NSGA-II algorithm. J. Eng. 2019, 12, 7229–7236. [Google Scholar] [CrossRef]
- Bahlawan, H.; Morini, M.; Pinelli, M.; Ruggero, P. Dynamic programming-based methodology for the optimization of the sizing and operation of hybrid energy plants. Appl. Therm. Eng. 2019, 160, 113967. [Google Scholar] [CrossRef]
- Teo, T.T.; Logenthiran, T.; Woo, W.L.; Abidi, K.; John, T.; Wade, N.S.; Greenwood, D.M.; Patsios, C.; Taylor, P.C. Optimization of fuzzy energy-management system for grid-connected microgrid using NSGA-II. IEEE Trans. Cybern. 2021, 51, 5375–5386. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.; Fatehi, A.; Jafari, H.; Karimi, E. Multi-objective micro-grid design by NSGA-II considering both islanded and grid-connected modes. In Proceedings of the 2018 IEEE Texas Power and Energy Conference (TPEC), College Station, TX, USA, 8–9 February 2018; pp. 1–6. [Google Scholar]
- Ray, P.K.; Nandkeolyar, S.; Lim, C.S.; Satiawan, I.N.W. Demand response management using non-dominated sorting genetic algorithm II. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2–4 January 2020; pp. 1–6. [Google Scholar]
- Vergara, P.P.; Torquato, R.; da Silva, L.C.P. Towards a real-time energy management system for a microgrid using a multi-objective genetic algorithm. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Zhao, B.; Zhang, X.; Chen, J.; Wang, C.; Guo, L. Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system. IEEE Trans. Sustain. Energy 2013, 4, 934–943. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Anvari-Moghaddam, A.; Rahimi-Kian, A.; Mirian, M.S.; Guerrero, J.M. A multi-agent-based energy management solution for integrated buildings and microgrid system. Appl. Energy. 2017, 203, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Jia, X.; Zhou, Y.; Li, X. A microgrids energy management model based on multi-agent system using adaptive weight and chaotic search particle swarm optimization considering demand response. J. Clean. Prod. 2020, 262, 121247. [Google Scholar] [CrossRef]
- Basir Khan, M.R.; Jidin, R.; Pasupuleti, J. Multi-agent based distributed control architecture for microgrid energy management and optimization. Energy Convers. Manag. 2016, 112, 288–307. [Google Scholar] [CrossRef]
- Samadi, E.; Badri, A.; Ebrahimpour, R. Decentralized multi-agent-based energy management of microgrid using reinforcement learning. Int. J. Electr. Power Energy Syst. 2020, 122, 106211. [Google Scholar] [CrossRef]
- Lagouir, M.; Badri, A.; Sayouti, Y. An Optimal Energy Management System of Islanded Hybrid AC/DC Microgrid. In Proceedings of the 2019 5th International Conference on Optimization and Applications (ICOA), Kenitra, Morocco, 25–26 April 2019; pp. 1–6. [Google Scholar]
- Ray, P.K.; Nandkeolyar, S.; Subudhi, B.; Korkua, S.K. Multi-objective optimization for demand response management. In Proceedings of the 2019 International Conference on Information Technology (ICIT), Bhubaneswar, India, 19–21 December 2019; pp. 121–126. [Google Scholar]
- Khalid, S.; Ahmad, I. QoS and power network stability aware simultaneous optimization of data center revenue and expenses. Sustain. Comput. Informat. Syst. 2021, 30, 100459. [Google Scholar] [CrossRef]
- Ghiasi, M. Detailed study, multi-objective optimization, and design of an AC-DC smart microgrid with hybrid renewable energy resources. Energy 2019, 169, 496–507. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B. Multi-objective optimal power management and sizing of a reliable wind/PV microgrid with hydrogen energy storage using MOPSO. J. Intell. Fuzzy Syst. 2017, 32, 1753–1773. [Google Scholar] [CrossRef]
- Zhao, T.; Xiao, J.; Hai, K.L.; Wang, P. Two-Stage Stochastic Optimization for Hybrid AC/DC Microgrid Embedded Energy Hub. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017; pp. 1–6. [Google Scholar]
- Allam, M.A.; Hamad, A.A.; Kazerani, M.; El-Saadany, E.F. A Novel Dynamic Power Routing Scheme to Maximize Loadability of Islanded Hybrid AC/DC Microgrids Under Unbalanced AC Loading. IEEE Trans. Smart Grid 2018, 9, 5798–5809. [Google Scholar] [CrossRef]
- Eajal, A.A.; El-Saadany, E.F.; Ponnambalam, K. Optimal Power Flow for Converter-Dominated AC/DC Hybrid Microgrids. In Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22–25 March 2017; pp. 603–608. [Google Scholar]
- Li, P.; Hua, H.; Di, K.; Zhou, J. Optimal Operation of AC/DC Hybrid Microgrid under Spot Price Mechanism. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, USA, 17–18 July 2016; pp. 1–5. [Google Scholar]
- Battistelli, C.; Agalgaonkar, Y.P.; Pal, B.C. Probabilistic Dispatch of Remote Hybrid Microgrids Including Battery Storage and Load Management. IEEE Trans. Smart Grid 2017, 8, 1305–1317. [Google Scholar] [CrossRef]
- Baboli, P.T.; Bahramara, S.; Moghaddam, M.P.; Haghifam, M.-A. Mixed-Integer Linear Model for Optimal Operation of Hybrid AC-DC Microgrid Considering Renewable Energy Resources and PHEVs. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015; pp. 1–5. [Google Scholar]
- Suman, G.K.; Yadav, S.; Roy, O.P. HOMER Based Optimal Sizing of a PV/Diesel/Battery Hybrid System for a Laboratory Facility. In Proceedings of the 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, Shillong, India, 5–7 March 2021; pp. 1–5. [Google Scholar]
- Dhiman, G. MOSHEPO: A Hybrid Multi-Objective Approach to Solve Economic Load Dispatch and Micro Grid Problems. Appl. Intell. 2020, 50, 119–137. [Google Scholar] [CrossRef]
- Sharma, S.; Battacharjee, S.; Bhattacharya, A. Grey wolf optimization for optimal sizing of battery energy storage device to minimize operation cost of microgrid. IET Gener. Transm. Distrib. 2016, 10, 625–637. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Yu, H.; Wang, Y.; Qi, C.; Yang, J.; Song, F. Optimal operation of microgrid with multi-energy complementary based on moth flame optimization algorithm. Energy Source Part A 2020, 42, 785–806. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, S.; Zhao, H. Selecting the optimal micro-grid planning program using a novel multi-criteria decision-making model based on grey cumulative prospect theory. Energies 2018, 11, 1840. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Shen, Z.; Xu, W.; Wang, G.; Yi, B. Optimal Power Flow Algorithm Based on Second-Order Cone Relaxation Method for Electricity-Gas Integrated Energy Microgrid. Complexity 2021, 10, 2073. [Google Scholar]
