Negative Evidence for Sex-Linked Heteroplasmy in the Nemertean Worm Notospermus geniculatus (Delle Chiaje, 1822)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Preparation, and Conservation
2.2. DNA Extraction and Purification
2.3. Amplification and Sequencing
2.4. Data Analysis
3. Results
Gene | cox1 | rrnL | rrnS | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Specimens’ Positions | 327 | 862 | 946 | 1050 | 384 | 459 | 725 | 951 | 326 | 536 |
F1 | A | C | K | C | T | G | C | A | A | - |
F2 | A | C | K | C | T | G | C | A | A | - |
F3 | G | C | T | T | G | G | T | C | A | - |
M1 | - | T | T | T | T | G | - | - | A | A |
M2 | - | T | T | T | T | G | - | - | G | G |
M3 | - | T | T | T | T | T | - | - | A | G |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tosetto, L.; McNab, J.M.; Hutchings, P.A.; Rodríguez, J.; Williamson, J.E. Fantastic Flatworms and Where to Find Them: Insights into Intertidal Polyclad Flatworm Distribution in Southeastern Australian Boulder Beaches. Diversity 2023, 15, 393. [Google Scholar] [CrossRef]
- Brusca, R.C.; Moore, W.; Shuster, F.M. Invertebrates, 3rd ed.; Sinauer Associates: Oxford, UK, 2016; pp. 435–452. [Google Scholar]
- Carwardine, M. The Guinness Book of Animal Records, 1st ed.; Guinness Publishing: Milan, Italy, 1995. [Google Scholar]
- Moen, F.E.; Svensen, E. Marine Fish & Invertebrates of Northern Europe; Kom: Kristiansund, Norway, 2004. [Google Scholar]
- Chernyshev, A.V. CLSM analysis of phallodin-stained muscle system of the nemertean proboscis and rhynchocoel. Zoolog. Sci. 2015, 32, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Norenburg, J.; Gibson, R.; Herrera Bachiller, A.; Strand, M. World Nemertea Data-base. Notospermus geniculatus (Delle Chiaje, 1828). Accessed through: World Register of Marine Species. 2019. Available online: http://www.marinespecies.org/aphia.php?p=tax-details&id=122586 (accessed on 12 May 2023).
- Helmkampf, M.; Bruchhaus, I.; Hausdorf, B. Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proc. Biol. Sci. 2008, 275, 1927–1933. [Google Scholar] [CrossRef] [Green Version]
- Struck, T.H.; Fisse, F. Phylogenetic Position of Nemertea Derived from Phylogenomic Data. Mol. Biol. Evol. 2008, 25, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Nesnidal, M.P.; Helmkampf, M.; Meyer, A.; Witek, A.; Bruchhaus, I.; Ebersberger, I.; Hankeln, T.; Lieb, B.; Struck, T.H.; Hausdorf, B. New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol. Biol. 2013, 13, 253. [Google Scholar] [CrossRef] [Green Version]
- Weigert, A.; Helm, C.; Meyer, M.; Nickel, B.; Arendt, D.; Hausdorf, B.; Santos, S.R.; Halanych, K.M.; Purschke, G.; Bleidorn, C.; et al. Illuminating the Base of the Annelid Tree Using Transcriptomics. Mol. Biol. Evol. 2014, 31, 1391–1401. [Google Scholar] [CrossRef] [Green Version]
- Kocot, K.M.; Struck, T.H.; Merkel, J.; Waits, D.S.; Todt, C.; Brannock, P.M.; Weese, D.A.; Cannon, J.T.; Moroz, L.L.; Lieb, B.; et al. Phylogenomics of Lophotrochozoa with Consideration of Systematic Error. Syst. Biol. 2016, 66, 256–282. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.J.; Eernisse, D.J. Animal phylogeny and the ancestry of bilaterians: Inferences from morphology and 18s rDNA gene sequences. Evol. Dev. 2001, 3, 170–205. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.X.; Vaysberg, P.; Price, D.C.; Pelletreau, K.N.; Rumpho, M.E.; Bhattacharya, D. Active Host Response to Algal Symbionts in the Sea Slug Elysia chlorotica. Mol. Biol. Evol. 2018, 35, 1706–1711. [Google Scholar] [CrossRef] [Green Version]
