An Ecological Reading of Crop–Livestock Interactions—Gers, Southwestern France, 1950 to the Present
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fieldwork to Reconstruct the Production Systems of This Area since 1950
2.3. A Reading Grid of Crop–Livestock Interactions Based on Practices
3. Results
3.1. 1950s: Livestock Farming Is the Cornerstone of Agronomic Logic
- (i)
- Cattle were used as a source of mechanical energy for cultivation
- (ii)
- A saltus used as a source of biomass to manage fertility was spatially interwoven into the ager
- (iii)
- Fodder crops were grown in association with non-fodder crops on the ager
- (iv)
- The animals were fed with (and their bedding was made up of) local resources, and their dejections were spread on the cultivated plots
3.2. The 1960s: The Tractor Replaces Animal Energy and Specialisation Emerges
3.3. 1975 to 1995: Intensification of Fodder Cultivation and Irrigation Transform Crop–Livestock Integration
3.4. 1990–2010: Decline in Cattle Farming
3.5. Since 2010: Development of Organic Agriculture with No Real Crop–Livestock Reintegration
4. Discussion
4.1. Crop–Livestock Disintegration Operates at Two Levels
4.2. Relevance of a Systemic Grid and Perspectives for Future Research
- (i)
- It doesn’t seem to us to miss any important functions while limiting itself to four categories. In particular, it takes into account the role of the saltus in interaction with the ager, whose importance for the agroecological transition in Europe has recently been highlighted by Poux and Aubert [88]. Using of this grid in other situations would make it possible to test its genericity and improve it. Situations where animal grazing on cultivated plots plays a role in managing weeds [9] or pests [8] or where a partially forested saltus interacts with the ager via livestock farming to create a complex landscape mosaic [2] would be particularly interesting to study. Similarly, analysing the types of agriculture where animal feed is largely based on crop residues like straws [89] would enrich the representation of carbon and nutrient recycling on cultivated land via livestock farming proposed in this grid (mode iv).
- (ii)
- Above all, the categories of this grid are homogeneous from the point of view of the pair of interacting objects and the way they interact. This is what makes this grid systemic: each of these interaction categories corresponds as much to a certain set of effects on the ecosystem as to a certain technical operation of the farm. Studies carried out on some ecological processes at finer scales (e.g., those cited in Table 1) can thus be resituated in the more global functioning of the farm.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Franzluebbers, A.; Martin, G. Farming with Forages Can Reconnect Crop and Livestock Operations to Enhance Circularity and Foster Ecosystem Services. Grass Forage Sci. 2022, 77, 270–281. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; Carvalho, P.C.F.; Dedieu, B. Integrated Crop–Livestock Systems: Strategies to Achieve Synergy between Agricultural Production and Environmental Quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Peyraud, J.-L.; Taboada, M.; Delaby, L. Integrated Crop and Livestock Systems in Western Europe and South America: A Review. Eur. J. Agron. 2014, 57, 31–42. [Google Scholar] [CrossRef]
- Thorne, P.J.; Tanner, J.C. Livestock and Nutrient Cycling in Crop–Animal Systems in Asia. Agric. Syst. 2002, 71, 111–126. [Google Scholar] [CrossRef]
- Fanjaniaina, M.L.; Stark, F.; Ramarovahoaka, N.P.; Rakotoharinaivo, J.F.; Rafolisy, T.; Salgado, P.; Becquer, T. Nutrient Flows and Balances in Mixed Farming Systems in Madagascar. Sustainability 2022, 14, 984. [Google Scholar] [CrossRef]
