O-Modified Activated Carbon Fiber Electrode Efficiently Adsorption of Cu (II) in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Adsorption Test of O-ACF
2.1.1. Preparation of O-ACF
2.1.2. Characterization of O-ACF
2.1.3. The Electric Adsorption Device
2.1.4. Experimental Operation and Methods
2.1.5. Model Fitting of Cu (II) Adsorption by O-ACF
2.1.6. Backwashing Regeneration of Electro-Adsorption Reactor
2.2. Main Experimental Instruments
2.3. The Main Reagents of the Experiment
3. Results and Discussion
3.1. The Influencing Factors of Cu (II) Adsorption on O-ACF in Water
3.2. Characterization and Adsorption Properties of ACF and O-ACF
3.3. Model Fitting
3.3.1. Kinetics Model Fitting
3.3.2. Intraparticle Diffusion Model Fitting
3.4. Backwashing Regeneration of Electro−Adsorption Reactor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Al-Shannag, M.; Al-Qodah, Z.; Bani-Melhem, K.; Qtaishat, M.R.; Alkasrawi, M. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chem. Eng. J. 2015, 260, 749–756. [Google Scholar] [CrossRef]
- Yu, S.; Wang, X.; Pang, H.; Zhang, R.; Song, W.; Fu, D.; Wang, X. Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review. Chem. Eng. J. 2018, 333, 343–360. [Google Scholar] [CrossRef]
- Cheng, K.; Cai, Z.; Fu, J.; Sun, X.; Sun, W.; Chen, L.; Liu, W. Synergistic adsorption of Cu (II) and photocatalytic degradation of phenanthrene by a jaboticaba-like TiO2/titanate nanotube composite: An experimental and theoretical study. Chem. Eng. J. 2019, 358, 1155–1165. [Google Scholar] [CrossRef]
- Yang, L.; Shang, J.; Dou, B.; Lan, J.; Zhang, C.; Zou, R.; Lin, S. CO2-responsive functional cotton fibers decorated with Ag nanoparticles for “smart” selective and enhanced dye adsorption. J. Hazard. Mater. 2022, 429, 128327. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Wang, Y. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 134043. [Google Scholar] [CrossRef]
- Ding, W.; Liang, H.; Zhang, H.; Sun, H.; Geng, Z.; Xu, C. A cellulose/bentonite grafted polyacrylic acid hydrogel for highly-efficient removal of Cd (II). J. Water Process. Eng. 2023, 51, 103414. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Zhao, G.; Chen, C.; Chai, Z.; Alsaedi, A.; Wang, X. Metal–organic framework-based materials: Superior adsorbents for the capture of toxic and radioactive metal ions. Chem. Soc. Rev. 2018, 47, 2322–2356. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Wang, X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef]
- Li, M.; Liu, Q.; Guo, L.; Zhang, Y.; Lou, Z.; Wang, Y.; Qian, G. Cu (II) removal from aqueous solution by Spartina alterniflora derived biochar. Bioresour. Technol. 2013, 141, 83–88. [Google Scholar] [CrossRef]
- Yi, F.; Sun, F.; Han, Z.; Han, F.; He, J.; Ou, M.; Gu, J.; Xu, X. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Ecotoxicol. Environ. Saf. 2018, 158, 309–318. [Google Scholar] [CrossRef]
- Fang, P.; Xia, W.; Zhou, Y.; Ai, Z.; Yin, W.; Xia, M.; Yue, Q. Ion-imprinted mesoporous silica/magnetic graphene oxide composites functionalized with Schiff-base for selective Cu (II) capture and simultaneously being transformed as a robust heterogeneous catalyst. Chem. Eng. J. 2020, 385, 123847. [Google Scholar] [CrossRef]