- Struck, T.H.; Schult, N.; Kusen, T.; Hickman, E.; Bleidorn, C.; McHugh, D.; Halanych, K.M. Annelid phylogeny and the status of Sipuncula and Echiura. BMC Evol. Biol. 2007, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Ma, X.; Ren, J.; Zhao, F. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta. BMC Genom. 2009, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Zrzavý, J.; Říha, P.; Piálek, L.; Janouškovec, J. Phylogeny of Annelida (Lophotrochozoa): Total-evidence analysis of morphology and six genes. BMC Evol. Biol. 2009, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Struck, T.H.; Paul, C.; Hill, N.; Hartmann, S.; Hösel, C.; Kube, M.; Lieb, B.; Meyer, A.; Tiedemann, R.; Purschke, G.; et al. Phylogenomic analyses unravel annelid evolution. Nature 2011, 471, 95–98. [Google Scholar] [CrossRef]
- Davies, O.K.; Dorey, J.B.; Stevens, M.I.; Gardner, M.G.; Bradford, T.M.; Schwarz, M.P. Unparalleled mitochondrial heteroplasmy and Wolbachia co-infection in the non-model bee, Amphylaeus morosus. Curr. Res. Insect Sci. 2022, 2, 100036. [Google Scholar] [CrossRef]
- Ye, Z.; Zhao, C.; Raborn, R.T.; Lin, M.; Wei, W.; Hao, Y.; Lynch, M. Genetic Diversity, Heteroplasmy, and Recombination in Mitochondrial Genomes of Daphnia pulex, Daphnia pulicaria, and Daphnia obtusa. Mol. Biol. Evol. 2022, 39, msac059. [Google Scholar] [CrossRef]
- Radojičic, J.M.; Krizmanić, I.; Kasapidis, P.; Zouros, E. Extensive mitochondrial heteroplasmy in hybrid water frog (Pelophylax spp.) populations from Southeast Europe. Ecol. Evol. 2015, 5, 4529. [Google Scholar]
- Pizzirani, C.; Viola, P.; Gabbianelli, F.; Fagotti, A.; Simoncelli, F.; Di Rosa, I.; Salvi, P.; Amici, A.; Lucentini, L. First evidence of heteroplasmy in Grey Partridge (Perdix perdix). Avian Res. 2020, 11, 27. [Google Scholar] [CrossRef]
- Parakatselaki, M.E.; Ladoukakis, E.D. mtDNA Heteroplasmy: Origin, Detection, Significance, and Evolutionary Consequences. Life 2021, 11, 633. [Google Scholar] [CrossRef]
- Skibinski, D.O.F.; Gallagher, C.; Beynon, C.M. Mitochondrial DNA inheritance. Nature 1994, 368, 817–818. [Google Scholar] [CrossRef]
- Skibinski, D.O.F.; Gallagher, C.; Beynon, C.M. Sex-limited mitochondrial DNA transmission in the marine mussel Mytilus edulis. Genetics 1994, 138, 801–809. [Google Scholar] [CrossRef]
- Zouros, E.; Oberhauser Ball, A.; Saavedra, C.; Freeman, K.R. An unusual type of mitochondrial DNA inheritance in the blue mussel Mytilus. Proc. Natl. Acad. Sci. USA 1994, 91, 7463–7467. [Google Scholar] [CrossRef] [Green Version]
- Zouros, E.; Oberhauser Ball, A.; Saavedra, C.; Freeman, K.R. Mitochondrial DNA inheritance. Nature 1994, 368, 818. [Google Scholar] [CrossRef] [PubMed]
- Breton, S.; Beaupré, H.D.; Stewart, D.T.; Hoeh, W.R.; Blier, P.U. The unusual system of doubly uniparental inheritance of mtDNA: Isn’t one enough? Trends Genet. 2007, 23, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, M.; Ghiselli, F. Doubly Uniparental Inheritance: Two mitochondrial genomes, one precious model for organelle DNA inheritance and evolution. DNA Cell Biol. 2009, 28, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zouros, E. Biparental inheritance through uniparental transmission: The doubly uniparental inheritance (DUI) of mitochondrial DNA. Evol. Biol. 2013, 40, 1–31. [Google Scholar] [CrossRef]