- Lin, Y.; Dong, P.; Sun, X.; Liu, M. Two-level game algorithm for multi-microgrid in electricity market. IET Renew. Power Gener. 2017, 11, 1733–1740. [Google Scholar] [CrossRef]
- Aghajani, G.; Ghadimi, N. Multi-objective energy management in a micro-grid. Energy Rep. 2018, 4, 218–225. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, T.; Pu, T.; Chen, N.; Sun, Y. A Decentralized Optimal Operation of AC/DC Hybrid Microgrids Equipped with Power Electronic Transformer. IEEE Access 2019, 7, 157946–157959. [Google Scholar] [CrossRef]
- Zeng, B.; Zhao, L. Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 2011, 41, 457–461. [Google Scholar] [CrossRef]
- Abujarad, S.Y.; Mustafa, M.W.; Jamian, J.J. Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review. Renew. Sustain. Energy Rev. 2017, 70, 215–223. [Google Scholar] [CrossRef]
- Atamtürk, A.; Zhang, M. Two-stage robust network flow and design under demand uncertainty. Oper. Res. 2007, 55, 662–673. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.A.; Nand, K.G. A robust optimization-based approach for microgrid operation in deregulated environment. Energy Convers. Manag. 2015, 93, 121–131. [Google Scholar] [CrossRef]
- Lorca, A.; Sun, X.A. Adaptive robust optimization with dynamic uncertainty sets for multi-period economic dispatch under significant wind. IEEE Trans. Power Syst. 2015, 30, 1702–1713. [Google Scholar] [CrossRef] [Green Version]
- Vagropoulos, S.I.; Bakirtzis, A.G. Optimal bidding strategy for electric vehicle aggregators in electricity markets. IEEE Trans. Power Syst. 2013, 28, 4031–4041. [Google Scholar] [CrossRef]
- Qiu, H.; Gu, W.; Xu, Y.; Zhao, B. Multi-Time-Scale Rolling Optimal Dispatch for AC/DC Hybrid Microgrids with Day-Ahead Distributionally Robust Scheduling. IEEE Trans. Sustain. Energy 2019, 10, 1653–1663. [Google Scholar] [CrossRef]
- Lin, D.; Huang, L.; Wang, X.; Li, Z.; Zhang, L. Robust Economic Dispatch of Grid-Connected AC/DC Hybrid Microgrids. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–5. [Google Scholar]
- Zheng, Q.P.; Wang, J.; Liu, A.L. Stochastic Optimization for Unit Commitment—A Review. IEEE Trans. Power Syst. 2015, 99, 1–12. [Google Scholar] [CrossRef]
- Quan, H.; Srinivasan, D.; Khosravi, A. Integration of renewable generation uncertainties into stochastic unit commitment considering reserve and risk: A comparative study. Energy 2016, 103, 735–745. [Google Scholar] [CrossRef]
- Olivares, D.E.; Lara, J.D.; Canizares, C.A.; Kazerani, M. Stochastic-Predictive Energy Management System for Isolated Microgrids. IEEE Trans. Smart Grid 2015, 6, 1–9. [Google Scholar] [CrossRef]
- Papari, B.; Edrington, C.S.; Bhattacharya, I.; Radman, G. Effective Energy Management of Hybrid AC–DC Microgrids with Storage Devices. IEEE Trans. Smart Grid 2019, 10, 193–203. [Google Scholar] [CrossRef]
- Parhoudeh, S.; Baziar, A.; Mazareie, A.; Kavousi-Fard, A. A novel stochastic framework based on fuzzy cloud theory for modeling uncertainly in the microgrids. Int. J. Elect. Power Energy Syst. 2016, 80, 73–80. [Google Scholar] [CrossRef]
- Li, P.; Zhang, B.; Han, P.; Wang, Z. Predictive Error Stable Distribution Modeling and Stochastic Optimization in Hybrid AC/DC Microgrid. In Proceedings of the 2018 IEEE Power Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar]
- Hussain, A.; Bui, V.; Kim, H. Robust Optimal Operation of AC/DC Hybrid Microgrids Under Market Price Uncertainties. IEEE Access 2018, 6, 2654–2667. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Salmasi, F.R. Robust Optimal Power Management System for a Hybrid AC/DC Micro-Grid. IEEE Trans. Sustain. Energy 2015, 6, 675–687. [Google Scholar] [CrossRef]
- Qiu, H.; Gu, W.; Xu, Y.; Wu, Z.; Zhou, S.; Wang, J. Interval-Partitioned Uncertainty Constrained Robust Dispatch for AC/DC Hybrid Microgrids with Uncontrollable Renewable Generators. IEEE Trans. Smart Grid 2019, 10, 4603–4614. [Google Scholar] [CrossRef]
- Jiang, Y.; Wan, C.; Chen, C.; Shahidehpour, M.; Song, Y. A Hybrid Stochastic-Interval Operation Strategy for Multi-Energy Microgrids. IEEE Trans. Smart Grid 2020, 11, 440–456. [Google Scholar] [CrossRef]
- Garcia-Torres, F.; Bordons, C.; Tobajas, J.; Real-Calvo, R.; Chiquero, I.S.; Grieu, S. Stochastic Optimization of Microgrids with Hybrid Energy Storage Systems for Grid Flexibility Services Considering Energy Forecast Uncertainties. IEEE Trans. Power Syst. 2021, 36, 5537–5547. [Google Scholar] [CrossRef]
- Sinha, S.; Chandel, S.S. Review of recent trends in optimization techniques for solar photovoltaic wind-based hybrid energy systems. Renew. Sustain. Energy Rev. 2015, 50, 755–773. [Google Scholar] [CrossRef]
- Gay, D.M. The AMPL modeling language: An aid to formulating and solving optimization problems. In Numerical Analysis and Optimization; Springer: Cham, Switzerland, 2015; pp. 95–116. [Google Scholar]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J.M. Computational Optimization Techniques Applied to Microgrids Planning: A Review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Azam, M.; Naeem, M.; Khwaja, A.S.; Anpalagan, A. Optimization classification, algorithms and tools for renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 39, 640–654. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, S.; Chen, Z.; Ding, S. Optimal load distribution model of microgrid in the smart grid environment. Renew. Sustain. Energy Rev. 2014, 35, 304–310. [Google Scholar] [CrossRef]
- Gopalan, S.; Sreeram, V.; Iu, H.H.C. A review of coordination strategies and protection schemes for microgrids. Renew. Sustain. Energy Rev. 2014, 32, 222–228. [Google Scholar] [CrossRef]