- Rizwan, M.S.; Imtiaz, M.; Zhu, J.; Yousaf, B.; Hussain, M.; Ali, L.; Hu, H. Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma 2021, 385, 114803. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, W.; Zhang, X.; Si, G.; Zhang, P.; Li, B.; Gao, X. Efficient removal of Tetracycline-Cu complexes from water by electrocoagulation technology. J. Clean. Prod. 2021, 289, 125729. [Google Scholar] [CrossRef]
- Kepp, K.P.; Squitti, R. Copper imbalance in Alzheimer’s disease: Convergence of the chemistry and the clinic. Coord. Chem. Rev. 2019, 397, 168–187. [Google Scholar] [CrossRef]
- Rana, S.; Jonnalagadda, S.B. A facile synthesis of Cu–Ni bimetallic nanoparticle supported organo functionalized graphene oxide as a catalyst for selective hydrogenation of p-nitrophenol and cinnamaldehyde. RSC Adv. 2017, 7, 2869–2879. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Cao, Y.; Peng, W.; Miao, Y.; Su, S.; Fan, G.; Huang, Y.; Li, C.; Song, X. Highly efficient and selective recovery of Cu (II) from wastewater via ion flotation with amidoxime functionalized graphene oxide as nano collector. Sep. Purif. Technol. 2021, 279, 119674. [Google Scholar] [CrossRef]
- Varadwaj, G.B.B.; Oyetade, O.A.; Rana, S.; Martincigh, B.S.; Jonnalagadda, S.B.; Nyamori, V.O. Facile synthesis of three-dimensional Mg–Al layered double hydroxide/partially reduced graphene oxide nanocomposites for the effective removal of Pb2+ from aqueous solution. ACS Appl. Mater. Interfaces 2017, 9, 17290–17305. [Google Scholar] [CrossRef]
- Gao, F.; Du, X.; Hao, X.; Li, S.; An, X.; Liu, M.; Guan, G. An electrochemically-switched BPEI-CQD/PPy/PSS membrane for selective separation of dilute copper ions from wastewater. Chem. Eng. J. 2017, 328, 293–303. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Z.; Zhang, G. Recovering REEs from NdFeB wastes with high purity and efficiency by leaching and selective precipitation process with modified agents. J. Rare Earths 2019, 37, 205–210. [Google Scholar] [CrossRef]
- Pang, W.; Wang, Y.; Jin, Z. Comprehensive review about methane adsorption in shale nanoporous media. Energy Fuels 2021, 35, 8456–8493. [Google Scholar] [CrossRef]
- Katiyar, R.; Patel, A.K.; Nguyen, T.B.; Singhania, R.R.; Chen, C.W.; Dong, C.D. Adsorption of copper (II) in aqueous solution using biochars derived from Ascophyllum nodosum seaweed. Bioresour. Technol. 2021, 328, 124829. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Lv, H.; Zhou, Y.; Yang, Y.; Yu, D.G. Electrospun polyacrylonitrile-based lace nanostructures and their Cu (II) adsorption. Sep. Purif. Technol. 2022, 288, 120643. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J. Electro-adsorption characteristics and mechanism of Sr2+ ions by capacitive deionization and CFD analysis study. Prog. Nucl. Energ. 2021, 133, 103628. [Google Scholar] [CrossRef]
- Mao, M.; Yan, T.; Shen, J.; Zhang, J.; Zhang, D. Capacitive removal of heavy metal ions from wastewater via an electro-adsorption and electro-reaction coupling process. Environ. Sci. Technol. 2021, 55, 3333–3340. [Google Scholar] [CrossRef]
- Yu, J.; Meng, Z.; Yan, S.; Zhao, S.; Zhu, B.; Cai, X.; Qiao, K. Precise control of ultramicropore structure of activated carbon fiber for the application of Cu (II) adsorption/electro-adsorption. J. Environ. Chem. Eng. 2021, 9, 105312. [Google Scholar] [CrossRef]