- Zouros, E.; Rodakis, G.C. Doubly Uniparental Inheritance of mtDNA: An Unappreciated Defiance of a General Rule. Adv. Anat. Embryol. Cell Biol. 2019, 231, 25–49. [Google Scholar]
- Wang, R.; Li, X.; Qi, J. The complete paternally inherited mitochondrial genomes of three clam species in genus Macridiscus (Bivalvia: Veneridae): A TDRL model of dimer-mitogenome rearrangement of doubly uniparental inheritance. Front. Mar. Sci. 2022, 9, 1016779. [Google Scholar] [CrossRef]
- Garrido-Ramos, M.A.; Stewart, D.T.; Sutherland, B.W.; Zouros, E. The distribution of male-transmitted and female-transmitted mitochondrial DNA types in somatic tissues of blue mussels: Implications for the operation of doubly uniparental inheritance of mitochondrial DNA. Genome 1998, 41, 818–824. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Walker, J.M.; Chapman, E.G.; Shepardson, S.P.; Trdan, R.J.; Curole, J.P.; Watters, G.T.; Stewart, D.T.; Vijayaraghavan, S.; Hoeh, W.R. Reproductive Function for a C-terminus Extended, Male-Transmitted Cytochrome c Oxidase Subunit II Protein Expressed in Both Spermatozoa and Eggs. FEBS Lett. 2007, 581, 5213–5219. [Google Scholar] [CrossRef] [Green Version]
- Kyriakou, E.; Zouros, E.; Rodakis, G.C. The atypical presence of the paternal mitochondrial DNA in somatic tissues of male and female individuals of the blue mussel species Mytilus galloprovincialis. BMC Res. Notes 2010, 3, 222. [Google Scholar] [CrossRef] [Green Version]
- Batista, F.M.; Lallias, D.; Taris, N.; Guerdes-Pinto, H.; Beaumont, A.R. Relative quantification of the M and F mitochondrial DNA types in the blue mussel Mytilus edulis by real-time PCR. J. Molluscan Stud. 2011, 77, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Ghiselli, F.; Milani, L.; Passamonti, M. Strict sex-specific mtDNA segregation in the germ line of the DUI species Venerupis philippinarum (Bivalvia: Veneridae). Mol. Biol. Evol. 2011, 28, 949–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obata, M.; Sano, N.; Komaru, A. Different transcriptional ratios of male and female transmitted mitochondrial DNA and tissue-specific expression patterns in the blue mussel, Mytilus galloprovincialis. Dev. Growth Diff. 2011, 53, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Brannock, P.M.; Roberts, M.A.; Hilbish, T.J. Ubiquitous heteroplasmy in Mytilus spp. resulting from disruption in doubly uniparental inheritance regulation. Mar. Ecol. Prog. Ser. 2013, 480, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Lucentini, L.; Plazzi, F.; Sfriso, A.A.; Pizzirani, C.; Sfriso, A.; Chiesa, S. Additional taxonomic coverage of the doubly uniparental inheritance in bivalves: Evidence of sex-linked heteroplasmy in the razor clam Solen marginatus Pulteney, 1799, but not in the lagoon cockle Cerastoderma glaucum (Bruguière, 1789). J. Zool. Syst. Evol. Res. 2020, 58, 561–570. [Google Scholar] [CrossRef]