- Basak, P.; Chowdhury, S.P.; Halder nee Dey, S. A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid. Renew. Sustain. Energy Rev. 2012, 16, 5545–5556. [Google Scholar] [CrossRef]
- Mirsaeidi, S.; Mat Said, D.; Wazir-Mustafa, M.; Hafiz-Habibuddin, M.; Ghaffari, K. Progress and problems in micro-grid protection schemes. Renew. Sustain. Energy Rev. 2014, 37, 834–839. [Google Scholar] [CrossRef]
- Palizban, O.; Kauhaniemi, K.; Guerrero, J.M. Microgrids in active network management—Part II: System operation, power quality and protection. Renew. Sustain. Energy Rev. 2014, 36, 440–451. [Google Scholar] [CrossRef] [Green Version]
- Palizban, O.; Kauhaniemi, K. Hierarchical control structure in microgrids with distributed generation: Island and grid-connected mode. Renew. Sustain. Energy Rev. 2015, 44, 797–813. [Google Scholar] [CrossRef]
- Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sustain. Energy Rev. 2015, 44, 751–766. [Google Scholar] [CrossRef] [Green Version]
- Caldognetto, T.; Tenti, P. Microgrids operation based on master–slave cooperative control. IEEE J. Emerg. Sel. Top. Power Electron. 2014, 2, 1081–1088. [Google Scholar] [CrossRef]
- Puente, R.; Marzal, S.; González-Medina, R.; Figueres, E.; Garcera, G. Experimental study of a centralized control strategy of a DC microgrid working in grid connected mode. Energies 2017, 10, 1627. [Google Scholar] [CrossRef] [Green Version]
- Morales-Paredes, H.K.; Bonaldo, J.P.; Pomilio, J.A. Centralized control center implementation for synergistic operation of distributed multifunctional single-phase grid-tie inverters in a microgrid. IEEE Trans. Ind. Electron. 2018, 65, 8018–8029. [Google Scholar] [CrossRef] [Green Version]
- Karimi, Y.; Oraee, H.; Guerrero, J.M. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three- Phase-Islanded Microgrid Consisting of Hybrid Source PV/Battery Units. IEEE Trans. Power Electron. 2017, 32, 6135–6144. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Wen, C.; Mao, J.; Song, Y.D. Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Trans. Ind. Electron. 2014, 62, 4355–4364. [Google Scholar] [CrossRef]
- Palizban, O.; Kauhaniemi, K.; Guerrero, J.M. Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation. Renew. Sustain. Energy Rev. 2014, 36, 428–439. [Google Scholar] [CrossRef] [Green Version]
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodríguez, P. Control of power converters in AC microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Jung, J.W. Finite control set model predictive control to guarantee stability and robustness for surface–mounted PM synchronous motors. IEEE Trans. Ind. Electron. 2018, 65, 10–19. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Manandhar, U.; Beng, G.H.; Foo, G. A model predictive current controlled bidirectional three-level DC/DC converter for hybrid energy storage system in DC microgrids. IEEE Trans. Power Electron. 2019, 34, 4025–4030. [Google Scholar] [CrossRef]
- Guzman, R.; De Vicuna, L.G.; Camacho, A.; Miret, J.; Rey, J.M. Receding-horizon model-predictive control for a three-phase VSI with an LCL filter. IEEE Trans. Ind. Electron. 2019, 66, 6671–6680. [Google Scholar] [CrossRef] [Green Version]
- Manoharan, M.S.; Ahmed, A.; Park, J.H. An improved model predictive controller for 27-level asymmetric cascaded inverter applicable in high power PV grid-connected systems. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 4395–4405. [Google Scholar] [CrossRef]
- Wang, B.; Xian, L.; Manandhar, U.; Ye, J.; Zhang, X.; Gooi, H.B.; Ukil, A. Hybrid energy storage system using bidirectional single-inductor multiple-port converter with model predictive control in DC microgrids. Elec. Power Syst. Res. 2019, 173, 38–47. [Google Scholar] [CrossRef]
- Qian, H.; Xu, Q.; Xia, Y.; Zhao, J.; Du, P. Analysis and implementation of virtual impedance for fixed-frequency control strategy in microgrid. IET Gener. Transm. Distrib. 2020, 15, 2262–2276. [Google Scholar] [CrossRef]
- Schonbergerschonberger, J.; Duke, R.; Round, S.D. DC-bus signaling: A distributed control strategy for a hybrid renewable nanogrid. IEEE Trans. Ind. Electron. 2006, 53, 1453–1460. [Google Scholar] [CrossRef]
- Vandoorn, T.L.; Vasquez, J.C.; De Kooning, J.; Guerrero, J.M.; Vandevelde, L. Microgrids: Hierarchical control and an overview of the control and reserve management strategies. IEEE Ind. Electron. Mag. 2013, 7, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Jung, J.W. Disturbance-Rejection-based model predictive control: Flexible-mode design with a modulator for three-phase inverters. IEEE Trans. Ind. Electron. 2018, 65, 2893–2903. [Google Scholar] [CrossRef]
- Ma, T.; Cintuglu, M.H.; Mohammed, O. Control of Hybrid AC/DC Microgrid Involving Energy Storage, Renewable Energy and Pulsed Loads. In Proceedings of the 2015 IEEE Industry Applications Society Annual Meeting, Addison, TX, USA, 18–22 October 2015; pp. 1–8. [Google Scholar]
- Zhao, J.; Dörfler, F. Distributed control and optimization in DC microgrids. Automatica 2015, 61, 18–26. [Google Scholar] [CrossRef]
- Zhou, Q.; Shahidehpour, M.; Paaso, A.; Bahramirad, S.; Alabdulwahab, A.; Abusorrah, A. Distributed control and communica-tion strategies in networked microgrids. IEEE Commun. Surv. Tutor. 2020, 22, 2586–2633. [Google Scholar] [CrossRef]
- Dorfler, F.; Simpson-Porco, J.W.; Bullo, F. Breaking the hierarchy: Distributed control and economic optimality in microgrids. IEEE Trans. Control Netw. Syst. 2015, 3, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Fernandes, B.G.; Guerrero, J.M. Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids. IEEE Trans. Power Electron. 2012, 28, 1900–1913. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Tian, Z.; Shahidehpour, M.; Liu, X.; Alabdulwahab, A.; Abusorrah, A. Optimal consensus-based distributed control strategy for coordinated operation of networked microgrids. IEEE Trans. Power Syst. 2019, 35, 2452–2462. [Google Scholar] [CrossRef]