- McIsaac, G.F.; David, M.B.; Gertner, G.Z.; Goolsby, D.A. Nitrate Flux in the Mississippi River. Nature 2001, 414, 166–167. [Google Scholar] [CrossRef]
- Allen, V.G.; Baker, M.T.; Segarra, E.; Brown, C.P. Integrated Irrigated Crop–Livestock Systems in Dry Climates. Agron. J. 2007, 99, 346–360. [Google Scholar] [CrossRef]
- Pernollet, C.A.; Simpson, D.; Gauthier-Clerc, M.; Guillemain, M. Rice and Duck, a Good Combination? Identifying the Incentives and Triggers for Joint Rice Farming and Wild Duck Conservation. Agric. Ecosyst. Environ. 2015, 214, 118–132. [Google Scholar] [CrossRef]
- Popay, I.; Field, R. Grazing Animals as Weed Control Agents. Weed Technol. 1996, 10, 217–231. [Google Scholar] [CrossRef]
- Starkey, P.H.; Ndiame, F. Animal Power in Farming Systems. In Proceedings of Networkshop Held; GTZ: Eschborn, Germany, 1986; pp. 17–26. [Google Scholar]
- Dikshit, A.K.; Birthal, P.S. Environmental Value of Draught Animals: Saving of Fossil-Fuel and Prevention of Greenhouse Gas Emission. Agric. Econ. Res. Rev. Agric. Econ. Res. Rev. 2010, 23, 227–232. [Google Scholar] [CrossRef]
- Robson, M.C.; Fowler, S.M.; Lampkin, N.H.; Leifert, C.; Leitch, M.; Robinson, D.; Watson, C.A.; Litterick, A.M. The Agronomic and Economic Potential of Break Crops for Ley/Arable Rotations in Temperate Organic Agriculture. Adv. Agron. 2002, 77, 369–427. [Google Scholar]
- Schuster, M.Z.; Harrison, S.K.; de Moraes, A.; Sulc, R.M.; Carvalho, P.C.F.; Lang, C.R.; Anghinoni, I.; Lustosa, S.B.C.; Gastal, F. Effects of Crop Rotation and Sheep Grazing Management on the Seedbank and Emerged Weed Flora under a No-Tillage Integrated Crop-Livestock System. J. Agric. Sci. 2018, 156, 810–820. [Google Scholar] [CrossRef]
- Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Linking the Field to the Stream: Soil Erosion and Sediment Yield in a Rural Catchment, NW Spain. CATENA 2013, 102, 74–81. [Google Scholar] [CrossRef]
- Benton, T.G.; Vickery, J.A.; Wilson, J.D. Farmland Biodiversity: Is Habitat Heterogeneity the Key? Trends Ecol. Evol. 2003, 18, 182–188. [Google Scholar] [CrossRef]
- Toivonen, M.; Huusela-Veistola, E.; Herzon, I. Perennial Fallow Strips Support Biological Pest Control in Spring Cereal in Northern Europe. Biol. Control 2018, 121, 109–118. [Google Scholar] [CrossRef]
- Tschumi, M.; Albrecht, M.; Entling, M.H.; Jacot, K. High Effectiveness of Tailored Flower Strips in Reducing Pests and Crop Plant Damage. Proc. R. Soc. B. 2015, 282, 20151369. [Google Scholar] [CrossRef]
- Minviel, J.J.; Veysset, P. Are There Economies of Inputs in Mixed Crop-Livestock Farming Systems? A Cross-Frontier Approach Applied to French Dairy-Grain Farms. Appl. Econ. 2021, 53, 2275–2291. [Google Scholar] [CrossRef]
- Perrot, C.; Dominique, C.; Helene, C. Économies d’échelle et économies de gamme en production laitière. Analyse technico- économique et environnementale des exploitations de polyculture-élevage françaises. Rencontres Autour Des Rech. Sur Les Rumin. 2012, 4, 33–36. [Google Scholar]
- Ryschawy, J. Eclairer les Conditions de Maintien D’exploitations de Polyculture-Élevage Durables en Zone Défavorisée Simple Européenne. Une Étude de cas Dans les Coteaux de Gascogne. Ph.D. Thesis, Université de Toulouse, Toulouse, France, 2012; p. 211. [Google Scholar]
- Veysset, P.; Lherm, M.; Bébin, D.; Roulenc, M. Mixed Crop–Livestock Farming Systems: A Sustainable Way to Produce Beef? Commercial Farms Results, Questions and Perspectives. Animal 2014, 8, 1218–1228. [Google Scholar] [CrossRef]
- Martel, G.; Dieulot, R.; Durant, D.; Guilbert, C.; Mischler, P.; Veysset, P. Mieux coupler cultures et élevage dans les exploitations d’herbivores conventionnelles et biologiques: Une voie d’amélioration de leur durabilité? Fourrages 2017, 13, 235–245. [Google Scholar]