- Liao, Y.; Lei, R.; Weng, X.; Yan, C.; Fu, J.; Wei, G.; Wang, H. Uranium capture by a layered 2D/2D niobium phosphate/holey graphene architecture via an electro-adsorption and electrocatalytic reduction coupling process. J. Hazard. Mater. 2023, 442, 130054. [Google Scholar] [CrossRef]
- Huang, Z.H.; Yang, Z.; Kang, F.; Inagaki, M. Carbon electrodes for capacitive deionization. J. Mater. Chem. A 2017, 5, 470–496. [Google Scholar] [CrossRef]
- Jiao, Y.; Ma, L.; Tian, Y.; Zhou, M. A flow-through electro-Fenton process using modified activated carbon fiber cathode for orange II removal. Chemosphere 2020, 252, 126483. [Google Scholar] [CrossRef]
- Rahmi, R.; Lelifajri, L.; Iqbal, M.; Fathurrahmi, F.; Jalaluddin, J.; Sembiring, R.; Farida, M.; Iqhrammullah, M. Preparation, characterization and adsorption study of PEDGE-cross-linked magnetic chitosan (PEDGE-MCh) microspheres for Cd2+ Removal. Arab. J. Sci. Eng. 2022, 48, 159–167. [Google Scholar] [CrossRef]
- Saiful; Riana, U.; Ramli, M.; Iqrammullah, M.; Raharjo, Y.; Wibisono, Y. Development of Chitosan/Rice Husk-Based Silica Composite Membranes for Biodiesel Purification. Membranes 2022, 12, 435. [Google Scholar] [CrossRef]
- Iqhrammullah, M.; Suyanto, H.; Pardede Rahmi, M.; Karnadi, I.; Kurniawan, K.H.; Chiari, W.; Abdulmadjid, S.N. Cellulose acetate-polyurethane film adsorbent with analyte enrichment for in-situ detection and analysis of aqueous Pb using LaserInduced Breakdown Spectroscopy (LIBS). Environ. Nanotechnol. Monit. Manag. 2021, 16, 100516. [Google Scholar]
- Öter, Ç.; Selçuk Zorer, Ö. Adsorption behaviours of Th (IV) and U (VI) using nitric acid (HNO3) modified activated carbon: Equilibrium, thermodynamic and kinetic studies. Int. J. Environ. Anal. Chem. 2021, 101, 1950–1965. [Google Scholar] [CrossRef]
- Huang, G.; Shi, J.X.; Langrish, T.A. Removal of Cr (VI) from aqueous solution using activated carbon modified with nitric acid. Chem. Eng. J. 2009, 152, 434–439. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Khaleque, M.A.; Shiekh, M.S. Treatment of cop per(II) containing wastewater by a newly developed ligand based facial conjugate materials. Chem. Eng. J. 2016, 288, 368–376. [Google Scholar] [CrossRef]
- Mu, R.; Liu, B.; Chen, X.; Wang, N.; Yang, J. Adsorption of Cu (II) and Co (II) from aqueous solution using lignosulfonate/chitosan adsorbent. Int. J. Biol. Macromol. 2020, 163, 120–127. [Google Scholar] [CrossRef]
- Liang, H.X.; Song, B.; Peng, P.; Jiao, G.J.; Yan, X.; She, D. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr (VI). Chem. Eng. J. 2019, 367, 9–16. [Google Scholar] [CrossRef]
- Liang, H.; Ding, W.; Zhang, H.; Peng, P.; Peng, F.; Geng, Z.; She, D.; Li, Y. A novel lignin-based hierarchical porous carbon for efficient and selective removal of Cr (VI) from wastewater. Int. J. Biol. Macromol. 2022, 204, 310–320. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, L.; Liang, H.; Ren, J.; Ding, W.; Wang, Q.; Geng, Z.; Xu, C. Efficient removal of Remazol Brilliant Blue R from water by a cellulose-based activated carbon. Int. J. Biol. Macromol. 2022, 207, 254–262. [Google Scholar] [CrossRef]