- Prasad, R.D.; Bansal, R.C.; Raturi, A. Multi-faceted energy planning: A review. Renew. Sustain. Energy Rev. 2014, 38, 686–699. [Google Scholar] [CrossRef]
- Vandoorn, T.L.; De-Kooning, J.D.; Meersman, B.; Vandevelde, L. Review of primary control strategies for islanded microgrids with power-electronic interfaces. Renew. Sustain. Energy Rev. 2013, 19, 613–628. [Google Scholar] [CrossRef]
- Planas, E.; Gil-De-Muro, A.; Andreu, J.; Kortabarria, I.; Martínez, A. General aspects, hierarchical controls and droop methods in microgrids: A review. Renew. Sustain. Energy Rev. 2013, 17, 147–159. [Google Scholar] [CrossRef]
- Lopes, J.; Moreira, C.; Madureira, A. Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 2006, 21, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Bharatiraja, C.; Jeevananthan, S.; Latha, R.; Mohan, V. Vector selection approach-based hexagonal hysteresis space vector current controller for a three-phase diode clamped MLI with capacitor voltage balancing. IET Power Electron. 2016, 9, 1350–1361. [Google Scholar] [CrossRef]
- Eghtedarpour, N.; Farjah, E. Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid. IET Renew. Power Gener. 2014, 8, 45–57. [Google Scholar] [CrossRef]
- Huang, W.; Sun, C.H.; Wu, Z.P.; Zhang, J.H. A review on microgrid technology containing distributed generation system. Power Syst. Technol. 2009, 33, 14–18. [Google Scholar]
- Xu, Y.; Zhang, W.; Hug, G.; Kar, S.; Li, Z. Cooperative control of distributed energy storage systems in a microgrid. IEEE Trans. Smart Grid 2015, 6, 238–248. [Google Scholar] [CrossRef]
- Kamatchi-Kannan, V.; Rengarajan, N. Control of Photovoltaic system with a DC-DC boost converter fed DSTATCOM using Icosφ algorithm. J. Appl. Sci. Engin. 2013, 16, 89–98. [Google Scholar]
- Mehrasa, M.; Pouresmaeil, E.; Mehrjerdi, H.; Jørgensen, B.; Catalão, J. Control technique for enhancing the stable operation of distributed generation units within a microgrid. Energy Convers. Manag. 2015, 97, 362–373. [Google Scholar] [CrossRef]
- Arul, P.G.; Ramachandaramurthy, V.K.; Rajkumar, R.K. Control strategies for a hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2015, 42, 597–608. [Google Scholar] [CrossRef]
- Huang, W.; Lu, M.; Zhang, L. Survey on microgrid control strategies. Energy Procedia 2011, 12, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, A.; Qureshi, I.M.; Abdullah, H. An Overview of control strategies with emphasis on demand response for stability and reliability enhancement of Microgrids. In Proceedings of the International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Islamabad, Pakistan, 10–12 September 2018; pp. 1–6. [Google Scholar]
- Guerrero, J.M.; Vasquez, J.C.; Matas, J.; Castilla, M.; de Vicuna, L. Control strategy for flexible microgrid based on parallel line-interactive UPS systems. IEEE Trans. Ind. Electron. 2008, 56, 726–736. [Google Scholar] [CrossRef]
- Lu, X.; Guerrero, J.M.; Sun, K.; Vasquez, J.C. An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy. IEEE Trans. Power Electron. 2013, 29, 1800–1812. [Google Scholar] [CrossRef] [Green Version]
- Erickson, M.J.; Lasseter, R.H. Integration of battery energy storage element in a CERTS micro-grid. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010; pp. 2570–2577. [Google Scholar]
- Du, W.; Lasseter, R.H. Overload mitigation control of droop-controlled grid–forming sources in a microgrid. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Lasseter, R.H.; Piagi, P. Control and Design of Microgrid Components; Power Systems Engineering Research Center (PSERC), University of Wisconsin-Madison: Madison, WI, USA, 2006. [Google Scholar]
- Han, H.; Liu, Y.; Sun, Y.; Su, M.; Guerrero, J.M. An improved droop control strategy for reactive power sharing in islanded microgrid. IEEE Trans. Power Electron. 2015, 30, 3133–3141. [Google Scholar] [CrossRef] [Green Version]
- Bhaskara, S.N.; Chowdhury, B.H. Microgrids—A review of modeling, control, protection, simulation and future potential. In Proceedings of the IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–7. [Google Scholar]
- Jian, Z.H.; He, Z.Y.; Jia, J.; Xie, Y. A review of control strategies for DC micro-grid. In Proceedings of the 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), Beijing, China, 9–11 June 2013; pp. 666–671. [Google Scholar]
- Al-Ismail, F.S. DC microgrid planning, operation, and control: A comprehensive review. IEEE Access 2021, 9, 36154–36172. [Google Scholar] [CrossRef]
- García–Torres, F.; Zafra–Cabeza, A.; Silva, C.; Grieu, S.; Darure, T.; Estanqueiro, A. Model predictive control for Microgrid Functionalities: Review and future challenges. Energies 2021, 14, 1296. [Google Scholar] [CrossRef]
- Hu, J.; Shan, Y.; Guerrero, J.M.; Ioinovici, A.; Chan, K.W.; Rodríguez, J. Model predictive control of microgrids—An overview. Renew. Sustain. Energy Rev. 2021, 136, 110422. [Google Scholar] [CrossRef]
- Gu, Y.; Li, W.; He, X. Frequency-coordinating virtual impedance for autonomous power management of DC microgrid. IEEE Trans. Power Electron. 2015, 30, 2328–2337. [Google Scholar] [CrossRef]
- Liu, X.; Wang, D.; Peng, Z. Improved finite-control-set model predictive control for active front-end rectifiers with simplified computational approach and on-line parameter identification. ISA Trans. 2017, 69, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Ge, B.; Abu-Rub, H. Interactive grid interfacing system by matrix-converter-based solid-state transformer with model predictive control. IEEE Trans. Ind. Inform. 2020, 16, 2533–2541. [Google Scholar] [CrossRef]
- Ma, T.; Huang, B.; Zhang, Y. Analysis of virtual impedance control characteristics of microgrid power supply. J. Phys. 2021, 1, 012056. [Google Scholar] [CrossRef]
- Yu, Q.; Jiang, Z.; Zhao, M. Research of virtual impedance control strategy of hybrid renewable energy microgrid. In Proceedings of the ICAL 2020: Proceedings of the 2020 the 7th International Conference on Automation and Logistics (ICAL), Beijing, China, 22–24 July 2020. [Google Scholar]