- Mischler, P.; Tresch, P.; Jousseins, C.; Chambaut, H.; Durant, D.; Veysset, P.P.; Martin, G.; Fiorelli, J.-L.J.-L.; Chedly, H.B.; Pierret, P. Savoir Caractériser Les Complémentarités Entre Cultures et Élevage Pour Accompagner La Reconception Des Systèmes de Polyculture-Élevage Dans Leurs Transitions Agroécologiques. Renc. Rech. Ruminants 2018, 24, 11–20. [Google Scholar]
- European Commission. Commission Regulation (EC) No 1242/2008 of 8 December 2008 Establishing a Community Typology for Agricultural Holdings. Off. J. Eur. Union 2008, 335, 226–247. [Google Scholar]
- Ryschawy, J.; Joannon, A.; Gibon, A. Mixed crop-livestock farm: Definitions and research issues. A review. Cah. Agric. 2014, 23, 346–356. [Google Scholar] [CrossRef]
- Seré, C.; Steinfeld, H.; Groenewold, J. World Livestock Production Systems; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996. [Google Scholar]
- Rufino, M.C.; Hengsdijk, H.; Verhagen, A. Analysing Integration and Diversity in Agro-Ecosystems by Using Indicators of Network Analysis. Nutr. Cycl. Agroecosyst. 2009, 84, 229–247. [Google Scholar] [CrossRef]
- Parsons, D.; Nicholson, C.F.; Blake, R.W.; Ketterings, Q.M.; Ramírez-Aviles, L.; Cherney, J.H.; Fox, D.G. Application of a Simulation Model for Assessing Integration of Smallholder Shifting Cultivation and Sheep Production in Yucatán, Mexico. Agric. Syst. 2011, 104, 13–19. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. Integrated Crop–Livestock Simulation Models for Scenario Analysis and Impact Assessment. Agric. Syst. 2001, 70, 581–602. [Google Scholar] [CrossRef]
- Martel, G.; Ramette, C.; Bouvarel, I.; Buteau, A.; Fontanet, J.-M.; Mischler, P. NiCC’El. Un outil pour caractériser le niveau d’interaction entre cultures et élevage d’une exploitation et identifier les voies d’amélioration. Innov. Agron. 2020, 80, 33–40. [Google Scholar]
- Moraine, M.; Duru, M.; Therond, O. A Social-Ecological Framework for Analyzing and Designing Integrated Crop–Livestock Systems from Farm to Territory Levels. Renew. Agric. Food Syst. 2016, 32, 43–56. [Google Scholar] [CrossRef]
- Schiere, H.; Kater, L. Mixed Crop-Livestock Farming. A Review of Traditional Technologies Based on Literature and Field Experience. FAO Anim. Prod. Health Pap. 2001, 152, 88. [Google Scholar]
- Schiere, J.B.; Ibrahim, M.N.M.; van Keulen, H. The Role of Livestock for Sustainability in Mixed Farming: Criteria and Scenario Studies under Varying Resource Allocation. Agric. Ecosyst. Environ. 2002, 90, 139–153. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D. Integrated Crop–Livestock Systems in Australian Agriculture: Trends, Drivers and Implications. Agric. Syst. 2012, 12, 1–12. [Google Scholar] [CrossRef]
- Garrett, R.D.; Ryschawy, J.; Bell, L.W.; Cortner, O.; Ferreira, J.; Garik, A.V.N.; Gil, J.D.B.; Klerkx, L.; Moraine, M.; Peterson, C.A.; et al. Drivers of Decoupling and Recoupling of Crop and Livestock Systems at Farm and Territorial Scales. Ecol. Soc. 2020, 25, 24. [Google Scholar] [CrossRef]
- Sumberg, J. Toward a Dis-Aggregated View of Crop–Livestock Integration in Western Africa. Land Use Policy 2003, 20, 253–264. [Google Scholar] [CrossRef]
- Agreste. RA2020-Gers-Une Agriculture plus Spécialisée En Productions Végétales. Études Agreste 2022, 18. [Google Scholar]
- Météo-France [Daily Precipitation and Temperature Data, Auch-Lamothe Weather Station (32013005), 1987-2020][Unpublished Raw Data] 2020.
- CACG. Étude Pédologique de Reconnaissance Au 1/50 000-Grand Ensemble Des Baïses et Du Gers, (Internal study report). 1965.
- IGN Auch/Barran [1/25000 Topographic Map] 2016.