- Duan, J.; Ji, H.; Xu, T.; Pan, F.; Liu, X.; Liu, W.; Zhao, D. Simultaneous adsorption of uranium (VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chem. Eng. J. 2021, 406, 126752. [Google Scholar] [CrossRef]
- Shen, W.; Chen, S.; Shi, S.; Li, X.; Zhang, X.; Hu, W.; Wang, H. Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose. Carbohydr. Polym. 2009, 75, 110–114. [Google Scholar] [CrossRef]
- Li, H.; Xiao, D.L.; He, H.; Lin, R.; Zuo, P.L. Adsorption behavior and adsorption mechanism of Cu (II) ions on amino-functionalized magnetic nanoparticles. Trans. Nonferrous Metals Soc. 2013, 23, 2657–2665. [Google Scholar] [CrossRef]
- Lasheen, M.R.; Ammar, N.S.; Ibrahim, H.S. Adsorption/desorption of Cd (II), Cu (II) and Pb (II) using chemically modified orange peel: Equilibrium and kinetic studies. Solid State Sci. 2012, 14, 202–210. [Google Scholar] [CrossRef]
- Gurgel, L.V.A.; Gil, L.F. Adsorption of Cu (II), Cd (II), and Pb (II) from aqueous single metal solutions by succinylated mercerized cellulose modified with triethylenetetramine. Carbohydr. Polym. 2009, 77, 142–149. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wu, J.; Wang, J. Electro-adsorption of Cs(I) ions from aqueous solution by capacitive deionization using ACC/MoO3 composite electrode. Sci. Total Environ. 2023, 865, 161110. [Google Scholar] [CrossRef]
- Liang, H.X.; Sun, R.R.; Song, B.; Sun, Q.Q.; Peng, P.; She, D. Preparation of nitrogen-doped porous carbon material by a hydrothermal-activation two-step method and its high-efficiency adsorption of Cr (VI). J. Hazard. Mater. 2020, 387, 121987. [Google Scholar] [CrossRef]
- Wani, A.A.; Khan, A.M.; Manea, Y.K.; Salem, M.A.; Shahadat, M. Selective adsorption and ultrafast fluorescent detection of Cr (VI) in wastewater using neodymium doped polyaniline supported layered double hydroxide nanocomposite. J. Hazard. Mater. 2021, 416, 125754. [Google Scholar] [CrossRef]
- Shang, J.; Guo, Y.N.; He, D.L.; Qu, W.; Tang, Y.N.; Zhou, L.; Zhu, R.L. A novel graphene oxide-dicationic ionic liquid composite for Cr (VI) adsorption from aqueous solutions. J. Hazard. Mater. 2021, 416, 125706. [Google Scholar] [CrossRef]
- Liang, H.X.; Zhang, H.W.; Zhao, P.Y.; Zhao, X.K.; Sun, H.W.; Geng, Z.C.; She, D. Synthesis of a novel three-dimensional porous carbon material and its highly selective Cr (VI) removal in wastewater. J. Clean. Prod. 2021, 306, 127204. [Google Scholar] [CrossRef]
- Danish, M.; Ansari, K.B.; Danish, M.; Khatoon, A.; Rao, R.A.K.; Zaidi, S.; Aftab, R.A. A comprehensive investigation of external mass transfer and intraparticle diffusion for batch and continuous adsorption of heavy metals using pore volume and surface diffusion model. Sep. Purif. Technol. 2022, 292, 120996. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, L.; Ge, R.; Zhang, A.; Zhang, C.; Chen, X. Treatment of low-level Cu (II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology. Chemosphere 2019, 217, 763–772. [Google Scholar] [CrossRef]
- Srivastava, A.; Gupta, B.; Majumder, A.; Gupta, A.K.; Nimbhorkar, S.K. A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants. J. Environ. Chem. Eng. 2021, 9, 106177. [Google Scholar] [CrossRef]