- Gusman, A.; Lecomte, S.; Stewart, D.T.; Passamonti, M.; Breton, S. Pursuing the quest for better understanding the taxonomic distribution of the system of doubly uniparental inheritance of mtDNA. PeerJ 2016, 4, e2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubośny, M.; Przyłucka, A.; Śmietanka, B.; Burzyński, A. Semimytilus algosus: First known hermaphroditic mussel with doubly uniparental inheritance of mitochondrial DNA. Sci. Rep. 2020, 10, 11256. [Google Scholar] [CrossRef]
- Milani, L.; Ghiselli, F.; Guerra, D.; Breton, S.; Passamonti, M. A comparative analysis of mitochondrial ORFans: New clues on their origin and role in species with doubly uniparental inheritance of mitochondria. Genome Biol. Evol. 2013, 5, 1408–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, D.T.; Breton, S.; Chase, E.E.; Robicheau, B.M.; Bettinazzi, S.; Pante, E.; Youssef, N.; Garrido-Ramos, M.A. An unusual evolutionary strategy: The origins, genetic repertoire, and implications of doubly uniparental inheritance of mitochondrial DNA in bivalves. In Evolutionary Biology—A Transdisciplinary Approach; Pontarotti, P., Ed.; Springer International Publishing: New York, NY, USA, 2020; pp. 301–323. [Google Scholar]
- Milani, L.; Ghiselli, F.; Passamonti, M. Mitochondrial selfish elements and the evolution of biological novelties. Curr. Zool. 2016, 62, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Pozzi, A.; Plazzi, F.; Milani, L.; Ghiselli, F.; Passamonti, M. SmithRNAs: Could mitochondria “bend” nuclear regulation? Mol. Biol. Evol. 2017, 34, 1960–1973. [Google Scholar] [CrossRef] [Green Version]
- Bettinazzi, S.; Plazzi, F.; Passamonti, M. The Complete Female- and Male-Transmitted Mitochondrial Genome of Meretrix lamarckii. PLoS ONE 2016, 11, e0153631. [Google Scholar] [CrossRef] [Green Version]
- Parakatselaki, M.E.; Saavedra, C.; Ladoukakis, E.D. Searching for doubly uniparental inheritance of mtDNA in the apple snail Pomacea diffusa. Mitochondrial DNA Part A 2016, 27, 4000–4002. [Google Scholar] [CrossRef] [PubMed]
- Gusman, A.; Azuelos, C.; Breton, S. No evidence of sex-linked heteroplasmy or doubly-uniparental inheritance of mtDNA in five gastropod species. J. Molluscan Stud. 2017, 83, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Simon, C.; Buckley, T.R.; Frati, F.; Stewart, J.B.; Beckenbach, A.T. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 545–579. [Google Scholar] [CrossRef] [Green Version]
- Palumbi, S.R.; Martin, A.; Romano, S.; McMillan, W.O.; Stice, L.; Grabowski, G. The Simple Fool’s Guide to PCR, 1st ed.; University of Hawaii: Honolulu, HI, USA, 1996. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Soroka, M.; Burzyński, A. Doubly uniparental inheritance and highly divergent mitochondrial genomes of the freshwater mussel Unio tumidus (Bivalvia: Unionidae). Hydrobiologia 2018, 810, 239–254. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Jukes, T.H.; Cantor, C.R. Evolution of Protein Molecules. In Mammalian Protein Metabolism; Munro, H.N., Ed.; Academic Press: New York, NY, USA, 1969; pp. 21–132. [Google Scholar]
- Theologidis, I.; Fodelianakis, S.; Gaspar, M.B.; Zouros, E. Doubly Uniparental Inheritance (DUI) of mitochondrial DNA in Donax trunculus (Bivalvia: Donacidae) and the problem of its sporadic detection in bivalvia. Evolution 2008, 62, 959–970. [Google Scholar] [CrossRef]