- Lacoste, M.; Lawes, R.; Ducourtieux, O.; Flower, K. Assessing Regional Farming System Diversity Using a Mixed Methods Typology: The Value of Comparative Agriculture Tested in Broadacre Australia. Geoforum 2018, 90, 183–205. [Google Scholar] [CrossRef]
- Barral, S.; Touzard, I.; Rasse-Mercat, É.; Ferraton, N.; Pillot, D. Assessing Smallholder Farming: Diagnostic Analysis of Family-Based Agricultural Systems in a Small Region. Available online: https://scholar.google.com/scholar_lookup?title=Assessing%20Smallholder%20Farming%3A%20Diagnostic%20Analysis%20of%20Family-based%20Agricultural%20Systems%20in%20a%20Small%20Region&author=S.%20Barral&publication_year=2012 (accessed on 23 April 2023).
- Cochet, H. The Systeme Agraire Concept in Francophone Peasant Studies. Geoforum 2012, 43, 128–136. [Google Scholar] [CrossRef]
- Cochet, H. Comparative Agriculture; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Crouzel, F. Auch, Carte Géologique à 1/50 000 [Geological Map] 1960.
- Sébillotte, M. Jachère, système de culture, système de production, méthodologie d’étude. JATBA 1977, 24, 241–264. [Google Scholar] [CrossRef]
- Landais, E.; Lhoste, P.; Milleville, P. Points de Vue Sur La Zootechnie et Les Systèmes d’élevage Tropicaux. Cah. Sci. Hum. 1987, 23, 421–437. [Google Scholar]
- Dedieu, B. Les Systèmes d’élevage Ovins-Viande En Cévennes Gardoises: Éléments d’analyse Des Systèmes Fourragers. Etud. Rech. Syst. Agraires Dév 1987, 11, 79–87. [Google Scholar]
- Martin, G.; Moraine, M.; Ryschawy, J.; Magne, M.-A.; Asai, M.; Sarthou, J.-P.; Duru, M.; Therond, O. Crop–Livestock Integration beyond the Farm Level: A Review. Agron. Sustain. Dev. 2016, 36, 53. [Google Scholar] [CrossRef]
- Schiere, J.B.; De Wit, J. Livestock and Farming Systems Research II: Development and Classifications. In Cattle, Straw and Systems Control; Wageningen Agricultural University: Amsterdam, The Netherlands, 1995; pp. 39–61. [Google Scholar]
- Entz, M.H.; Bellotti, W.D.; Powell, J.M.; Angadi, S.V.; Chen, W.; Ominski, K.H.; Boelt, B. Evolution of Integrated Crop-Livestock Production Systems. In Grassland: A Global Ressource; Wageningem Academic Publishers: Wageningem, The Netherlands, 2005; pp. 137–148. [Google Scholar]
- Poux, X.; Narcy, J.B.; Ramain, B. The “Saltus”: A Historical Concept for a Better Understanding the Relationships between Agriculture and Biodiversity Today. Courr. L’environnement L’inra 2009, 57, 23–34. [Google Scholar]
- Spugnoli, P.; Dainelli, R. Environmental Comparison of Draught Animal and Tractor Power. Sustain. Sci. 2013, 8, 61–72. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Duflot, R.; Aviron, S.; Ernoult, A.; Fahrig, L.; Burel, F. Reconsidering the Role of ‘Semi-Natural Habitat’ in Agricultural Landscape Biodiversity: A Case Study. Ecol. Res. 2015, 30, 75. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape Perspectives on Agricultural Intensification and Biodiversity—Ecosystem Service Management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Gardiner, M.M.; Landis, D.A.; Gratton, C.; DiFonzo, C.D.; O’Neal, M.; Chacon, J.M.; Wayo, M.T.; Schmidt, N.P.; Mueller, E.E.; Heimpel, G.E. Landscape Diversity Enhances Biological Control of an Introduced Crop Pest in the North-Central USA. Ecol. Appl. 2009, 19, 143–154. [Google Scholar] [CrossRef]
- Burkart, M.; James, D.; Liebman, M.; Herndl, C. Impacts of Integrated Crop-Livestock Systems on Nitrogen Dynamics and Soil Erosion in Western Iowa Watersheds. J. Geophys. Res. 2005, 110, G01009. [Google Scholar] [CrossRef]