- Feng, Q.C.; Wang, M.L.; Zhang, G.; Zhao, W.J.; Han, G. Enhanced adsorption of sulfide and xanthate on smithsonite surfaces by lead activation and implications for flotation intensification. Sep. Purif. Technol. 2023, 307, 122772. [Google Scholar] [CrossRef]
- Feng, Q.; Yang, W.; Wen, S.; Wang, H.; Zhao, W.; Han, G. Flotation of copper oxide minerals: A review. Int. J. Min. Sci. Technol. 2022, 32, 1351–1364. [Google Scholar] [CrossRef]
Reagent Name | Purity Level | Manufacturer |
---|---|---|
Hydrochloric acid | Analytical purity | Reagent factory of Kaifeng Dongda Chemical Co., Ltd. (Kaifeng City, China) |
Anhydrous ethanol | Analytical purity | Tianjin Chemical Reagent Factory No. 3 |
Diphenylcarbazide | Analytical purity | Tianjin Bodi Chemical Co., Ltd. (Tianjin, China) |
Sodium hydroxide | Analytical purity | Beijing Chemical Industry Group Co., Ltd. (Beijing, China) |
Acetone | Analytical purity | Beijing Chemical Industry Group Co., Ltd. |
Carbon fiber | Industrial grade | Jiangsu Nantong Shuangan Activated carbon Fiber Filtration Material Co., Ltd. (Nantong, China) |
Copper | Spectral pure metal | Jining Hongming Chemical Reagent Co., Ltd. (Jining, China) |
Nitric acid | Analytical purity | Reagent factory of Kaifeng Dongda Chemical Co., Ltd. |
Adsorbents | Initial pH | qmax (mg/g) | References |
---|---|---|---|
Diethylenetriamine-bacterial cellulose | 4.5 | 63.09 | [40] |
amino-functionalized magnetic nanoparticles | 6 | 28.70 | [41] |
Chemically modified orange peel | 5 | 15.27 | [42] |
Succinylated mercerized cellulose modified with triethylenetetramine | 5.8 | 56.80 | [43] |
O-modified activated carbon fiber | 6 | 48.60 | This study |
Electrode Plate Spacing (mm) | qe (mg/g) | ql (mg/g) | K1 | R2 |
---|---|---|---|---|
15 | 4.24 | 0.58 | −0.3622 | 0.8873 |
10 | 5.61 | 5.70 | −0.7041 | 0.8251 |
5 | 6.82 | 5.72 | −1.063 | 0.8809 |
Electrode Plate Spacing (mm) | qe (mg/g) | q2 (mg/g) | K2 | R2 |
---|---|---|---|---|
15 | 4.24 | 4.30 | 1.3906 | 0.9983 |
10 | 5.61 | 6.89 | 0.2599 | 0.9961 |
5 | 6.82 | 7.24 | 0.4474 | 0.9995 |
Initial Concentration (mg/L) | Ki1 | R2 | Ki2 | R2 |
---|---|---|---|---|
20 | 0.2933 | 0.6572 | 0.2469 | 0.6803 |
60 | 0.9689 | 0.9979 | 0.4832 | 0.9840 |
100 | 1.4436 | 0.7970 | 1.3223 | 0.9782 |
200 | 2.5162 | 0.9343 | 2.5608 | 0.9769 |
300 | 3.4348 | 0.9871 | 0.8791 | 0.9844 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Zhao, X.; Gu, J.; Hu, Z.; Fan, H.; Chen, Q. O-Modified Activated Carbon Fiber Electrode Efficiently Adsorption of Cu (II) in Wastewater. Sustainability 2023, 15, 10078. https://doi.org/10.3390/su151310078
Xiao Z, Zhao X, Gu J, Hu Z, Fan H, Chen Q. O-Modified Activated Carbon Fiber Electrode Efficiently Adsorption of Cu (II) in Wastewater. Sustainability. 2023; 15(13):10078. https://doi.org/10.3390/su151310078
Chicago/Turabian StyleXiao, Zibo, Xinkun Zhao, Junjie Gu, Zhe Hu, Hongkai Fan, and Qingfeng Chen. 2023. "O-Modified Activated Carbon Fiber Electrode Efficiently Adsorption of Cu (II) in Wastewater" Sustainability 15, no. 13: 10078. https://doi.org/10.3390/su151310078
APA StyleXiao, Z., Zhao, X., Gu, J., Hu, Z., Fan, H., & Chen, Q. (2023). O-Modified Activated Carbon Fiber Electrode Efficiently Adsorption of Cu (II) in Wastewater. Sustainability, 15(13), 10078. https://doi.org/10.3390/su151310078