- Ke, Z.; Dai, Y.; Peng, Z.; Zeng, G.; Wang, J.; Li, M.; Ning, Y. VSG control strategy incorporating voltage inertia and virtual impedance for microgrids. Energies 2020, 13, 4263. [Google Scholar] [CrossRef]
- Lu, X.; Sun, K.; Guerrero, J.M.; Vasquez, J.C.; Huang, L.; Wang, J. Stability enhancement based on virtual impedance for DC microgrids with constant power loads. IEEE Trans. Smart Grid 2015, 6, 2770–2783. [Google Scholar] [CrossRef] [Green Version]
- Buraimoh, E.; Aluko, A.O.; Oni, O.E.; Davidson, I.E. Decentralized virtual impedance conventional droop control for power sharing for inverter-based distributed energy resources of a microgrid. Energies 2022, 15, 4439. [Google Scholar] [CrossRef]
- Singh, D.; Seethalekshmi, K. A Review on Various Virtual Inertia Techniques for Distributed Generation. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 14–15 February 2020. [Google Scholar]
- Moradi, M.H.; Amiri, F. Virtual inertia control in islanded microgrid by using robust model predictive control (RMPC) with considering the time delay. Soft Comput. 2021, 25, 6653–6663. [Google Scholar] [CrossRef]
- Shi, K.; Ye, H.; Song, W.; Zhou, G. Virtual inertia control strategy in microgrid based on virtual synchronous generator technology. IEEE Access 2018, 6, 27949–27957. [Google Scholar] [CrossRef]
- Diaz, N.L.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Intelligent distributed generation and storage units for DC MGs—A new concept on cooperative control without communications beyond droop control. IEEE Trans. Smart Grid 2014, 5, 2476–2485. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Wei, W.; Yu, M.; Wang, X.; Peng, Y. Power Management for a Hybrid AC/DC Microgrid with Multiple Subgrids. IEEE Trans. Power Electron. 2018, 33, 3520–3533. [Google Scholar] [CrossRef]
- Xiao, H.; Luo, A.; Shuai, Z.; Jin, G.; Huang, Y. An Improved Control Method for Multiple Bidirectional Power Converters in Hybrid AC/DC Microgrid. IEEE Trans. Smart Grid 2016, 7, 340–347. [Google Scholar] [CrossRef]
- Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Secondary control for voltage quality enhancement in microgrids. IEEE Trans. Smart Grid 2012, 3, 1893–1902. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Du, Z.; Lin, X.; Chen, J. Control strategy design and parameter selection for suppressing circulating current among SSTs in parallel. IEEE Trans. Smart Grid 2015, 6, 1602–1609. [Google Scholar] [CrossRef]
- Fernández-Guillamón, A.; Gómez-Lázaro, E.; Muljadi, E.; Molina-García, A. Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time. Renew. Sustain. Energy Rev. 2019, 115, 109369. [Google Scholar] [CrossRef] [Green Version]
- Ovalle, A.; Member, S.; Ramos, G.; Bacha, S.; Hably, A.; Rumeau, A. Decentralized control of voltage source converters in microgrids based on the application of instantaneous power theory. IEEE Trans. Ind. Electron. 2015, 62, 1152–1162. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Liu, C.-C.; Liu, S. Black start capability assessment in power system restoration. In Proceedings of the 2011 IEEE Power Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–7. [Google Scholar]
- Davari, M.; Mohamed, Y.A.-R.I. Robust multi-objective control of VSC-based DC- voltage power port in hybrid AC/DC multi-terminal micro-grids. IEEE Trans. Smart Grid 2013, 4, 1597–1612. [Google Scholar] [CrossRef]
- Madureira, A.; Moreira, C.; Lopes, J.P. Secondary Load-Frequency Control for MicroGrids in Islanded Operation. Renew. Energy Power Qual. J. 2005, 1, 482–486. [Google Scholar] [CrossRef]
- Dimeas, A.; Tsikalakis, A.; Kariniotakis, G.; Korres, G. Microgrids Control Issues; Hatziargyriou, N.D., Ed.; Wiley-IEEE Press: Chichester, UK, 2013; p. 341. [Google Scholar]
- Yuen, C.; Oudalov, A.; Timbus, A. The provision of frequency control reserves from multiple microgrids. IEEE Trans. Ind. Electron. 2011, 58, 173–183. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, R.; Hatziargyriou, N.; Dimeas, A. Microgrids management. IEEE Power Energy Mag. 2008, 6, 54–65. [Google Scholar] [CrossRef]
- Shafiee, Q.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Hierarchical control for multiple DC-microgrids clusters. In Proceedings of the IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), Castelldefels-Barcelona, Spain, 11–14 February 2014; pp. 1–6. [Google Scholar]
- Milczarek, A.; Malinowski, M.; Guerrero, J.M. Reactive power management in islanded microgrid—Proportional power sharing in hierarchical droop control. IEEE Trans. Smart Grid 2015, 6, 1631–1638. [Google Scholar] [CrossRef] [Green Version]
- Vasquez, J.; Guerrero, J.; Miret, J.; Castilla, M.; De Vicuna, L. Hierarchical control of intelligent microgrids. IEEE Ind. Electron. Mag. 2010, 4, 23–29. [Google Scholar] [CrossRef]
- Savaghebi, M.; Jalilian, A.; Vasquez, J.C.; Guerrero, J.M. Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid. IEEE Trans. Ind. Electron. 2013, 60, 1390–1402. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, Q.; Guerrero, J.M.; Vasquez, J.C. Distributed secondary control for islanded microgrids—A novel approach. IEEE Trans. Power Electron. 2014, 29, 1018–1031. [Google Scholar] [CrossRef] [Green Version]
- Yazdanian, M.; Mehrizi-Sani, A. Distributed control techniques in microgrids. IEEE Trans. Smart Grid 2014, 5, 2901–2909. [Google Scholar] [CrossRef]
- Liang, H.; Choi, B.J.; Zhuang, W.; Shen, X.; Awad, A.S.A.; Abdr, A. Multiagent coordination in microgrids via wireless networks. IEEE Wirel. Commun. 2012, 19, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, Q.; Stefanovic, C.; Dragicevic, T.; Popovski, P.; Vasquez, J.C.; Guerrero, J.M. Robust networked control scheme for distributed secondary control of islanded microgrids. IEEE Trans. Ind. Electron. 2014, 61, 5363–5374. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Liu, P.; Xiao, W.; Moursi, M.S.E. A Novel Droop-Based Average Voltage Sharing Control Strategy for DC Microgrids. IEEE Trans. Smart Grid 2015, 6, 1096–1106. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; Loh, P.C. A hybrid AC/DC microgrid and its coordination control. IEEE Trans. Smart Grid 2011, 2, 278–286. [Google Scholar]