- Brazier, R.E.; Bilotta, G.S.; Haygarth, P.M. A Perspective on the Role of Lowland, Agricultural Grasslands in Contributing to Erosion and Water Quality Problems in the UK. Earth Surf. Process. Landf. 2007, 32, 964–967. [Google Scholar] [CrossRef]
- Schuman, G.E.; Janzen, H.H.; Herrick, J.E. Soil Carbon Dynamics and Potential Carbon Sequestration by Rangelands. Environ. Pollut. 2002, 116, 391–396. [Google Scholar] [CrossRef]
- Powell, J.M.; Fernández-Rivera, S.; Hiernaux, P.; Turner, M.D. Nutrient Cycling in Integrated Rangeland/Cropland Systems of the Sahel. Agric. Syst. 1996, 52, 143–170. [Google Scholar] [CrossRef]
- Achard, F.; Banoin, M. Fallows, Forage Production and Nutrient Transfers by Livestock in Niger. Nutr. Cycl. Agroecosyst. 2003, 65, 183–189. [Google Scholar] [CrossRef]
- Diarisso, T.; Corbeels, M.; Andrieu, N.; Djamen, P.; Tittonell, P. Biomass Transfers and Nutrient Budgets of the Agro-Pastoral Systems in a Village Territory in South-Western Burkina Faso. Nutr. Cycl. Agroecosyst. 2015, 101, 295–315. [Google Scholar] [CrossRef]
- Khaleel, R.; Reddy, K.R.; Overcash, M.R. Changes in Soil Physical Properties Due to Organic Waste Applications: A Review. J. Environ. Qual. 1981, 10, 133–141. [Google Scholar] [CrossRef]
- Rasmussen, J.; Søegaard, K.; Pirhofer-Walzl, K.; Eriksen, J. N2-Fixation and Residual N Effect of Four Legume Species and Four Companion Grass Species. Eur. J. Agron. 2012, 36, 66–74. [Google Scholar] [CrossRef]
- Hendrickson, B.H.; Barnett, A.P.; Beale, O.W. Conservation Methods for Soils of the Southern Piedmont. Agric. Inf. Bull. 1963, 269, 18. [Google Scholar]
- Sun, L.; Zhang, B.; Yin, Z.; Guo, H.; Siddique, K.H.M.; Wu, S.; Yang, J. Assessing the Performance of Conservation Measures for Controlling Slope Runoff and Erosion Using Field Scouring Experiments. Agric. Water Manag. 2022, 259, 107212. [Google Scholar] [CrossRef]
- Schulz, F.; Brock, C.; Schmidt, H.; Franz, K.-P.; Leithold, G. Development of Soil Organic Matter Stocks under Different Farm Types and Tillage Systems in the Organic Arable Farming Experiment Gladbacherhof. Arch. Agron. Soil Sci. 2014, 60, 313–326. [Google Scholar] [CrossRef]
- Rubio, V.; Diaz-Rossello, R.; Quincke, J.A.; van Es, H.M. Quantifying Soil Organic Carbon’s Critical Role in Cereal Productivity Losses under Annualized Crop Rotations. Agric. Ecosyst. Environ. 2021, 321, 107607. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R.; Coleman, K.; Macdonald, A.J.; White, R.P. Changes in Soil Organic Matter over 70 Years in Continuous Arable and Ley-Arable Rotations on a Sandy Loam Soil in England: Carbon Sequestration and Losses over 70 Years. Eur. J. Soil Sci. 2017, 68, 305–316. [Google Scholar] [CrossRef]
- Libohova, Z.; Seybold, C.; Wysocki, D.; Wills, S.; Schoeneberger, P.; Williams, C.; Lindbo, D.; Stott, D.; Owens, P.R. Reevaluating the Effects of Soil Organic Matter and Other Properties on Available Water-Holding Capacity Using the National Cooperative Soil Survey Characterization Database. J. Soil Water Conserv. 2018, 73, 411–421. [Google Scholar] [CrossRef]
- Boyle, M.; Frankenberger, W.T., Jr.; Stolzy, L.H. The Influence of Organic Matter on Soil Aggregation and Water Infiltration. J. Prod. Agric. 1989, 2, 290–299. [Google Scholar] [CrossRef]
- Garnier, J.; Anglade, J.; Benoit, M.; Billen, G.; Puech, T.; Ramarson, A.; Passy, P.; Silvestre, M.; Lassaletta, L.; Trommenschlager, J.-M.; et al. Reconnecting Crop and Cattle Farming to Reduce Nitrogen Losses to River Water of an Intensive Agricultural Catchment (Seine Basin, France): Past, Present and Future. Environ. Sci. Policy 2016, 63, 76–90. [Google Scholar] [CrossRef]