- Breton, S.; Milani, L.; Ghiselli, F.; Guerra, D.; Stewart, D.T.; Passamonti, M. A resourceful genome: Updating the functional repertoire and evolutionary role of animal mitochondrial DNAs. Trends Genet. 2014, 30, 555–564. [Google Scholar] [CrossRef]
- Curole, J.P.; Kocher, T.D. Ancient sex-specific extension of the cytochrome c oxidase II gene in bivalves and the fidelity of doubly-uniparental inheritance. Mol. Biol. Evol. 2002, 19, 1323–1328. [Google Scholar] [CrossRef] [Green Version]
- Breton, S.; Stewart, D.T.; Shepardson, S.; Trdan, R.J.; Bogan, A.E.; Chapman, E.G.; Ruminas, A.J.; Piontkivska, H.; Hoeh, W.R. Novel protein genes in animal mtDNA: A new sex determination system in freshwater mussels (Bivalvia: Unionoida)? Mol. Biol. Evol. 2011, 28, 1645–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obata, M.; Shimizu, M.; Sano, N.; Komaru, A. Maternal inheritance of mitochondrial DNA (mtDNA) in the Pacific oyster (Crassostrea gigas): A preliminary study using mtDNA sequence analysis with evidence of random distribution of MitoTracker-stained sperm mitochondria in fertilized eggs. Zool. Sci. 2008, 25, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Salvi, D.; Mariottini, P. Molecular taxonomy in 2D: A novel ITS2 rRNA sequence-structure approach guides the description of the oysters’ subfamily Saccostreinae and the genus Magallana (Bivalvia: Ostreidae). Zool. J. Linn. Soc.-Lond. 2017, 179, 263–276. [Google Scholar] [CrossRef] [Green Version]
Target Locus | Primer Name | Sequence (5′-3′) | Primer Length (bp) | Ref. |
---|---|---|---|---|
coxI | COX1_F674 (F) | GATCCTATTTTGTATCAGCAT T | 22 | 1 |
COX1_R1420 (R) | CTCTCCCAAACAATAAACATAA | 22 | 1 | |
C1-J1709 (F) | AATTGGGGGGTTYGGTAAYTG | 21 | 2 | |
C1-N2776 (R) | GATAGTCAGAATAACGWCGNGG | 22 | 2 | |
rrnL | RRNL_F189 (F) | ACCTTTTGTATCATGGTTTA | 20 | 1 |
RRNL_R917 (R) | AAATGATTATGCTACCTTTG | 20 | 1 | |
RRNL_F832 (F) | NTTTTATAANAAGTANTTTCTGCCC | 25 | 1 | |
RRNL_R1405 (R) | ACGTANNATTTTAAAGGTCGAA | 22 | 1 | |
SbrH(32) (R) | CCGGTCTGAACTCAGATCACGT | 22 | 3 | |
Sar(34) (F) | CGCCTGTTTAACAAAAACAT | 20 | 3 mod | |
rrnS | SR-J14197 (F) | GTACAYCTATGTTACGACTT | 20 | 2 |
SR-N14745 (R) | GTCCCAGCAGYYGCGGTTANAC | 22 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santovito, D.; Brustenga, L.; Lucentini, L.; Plazzi, F.; Chiesa, S.; Passamonti, M. Negative Evidence for Sex-Linked Heteroplasmy in the Nemertean Worm Notospermus geniculatus (Delle Chiaje, 1822). Sustainability 2023, 15, 10212. https://doi.org/10.3390/su151310212
Santovito D, Brustenga L, Lucentini L, Plazzi F, Chiesa S, Passamonti M. Negative Evidence for Sex-Linked Heteroplasmy in the Nemertean Worm Notospermus geniculatus (Delle Chiaje, 1822). Sustainability. 2023; 15(13):10212. https://doi.org/10.3390/su151310212
Chicago/Turabian StyleSantovito, Diletta, Leonardo Brustenga, Livia Lucentini, Federico Plazzi, Stefania Chiesa, and Marco Passamonti. 2023. "Negative Evidence for Sex-Linked Heteroplasmy in the Nemertean Worm Notospermus geniculatus (Delle Chiaje, 1822)" Sustainability 15, no. 13: 10212. https://doi.org/10.3390/su151310212
APA StyleSantovito, D., Brustenga, L., Lucentini, L., Plazzi, F., Chiesa, S., & Passamonti, M. (2023). Negative Evidence for Sex-Linked Heteroplasmy in the Nemertean Worm Notospermus geniculatus (Delle Chiaje, 1822). Sustainability, 15(13), 10212. https://doi.org/10.3390/su151310212