- Lu, X.; Guerrero, J.M.; Sun, K.; Vasquez, J.C.; Teodorescu, R.; Huang, L. Hierarchical control of parallel AC–DC converter interfaces for hybrid microgrids. IEEE Trans. Smart Grid 2014, 5, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Dragicevic, T.; Guerrero, J.M.; Vasquez, J.C.; Skrlec, D. Supervisory control of an adaptive droop regulated DC Microgrid with battery management capability. IEEE Trans. Power Electron. 2014, 29, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 2006, 53, 398–409. [Google Scholar] [CrossRef] [Green Version]
- Zamora, R.; Srivastava, A.K. Controls for microgrids with storage: Review, challenges, and research needs. Renew. Sustain. Energy Rev. 2010, 14, 2009–2018. [Google Scholar] [CrossRef]
- Dragicevic, T.; Guerrero, J.M.; Vasquez, J.C. A distributed control strategy for coordination of an autonomous LVDC microgrid based on powerline signaling. IEEE Trans. Ind. Electron. 2014, 61, 3313–3326. [Google Scholar] [CrossRef] [Green Version]
- Razmi, D.; Lu, T. A literature review of the control challenges of distributed energy resources based on microgrids (MGs): Past, present and future. Energies 2022, 15, 4676. [Google Scholar] [CrossRef]
- Radwan, A.A.A.; Mohamed, Y.A.I. Networked Control and Power Management of AC/DC Hybrid Microgrids. IEEE Syst. J. 2017, 11, 1662–1673. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Loh, P.C.; Lee, T.; Chandorkar, M. Advanced control architectures for intelligent microgrids—Part II: Power quality, energy storage, and AC/DC microgrids. IEEE Trans. Ind. Electron. 2013, 60, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Al-Saedi, W.; Lachowicz, S.W.; Habibi, D.; Bass, O. Power quality enhancement in autonomous microgrid operation using Particle Swarm Optimization. Int. J. Electr. Power Energy Syst. 2012, 42, 139–149. [Google Scholar] [CrossRef]
- Alkahtani, A.; Al-Falahi, S.; Athamneh, A.; Agelidis, V.G. Power quality in Microgrids including supraharmonics: Issues, standards, and mitigations. IEEE Access 2020, 8, 127104–127122. [Google Scholar] [CrossRef]
- Van de Broeck, G.; Stuyts, J.; Driesen, J. A critical review of power quality standards and definitions applied to DC microgrids. Appl. Energy 2018, 229, 281–288. [Google Scholar] [CrossRef]
- Kabalan, M.; Singh, P.; Niebur, P. Large Signal Lyapunov-Based Stability Studies in Microgrids: A Review. IEEE Trans. Smart Grid 2017, 8, 2287–2295. [Google Scholar] [CrossRef]
- Siad, S.B.; Iovine, A.; Damm, G.; Galai-Dol, L.; Netto, M. Nonlinear Hierarchical Easy-to-Implement Control for DC MicroGrids. Energies 2021, 15, 969. [Google Scholar] [CrossRef]
- Holari, Y.T.; Taher, S.A.; Mehrasa, M. Distributed energy storage system-based nonlinear control strategy for hybrid microgrid power management included wind/PV units in grid-connected operation. Int. Trans. Electr. Energy Syst. 2020, 30, 12237. [Google Scholar]
- Iovine, A.; Jimenez, M.; Damm, G.; Alou, P. Nonlinear Control for DC Microgrids enabling Efficient Renewable Power Integration and Ancillary Services for AC Grids. IEEE Trans. Power Syst. 2019, 34, 5136–5146. [Google Scholar] [CrossRef]
- Kumar, G.R.P.; Sattianadan, D.; Vijayakumar, K. A Survey on Power Management Strategies of Hybrid Energy Systems in Microgrid. Int. J. Electr. Comput. Eng. 2020, 10, 1667–1673. [Google Scholar]
- Katiraei, F.; Iravani, M.R. Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans Power Syst. 2006, 21, 1821–1831. [Google Scholar] [CrossRef]
- Ahn, C.; Peng, H. Decentralized voltage control to minimize distribution power loss of microgrids. IEEE Trans. Smart Grid 2013, 4, 1297–1304. [Google Scholar] [CrossRef]
- Baboli, P.T.; Shahparasti, M.; Moghaddam, M.P.; Mohamadian, M.R.H.M. Energy management and operation modelling of hybrid AC–DC microgrid. IET Gener. Transm. Distrib. 2014, 8, 1700–1711. [Google Scholar] [CrossRef]
- Shi, W.; Xie, X.; Chu, C.; Gadh, R. Distributed optimal energy management in microgrids. IEEE Trans. Smart Grid 2015, 6, 1137–1146. [Google Scholar] [CrossRef]
- Jumani, T.; Mustafa, M.; Alghamdi, A.S.; Rasid, M.; Awan, A. Swarm Intelligence-based optimization techniques for dynamic response and power quality enhancement of AC microgrids: A comprehensive review. IEEE Access 2020, 8, 75986–76001. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, X.; Abdelsalam, H.A.; Makram, E. Power System Harmonics Study for Unbalanced Microgrid System with PV Sources and Nonlinear Loads. J. Power Energy Eng. 2015, 3, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zheng, S.; Gao, W. Microgrid Harmonic Mitigation Strategy Based on the Optimal Allocation of Active Power and Harmonic Mitigation Capacities of Multi-Functional Grid-Connected Inverters. Energies 2022, 15, 6109. [Google Scholar] [CrossRef]
- Sun, X.; Lei, W.; Dai, Y.; Yin, Y.; Liu, Q. Optimization Configuration of Grid-Connected Inverters to Suppress Harmonic Amplification in a Microgrid. Energies 2022, 15, 4989. [Google Scholar] [CrossRef]
- Ferguson, J.; Cucuzzella, M.; Scherpen, M.A. Increasing the region of attraction in DC microgrids. Automatica 2023, 151, 110883. [Google Scholar] [CrossRef]
- Mohammed, M.S.; Al-Awasa, K.M.; Al-Majali, H.-D. Energy Management and Control in Micro Grid with Hybrid Energy Storage Systems by Using PI and Flatness Theory. Int. J. Eng. Trends Technol. 2021, 69, 227–235. [Google Scholar] [CrossRef]
- Kreishan, M.Z.; Zobaa, A.F. Allocation of dump load in islanded microgrid using the mixed-integer distributed Ant Colony Optimization. IEEE Syst. J. 2022, 16, 2568–2579. [Google Scholar] [CrossRef]
- Abbas, G.; Gu, J.; Farooq, U.; Asad, M.U.; El-Hawary, M.E. Solution of an Economic Dispatch Problem through Particle Swarm Optimization: A Detailed Survey–Part I. IEEE Access 2017, 5, 15105–15141. [Google Scholar] [CrossRef]