- Lantinga, E.A.; Boele, E.; Rabbinge, R. Maximizing the Nitrogen Efficiency of a Prototype Mixed Crop-Livestock Farm in The Netherlands. NJAS Wagening. J. Life Sci. 2013, 66, 15–22. [Google Scholar] [CrossRef]
- Randall, G.W.; Huggins, D.R.; Russelle, M.P.; Fuchs, D.J.; Nelson, W.W.; Anderson, J.L. Nitrate Losses through Subsurface Tile Drainage in Conservation Reserve Program, Alfalfa, and Row Crop Systems. J. Environ. Qual. 1997, 26, 1240–1247. [Google Scholar] [CrossRef]
- Hoeffner, K.; Beylich, A.; Chabbi, A.; Cluzeau, D.; Dascalu, D.; Graefe, U.; Guzman, G.; Hallaire, V.; Hanisch, J.; Landa, B.B. Legacy Effects of Temporary Grassland in Annual Crop Rotation on Soil Ecosystem Services. Sci. Total Environ. 2021, 780, 146140. [Google Scholar] [CrossRef] [PubMed]
- Liebman, M.; Dyck, E. Crop Rotation and Intercropping Strategies for Weed Management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.; Durand, J.-L.; Duru, M.; Gastal, F.; Julier, B.; Litrico, I.; Louarn, G.; Médiène, S.; Moreau, D.; Valentin-Morison, M.; et al. Role of Ley Pastures in Tomorrow’s Cropping Systems. A Review. Agron. Sustain. Dev. 2020, 40, 17. [Google Scholar] [CrossRef]
- Akram, U.; Quttineh, N.-H.; Wennergren, U.; Tonderski, K.; Metson, G.S. Enhancing Nutrient Recycling from Excreta to Meet Crop Nutrient Needs in Sweden–a Spatial Analysis. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- van der Werf, H.M.G.; Petit, J.; Sanders, J. The Environmental Impacts of the Production of Concentrated Feed: The Case of Pig Feed in Bretagne. Agric. Syst. 2005, 83, 153–177. [Google Scholar] [CrossRef]
- Mallin, M.A.; Cahoon, L.B. Industrialized Animal Production—A Major Source of Nutrient and Microbial Pollution to Aquatic Ecosystems. Popul. Environ. 2003, 24, 369–385. [Google Scholar] [CrossRef]
- Tamminga, S. Pollution Due to Nutrient Losses and Its Control in European Animal Production. Livest. Prod. Sci. 2003, 84, 101–111. [Google Scholar] [CrossRef]
- Agence bio Les Chiffres 2021 Du Secteur Bio. Dossier de Presse Juin 2022. Available online: https://www.agencebio.org/wp-content/uploads/2022/07/DP_LAGENCE-BIO-26-07_22.pdf (accessed on 22 March 2023).
- Agence bio La Bio En France, de La Production à La Consommation. Available online: https://www.agencebio.org/sites/default/files/upload/documents/4_Chiffres/BrochureCC/CC2011_Partie2.pdf (accessed on 22 June 2023).
- Billen, G.; Le Noë, J.; Anglade, J.; Garnier, J. Polyculture-Élevage Ou Hyper-Spécialisation Territoriale? Deux Scénarios Prospectifs Du Système Agro-Alimentaire Français. Innovations. Innov. Agron. 2019, 72, 31–44. [Google Scholar]
- Schut, A.G.T.; Cooledge, E.C.; Moraine, M.; Van De Ven, G.W.J.; Jones, D.L.; Chadwick, D.R. Reintegration of Crop-Livestock Systems in Europe: An Overview. Front. Agric. Sci. Eng. 2021, 8, 111. [Google Scholar] [CrossRef]
- Stark, F.; González-García, E.; Navegantes, L.; Miranda, T.; Poccard-Chapuis, R.; Archimède, H.; Moulin, C.-H. Crop-Livestock Integration Determines the Agroecological Performance of Mixed Farming Systems in Latino-Caribbean Farms. Agron. Sustain. Dev. 2018, 38, 4. [Google Scholar] [CrossRef]
- Poux, X.; Aubert, P.-M. An Agroecological Europe in 2050: Multifunctional Agriculture for Healthy Eating. Findings from the Ten Years For Agroecology (TYFA) Modelling Exercise. IDDRI Studies 2018, 09, 18. [Google Scholar]
- Devendra, C. Crop Residues for Feeding Animals in Asia: Technology Development and Adoption in Crop/Livestock Systems. In Crop Residues in Sustainable Mixed Crop/Livestock Farming Systems; CAB International: Wallingford, UK, 1997; pp. 241–267. [Google Scholar]
- Barbieri, C.; Mahoney, E.; Butler, L. Understanding the Nature and Extent of Farm and Ranch Diversification in North America*. Rural. Sociol. 2008, 73, 205–229. [Google Scholar] [CrossRef]
