Current Issues and Developments in Cyanobacteria-Derived Biofuel as a Potential Source of Energy for Sustainable Future
Abstract
:1. Introduction
2. Cyanobacteria as Potential Feedstocks for Biofuel Production
3. Role of Cyanobacteria in High-Valued Biofuel
3.1. Biodiesel from Cyanobacteria
3.2. Bioethanol from Cyanobacteria
3.3. Biobutanol from Cyanobacteria
3.4. Biohydrogen from Cyanobacteria
3.5. Biogas Production from Cyanobacteria Waste
4. Present Developments and Future Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vij, R.K.; Subramanian, D.; Pandian, S.; Hari, S. A review of different technologies to produce fuel from micro-algal feedstock. Environ. Technol. Innov. 2021, 22, 101389. [Google Scholar] [CrossRef]
- Feng, S.; Kang, K.; Salaudeen, S.; Ahmadi, A.; He, Q.S.; Hu, Y. Recent Advances in Algae-Derived Biofuels and Bioactive Compounds. Ind. Eng. Chem. Res. 2022, 61, 1232–1249. [Google Scholar] [CrossRef]
- Apollon, W.; Rusyn, I.; Gonzalez-Gamboa, N.; Kuleshova, T.; Vidales-Contreras, A.; Kamraj, S.K. Improvement of zero waste sustainable recovery using microbial energy generation systems: A comprehensive review. Sci. Total Environ. 2022, 817, 153055. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Ding, L.; Ma, J.; Kong, Y. Characteristics of Cyanobacterial Biomass Gasification in Sub- and Supercritical Water. Energy Fuels 2019, 33, 3239–3247. [Google Scholar] [CrossRef]
- Zhang, Y.; Cha, S.; Feng, W.; Xu, G. Energy Sources for Road Transport in the Future. ACS Energy Lett. 2017, 2, 1334–1336. [Google Scholar] [CrossRef] [Green Version]
- Alper, K.; Tekin, K.; Karago, S.; Ragauskas, A.J. Sustainable energy and fuels from biomass: A review focusing on hydrothermal bio-mass processing. Sustain. Energy Fuels 2020, 4, 4390–4414. [Google Scholar] [CrossRef]
- Smith, C.; Hill, A.K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy land-scape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Beer, J.D. Potential for Industrial Energy-Efficiency Improvement in the Long Term; Kluwer Academic: Dordrecht, The Netherlands; Boston, MA, USA, 2000. [Google Scholar]
- Trout, K.; Muttitt, G.; Lafleur, D.; de Graaf, T.V.; Mendelevitch, R.; Mei, L. Existing fossil fuel extraction would warm the world beyond 1.5 °C. Environ. Res. Lett. 2022, 17, 064010. [Google Scholar] [CrossRef]
- Matthews, H.D. A growing commitment to future CO2 emissions. Environ. Res. Lett. 2014, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Jain, V. Fossil Fuels, GHG Emissions and Clean Energy Development: Asian Giants in a Comparative Perspective. Millenn. Asia 2019, 10, 1–24. [Google Scholar] [CrossRef]
- Albuquerque, F.D.; Maraqa, M.A.; Chowdhury, R.; Mauga, T.; Alzard, M. Greenhouse gas emissions associated with road transport projects: Current status, benchmarking, and assessment tools. Transp. Res. Procedia 2020, 48, 2018–2030. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Rombouts, L.J.A.; Hellweg, S.; Frischknecht, R.; Hendriks, A.J.; Van De Meent, D.; Ragas, A.M.J.; Reijnders, L.; Struijs, J. Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products? Environ. Sci. Technol. 2006, 40, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Thomas, V.M.; Graedel, T.E. Research Issues in Sustainable Consumption: Toward an Analytical Framework for Materials and the Environment. Environ. Sci. Technol. 2003, 37, 5383–5388. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. The Transition to Renewable Energy: Make Haste Slowly. Environ. Sci. Technol. 2011, 45, 2527–2528. [Google Scholar] [CrossRef]
- Sharma, S.; Kundu, A.; Basu, S.; Shetti, N.P.; Aminabhavi, T.M. Sustainable environmental management and related biofuel technologies. J. Environ. Manag. 2020, 273, 111096. [Google Scholar] [CrossRef]
- Ullah, K.; Sharma, V.K.; Ahmad, M.; Lv, P.; Krahl, J.; Wang, Z.; Sofia. The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review. Renew Sustain. Energy Rev. 2018, 82, 3992–4008. [Google Scholar] [CrossRef]
- De, S.; Saha, B.; Luque, R. Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived plat-form chemicals into hydrocarbon fuels. Bioresour. Technol. 2015, 178, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Stephen, J.L.; Periyasamy, B. Innovative developments in biofuels production from organic waste materials: A review. Fuel 2018, 214, 623–633. [Google Scholar] [CrossRef]
- Li, Y.; Kesharwani, R.; Sun, Z.; Qin, R.; Dagli, C.; Zhang, M.; Wang, D. Economic viability and environmental impact investi-gation for the biofuel supply chain using co-fermentation technology. Appl. Energy 2020, 259, 114235. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Ramli, N.; Bahrin, E.K.; Abd-Aziz, S. Cellulosic biobutanol by Clostridia: Challenges and improvements. Renew. Sustain. Energy Rev. 2017, 79, 1241–1254. [Google Scholar] [CrossRef]