- Sechilariu, M.; Wang, B.C.; Locment, F. Supervision control for optimal energy cost management in DC microgrid: Design and simulation. Int. J. Electr. Power Energy Syst. 2014, 58, 140–149. [Google Scholar] [CrossRef]
- Abbas, G.; Gu, J.; Farooq, U.; Raza, A.; Asad, M.U.; El-Hawary, M.E. Solution of an Economic Dispatch Problem through Particle Swarm Optimization: A Detailed Survey–Part II. IEEE Access 2017, 5, 24426–24445. [Google Scholar] [CrossRef]
- Bracale, A.; Caramia, P.; Carpinelli, G.; Mancini, E.; Mottola, F. Optimal control strategy of a DC micro grid. Int. J. Electr. Power Energy Syst. 2015, 67, 25–38. [Google Scholar] [CrossRef]
- Pourbehzadi, M.; Niknam, T.; Aghaei, J.; Mokryani, G.; Shafie-khah, M.; Catalão, J.P.S. Optimal Operation of Hybrid AC/DC Microgrids under Uncertainty of Renewable Energy Resources: A Comprehensive Review. Int. J. Electr. Power Energy Syst. 2019, 109, 139–159. [Google Scholar] [CrossRef]
- Klehbadroudinezhad, M.; Merabet, A.; Abo-Khalil, A.; Salameh, T.; Ghenal, C. Intelligent and Optimized Microgrids for future supply power from Renewable Energy Resources: A Review. Energies 2022, 15, 3359. [Google Scholar] [CrossRef]
- Gao, K.; Wang, T.; Han, C.; Xie, J.; Ma, Y.; Peng, R. A review of optimization of microgrid operation. Energies 2021, 14, 2842. [Google Scholar] [CrossRef]
- Phommixay, S.; Lamine, M.; Lupien, D. Review on the cost optimization of microgrids via particle swarm optimization. Int. J. Energy Environ. Eng. 2020, 11, 73. [Google Scholar] [CrossRef] [Green Version]
Rated Capacity of the RES | Project Details | Ref. |
---|---|---|
150 MW (WT), and 35 MV (PV) | Pacific (WT) and Catalina Solar, EE.UU. | [40] |
10 kW (PV), 5 kW (DG), and 50 kWh (BESS) | Kythnos Island, Greece | [41] |
30 MW (GeoT), and 25 MW (PV) | Enel Green Hybrid MicroGrid, EE.UU | [42] |
35 MW (BM), and 22.5 MW (CSP) | TermoSolar Borges, Spain. | [43,44] |
100 MW (WT), 40 MW (PV), 35 MW (BESS) | Zhangbei National, China | [45] |
10 MW (WT + PHESS), and 11 MW (PV) | El Hierro Island, Spain | [46] |
90 kW (WT), 10 kW (WP), and 5 kW (PV) | Dangan Island of Guangdong, China | [47] |
Project Location | Year of Installation | Generator Power (kW) | ESS | Population Served | Ref. | ||
---|---|---|---|---|---|---|---|
PV | WT | Diesel | |||||
Ma. Magdalena | 1991 | 4.3 | 5 | 18 | BESS | 168 | [48] |
Nv. Victoria | 1991 | 8.6 | 28 | 355 | [49] | ||
Oyamello | 1991 | 0.76 | 5 | 4 | BESS | 122 | [50] |
X-Calak | 1992 | 11.2 | 60 | 125 | Revers. hydraulic | 232 | [50] |
El Junco | 1992 | 1.6 | 10 | Battery | 250 | [51] | |
Gruñidora | 1992 | 1.2 | 10 | 230 | [51] | ||
Agua Bendita | 1993 | 12.4 | 20 | 48 | BESS | 250 | [52] |
Isla Margarita | 1997 | 2.25 | 15 | 60 | BESS | 200 | [52] |
San Juanico | 1999 | 17 | 70 | 85 | Revers. hydraulic | 400 | [48] |
Issues and Challenges | Characteristics |
---|---|
Communication |
|
Regulation policies |
|
Bidirectional power flow |
|
Operational |
|
Protection |
|
Power quality |
|
AC–DC subgrid coordination |
|
Power Quality Issue | Solar | Wind | Hydro | BioDiesel | Biomass | Diesel |
---|---|---|---|---|---|---|
Voltage (sags/swells) | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ |
Voltage (over/under) | ✕ | ✓ | ✕ | ✓ | ✕ | ✓ |
Voltage unbalances | ✓ | ✕ | ✕ | ✕ | ✓ | ✕ |
Voltage harmonics | ✓ | ✓ | ✓ | ✓ | ✕ | ✕ |
Current harmonics | ✓ | ✓ | ✓ | ✕ | ✓ | ✕ |
Interuptions | ✓ | ✓ | ✕ | ✓ | ✓ | ✕ |
Load | Control Strategy | [%] | Ref. | |
---|---|---|---|---|
Base Case | Control | |||
Mix | Virtual impedance | 0.6–8.7 | 0.1–4.7 | [93,94,95,96,97] |
Non–linear | Harmonic controller | 11.38 | 4.85 | [98,99,100] |
Non–linear | Compensation | 10.3 | 3.48 | [101] |
Non–linear | Fuzzy–PI | 4.66 | 1.82 | [102] |
Non–linear | Artificial Neural Network | 12 | 0 | [83] |
Method | Description | References |
---|---|---|
Droop control | Control HMG frequency deviations. | [107,108,109,110,111] |
Model Predictive Control (MPC) | Effectively predicts the future real power output of the HMG if the system dynamic model and current measurements are available. | [112,113,114,115,116] |
Fuzzy–Logic Control (FLC) | Maintains the voltage on DC bus constant. | [117,118,119,120] |
controller | Provides good performance and keeps the system stable by synthesizing the controllers. | [121,122,123,124,125] |
Hierarchical control | Maintains the system operating at a frequency close to nominal. | [125,126,127,128,129,130,131] |
Sliding Mode Controller (SMC) | Regulates the voltage and frequency of the master DGU. | [132,133,134] |
Demand-side control | Controls the load-side demand. | [135,136,137,138] |
Standard | Characteristics | Application |
---|---|---|
IEC 61850 [143] | Exchange of real-time status information and events in substations | DER/HMG |
IEC 61968 [144] | Data exchange between device and networks in the power distribution domain | EMS |
DNP3 [145] | Highly secure communication and authentication interface ideal for data transfer in utilities | Substation Automation |
IEC 60870–5 [146] | It applies remote control concepts by adding headers with appropriate information for the management of its delivery through TCP–IP channels | Control System in HMGs |
IEEE 1646 [147] | Allows building open systems communication interfaces for smart electronic devices | Substation Automation |
Communication Technology | Advantage | Disadvantage | Application |
---|---|---|---|
Wired |
|
| Power Line Communication (PLC) |
Dedicated Wired Networks |
|
|
|
Wireless |
|
|
|
Techniques | Characteristics | Ref. |
---|---|---|
Linear and nonlinear |
| [153,154,155,156,157,158,222] |
GA and improved GA as SPGA, NSGA-II, etc. |
| [171,173,174,175,176,177] |
PSO and improved PSO as MOPSO |
| [159,160,161,162,163,164,165,166,167] |
Fuzzy Logic |
| [208,212,223] |
Multi–Agent System (MAS) |
| [178,179,180,181] |
Optimal Power Flow (OPF) |
| [198,199,200,201] |
Robust and Stochastics |
| [202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221] |
Other techniques |
| [168,194,195,196,197,198,199,200,201] |