- Garrett, R.; Niles, M.; Gil, J.; Dy, P.; Reis, J.; Valentim, J. Policies for Reintegrating Crop and Livestock Systems: A Comparative Analysis. Sustainability 2017, 9, 473. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Notenbaert, A.; Msangi, S.; Wood, S.; Kruska, R.; Dixon, J.; Bossio, D.; van de Steeg, J.; Freeman, H.A.; et al. Drivers of Change in Crop–Livestock Systems and Their Potential Impacts on Agro-Ecosystems Services and Human Wellbeing to 2030; ILRI: Nairobi, Kenya, 2012; p. 114. [Google Scholar]
- Moraine, M.; Duru, M.; Nicholas, P.; Leterme, P.; Therond, O. Farming System Design for Innovative Crop-Livestock Integration in Europe. Animal 2014, 8, 1204–1217. [Google Scholar]
Mode of crop–livestock interaction | Mode i: | Mode ii: | Mode iii: | Mode iv: |
Animals are used as a source of mechanical energy (in cultivation practices as well as for transportation and product transformation). | A saltus (grasslands, rangelands, woodland) is spatially interwoven into the ager (tilled and sown plots) and provides biomass, generally in the form of manure. | Fodder crops are grown on the ager, in rotation or intercropped with non-fodder crops. | Local recycling of the biomass intended for animal consumption:(i) the animals are fed (and their bedding is made up of) local resources, and their excreta are spread on cultivated plots ;(ii) reciprocally, crops intended for animal fodder are consumed on the farm or in the region. | |
Agronomic and environmental functions |
|
|
|
|
Examples of studies quantifying these environmental processes in other locations | Spugnoli and Dainelli., 2013 [53] | (a) Fahrig, 2003 [54], Duflot et al., 2017 [55], Tscharntke et al., 2005 [56] (b) Gardiner et al., 2009 [57] (c) Burkart and James, 2005 [58], Brazier et al, 2007 [59] (d) Schuman et al., 2002 [60] (e) Powell et al., 1996 [61], Achard et Baroin, 2003 [62], Diarisso et al., 2015 [63] (f) Khaleel et al., 1981 [64] | (a) Rasmussen et al., 2012 [65] (b) Hendrickson, 1963 [66], Sun et al., 2022 [67] (c) Schulz et al., 2014, [68] Rubio et al., 2021 [69], Johnston et al., 2017 [70] (d) Libohova et al., 2018 [71] (e) Boyle et al., 1989 [72] (f) Garnier et al., 2016 [73], Lantinga et al, 2013 [74], Randall et al., 1997 [75] (g) Duflot et al. 2015, [55], Hoeffner et al., 2021 [76] (h) Liebman and Dyck, 1993 [77] For a general synthesis, refer to Martin et al., 2020. [78] | (a) Akram et al., 2019 [79], Burkart and James, 2005 [58] (b) van der Werf et al., 2005 [80], Mallin and Cahoon, 2003 [81], Tamminga, 2003 [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pédèches, R.; Aubron, C.; Philippon, O.; Bainville, S. An Ecological Reading of Crop–Livestock Interactions—Gers, Southwestern France, 1950 to the Present. Sustainability 2023, 15, 10234. https://doi.org/10.3390/su151310234
Pédèches R, Aubron C, Philippon O, Bainville S. An Ecological Reading of Crop–Livestock Interactions—Gers, Southwestern France, 1950 to the Present. Sustainability. 2023; 15(13):10234. https://doi.org/10.3390/su151310234
Chicago/Turabian StylePédèches, Rémi, Claire Aubron, Olivier Philippon, and Sébastien Bainville. 2023. "An Ecological Reading of Crop–Livestock Interactions—Gers, Southwestern France, 1950 to the Present" Sustainability 15, no. 13: 10234. https://doi.org/10.3390/su151310234
APA StylePédèches, R., Aubron, C., Philippon, O., & Bainville, S. (2023). An Ecological Reading of Crop–Livestock Interactions—Gers, Southwestern France, 1950 to the Present. Sustainability, 15(13), 10234. https://doi.org/10.3390/su151310234