Characteristics | Centralized Control | Decentralized Control |
---|---|---|
Number of owners | Single owner | Multiple owner |
Tasks | Uncertainly | Reduction of energy costs |
Operating personal | Not Available | Available |
Complexity | Not complicated algorithms | Complicated algorithms |
Installation of new equipment | Experienced technician | Plug-and-play |
Communication | Low | High |
Market participation | Not all units collaborate | All units collaborate |
Following-Grid Controllers | Forming-Grid Controllers | |
---|---|---|
Non–Interactive Control Methods | Power delivery (with or without MPPT) | Voltage and frequency control |
Interactive Control Methods | Dispatch of active and reactive power | Power-sharing |
No. | Method | Ref. |
---|---|---|
1 | Conventional/modified droop control | [239,247,270,271,272,273,274,275,276,277] |
2 | Virtual impedance control | [245,282,283,284,285,286,287] |
3 | MPC | [244,278] |
4 | Virtual inertia control | [288,289,290,291,292,293] |
Control | Functions |
---|---|
Tertiary (global control) | Participation in transitive markets |
Management of both modes of operation | |
Coordination of several MGs | |
Failure analysis | |
Optimization of variable: cost, efficiency, etc. | |
Secondary (HMG control) | Voltage/frequency, active and reactive power control |
Improves the voltage and frequency quality | |
Requires the use of communication network | |
Synchronization with the main electrical grid | |
Primary (local control) | Protection devices |
Power-sharing | |
Transient stability in both modes of operation | |
Voltage/frequency stability in islanded mode |
Control Strategy | Advantages | Disadvantages | Location | Example |
---|---|---|---|---|
Centralized |
|
| Small size HMGs | Master–slave control |
Decentralized |
|
| Local information only | Droop control |
Distributed |
|
| BESS and DC/DC PC | Coordinated control |
Hierarchical |
|
| Complex modern system | Agent based control |
HMG Aspects | Topic Covered | Reference | ||||||||||||
[34] | [55] | [56] | [168] | [169] | [173] | [238] | [330] | [331] | [332] | [333] | [334] | This Paper | ||
Integration challenges regarding HMGs | Operationals | ✓ | ✕ | ✓ | ✓ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✓ | ✓ | ✓ |
Communication | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | |
Optimization techniques regarding HMGs | Linear and non-linear | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
GA and NSGA–II | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |
PSO and MOPSO | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | |
Fuzzy Logic | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✕ | ✓ | ✕ | ✕ | ✓ | |
MAS | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✕ | ✕ | ✕ | ✓ | |
OPF | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✕ | ✓ | |
Robust and stochastics | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✕ | ✕ | ✓ | |
Linear and non-linear | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✓ | ✕ | ✓ | |
Power quality challenges regarding HMGs | Islanded operation | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | ✓ |
Grid operation | ✕ | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | |
Frequency variations | ✕ | ✓ | ✕ | ✕ | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | |
Harmonic distortion | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✓ | |
ESS | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | |
HMG Aspects | Topic Covered | [335] | [336] | [339] | [340] | [224] | [342] | [343] | [344] | [345] | [346] | [347] | This Paper | |
Integration challenges regarding HMGs | Operationals | ✓ | ✕ | ✓ | ✕ | ✕ | ✕ | ✓ | ✓ | ✓ | ✕ | ✓ | ✓ | |
Communications | ✕ | ✓ | ✓ | ✕ | ✓ | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ||
Optimization techniques regarding HMGs | Linear and non-linear | ✓ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | |
GA and NSGA–II | ✕ | ✕ | ✓ | ✕ | ✓ | ✓ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ | ||
PSO and MOPSO | ✓ | ✓ | ✓ | ✕ | ✓ | ✕ | ✓ | ✕ | ✕ | ✕ | ✕ | ✓ | ||
Fuzzy Logic | ✓ | ✕ | ✓ | ✓ | ✕ | ✕ | ✓ | ✓ | ✕ | ✓ | ✓ | ✓ | ||
MAS | ✕ | ✓ | ✕ | ✓ | ✕ | ✓ | ✕ | ✓ | ✓ | ✕ | ✓ | ✓ | ||
OPF | ✓ | ✕ | ✕ | ✕ | ✓ | ✓ | ✕ | ✓ | ✕ | ✕ | ✓ | ✓ | ||
Robust and stochastics | ✕ | ✕ | ✓ | ✓ | ✓ | ✕ | ✓ | ✕ | ✓ | ✓ | ✕ | ✓ | ||
Power quality challenges regarding HMGs | Islanded operation | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✕ | ✓ | ✓ | |
Grid operation | ✕ | ✓ | ✓ | ✕ | ✕ | ✕ | ✓ | ✓ | ✕ | ✓ | ✕ | ✓ | ||
Frequency variations | ✓ | ✓ | ✕ | ✕ | ✓ | ✓ | ✕ | ✓ | ✕ | ✕ | ✕ | ✓ | ||
Harmonic distortion | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ||
ESS | ✓ | ✕ | ✕ | ✕ | ✕ | ✓ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Mayoral, E.; Madrigal-Martínez, M.; Mina-Antonio, J.D.; Iracheta-Cortez, R.; Enríquez-Santiago, J.A.; Rodríguez-Rivera, O.; Martínez-Reyes, G.; Mendoza-Santos, E. A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources. Sustainability 2023, 15, 9847. https://doi.org/10.3390/su15129847
Hernández-Mayoral E, Madrigal-Martínez M, Mina-Antonio JD, Iracheta-Cortez R, Enríquez-Santiago JA, Rodríguez-Rivera O, Martínez-Reyes G, Mendoza-Santos E. A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources. Sustainability. 2023; 15(12):9847. https://doi.org/10.3390/su15129847
Chicago/Turabian StyleHernández-Mayoral, Emmanuel, Manuel Madrigal-Martínez, Jesús D. Mina-Antonio, Reynaldo Iracheta-Cortez, Jesús A. Enríquez-Santiago, Omar Rodríguez-Rivera, Gregorio Martínez-Reyes, and Edwin Mendoza-Santos. 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources" Sustainability 15, no. 12: 9847. https://doi.org/10.3390/su15129847
APA StyleHernández-Mayoral, E., Madrigal-Martínez, M., Mina-Antonio, J. D., Iracheta-Cortez, R., Enríquez-Santiago, J. A., Rodríguez-Rivera, O., Martínez-Reyes, G., & Mendoza-Santos, E. (2023). A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources. Sustainability, 15(12), 9847. https://doi.org/10.3390/su15129847