- In-Na, P.; Lee, J.; Caldwell, G. Living textile biocomposites deliver enhanced carbon dioxide capture. J. Ind. Text. 2021, 51, 5683S–5707S. [Google Scholar] [CrossRef]
- Moreira, D.; Pires, J.C. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresour. Technol. 2016, 215, 371–379. [Google Scholar] [CrossRef]
- Do Nascimento, M.; Rizza, L.S.; Di Palma, A.A.; de los Angeles Dublan, M.; Salerno, G.; Rubio, L.M.; Curatti, L. Cyanobacterial biological nitrogen fixation as a sustainable nitrogen fertilizer for the production of microalgal oil. Algal Res. 2015, 12, 142–148. [Google Scholar] [CrossRef]
- Singh, J.; Dhar, D.W. Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art. Front. Mar. Sci. 2019, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Yashveer, S. Photosynthetic activity and lipid and hydracarbon production by alginate immobilized cells of botryococcus in relation to growth phase. J. Microbiol. Biotechnol. 2003, 13, 687–691. [Google Scholar]
- Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J. Potential of industrial biotechnology with cyanobacteria and eukaryotic micro-algae. Curr. Opin. Biotechnol. 2013, 24, 405–413. [Google Scholar] [CrossRef]
- Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.; Del Borghi, M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. Process Intensif. 2009, 48, 1146–1151. [Google Scholar] [CrossRef]
- Illman, A.; Scragg, A.; Shales, S. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym. Microb. Technol. 2000, 27, 631–635. [Google Scholar] [CrossRef]
- Farrokh, P.; Sheikhpour, M.; Kasaeian, A.; Asadi, H.; Bavandi, R. Cyanobacteria as an eco-friendly resource for biofuel pro-duction: A critical review. Biotechnol. Prog. 2019, 35, e2835. [Google Scholar] [CrossRef]
- Rajneesh; Singh, S.P.; Pathak, J.; Sinha, R.P. Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renew. Sustain. Energy Rev. 2017, 69, 578–595. [Google Scholar] [CrossRef]
- Perera, F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: Solutions exist. Int. J. Environ. Res. Public Health 2018, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Sarsekeyeva, F.; Zayadan, B.K.; Usserbaeva, A.; Bedbenov, V.S.; Sinetova, M.A.; Los, D.A. Cyanofuels: Biofuels from cya-nobacteria, reality and perspectives. Photosynth. Res. 2015, 125, 329–340. [Google Scholar] [CrossRef]
- Demirbas, A. Use of algae as biofuel sources. Energy Convers. Manag. 2010, 51, 2738–2749. [Google Scholar] [CrossRef]
- Sarma, M.K.; Kaushik, S.; Goswami, P. Cyanobacteria: A metabolic power house for harvesting solar energy to produce bio-electricity and biofuels. Biomass-Bioenergy 2016, 90, 187–201. [Google Scholar] [CrossRef]
- Sánchez-Baracaldo, P.; Bianchini, G.; Wilson, J.D.; Knoll, A.H. Cyanobacteria and biogeochemical cycles through earth history. Trends Microbiol. 2022, 30, 143–157. [Google Scholar] [CrossRef]
- Simons, M.J. The Evolution of the Cyanobacterial Posttranslational Clock from a Primitive “Phoscillator”. J. Biol. Rhythm. 2009, 24, 175–182. [Google Scholar] [CrossRef]
- Shoener, D.B.; Schramm, S.M.; Beline, F.; Bernard, O.; Martínez, C.; Plosz, B.G.; Snowling, S.; Valverde-Perez, B.; Wagner, D.; Guest, J.S. Microalgae and cyanobacteria modeling in water resource recovery facilities: A critical review. Water Res. X 2019, 2, 100024. [Google Scholar] [CrossRef]
- Baroukh, C.; Munoz-Tamayo, R.; Steyer, J.-P.; Bernard, O. A state of the art of ~ metabolic networks of unicellular mi-croalgae and cyanobacteria for biofuel production. Metab. Eng. 2015, 30, 49–60. [Google Scholar] [CrossRef]
- Singh, Y.; Gulati, A.; Singh, D.P.; Khattar, J.I.S. Cyanobacterial community structure in hot water springs of Indian North Western Himalayas: A morphological, molecular and ecological approach. Algal Res. 2018, 29, 179–192. [Google Scholar] [CrossRef]
- Gualtieri, P. Morphology of photoreceptor systems in microalgae. Micron 2000, 32, 411–426. [Google Scholar] [CrossRef]
- Shahid, A.; Usman, M.; Atta, Z.; Musharraf, S.G.; Malik, S.; Elkamel, A.; Shahid, M.; Alkhattabi, N.A.; Gull, M.; Mehmood, M.A. Impact of wastewater cultivation on pollutant removal, biomass production, metabolite biosynthesis, and carbon dioxide fixation of newly isolated cyanobacteria in a multiproduct biorefinery paradigm. Bioresour. Technol. 2021, 333, 125194. [Google Scholar] [CrossRef]
- Sood, A.; Renuka, N.; Prasanna, R.; Ahluwalia, A.S. Cyanobacteria as potential options for wastewater treatment. In Phytoremediation; Ansari, A.A., Ed.; Springer: Cham, Switzerland, 2015; Volume 2. [Google Scholar] [CrossRef]
- Badr, O.A.M.; EL-Shawaf, I.I.S.; El-Garhy, H.A.S.; Moustafa, M.M.A.; Ahmed-Farid, O.A. Antioxidant activity and phyco remediation ability of four cyanobacterial isolates obtained from a stressed aquatic system. Mol. Phylogenetics Evol. 2019, 134, 300–310. [Google Scholar] [CrossRef]
- Kondi, V.; Sabbani, V.; Alluri, R.; Karumuri, T.S.K.; Chawla, P.; Dasrapur, S.; Tiwari, O.N. Chapter 4—Cyanobacteria as potential bio resources for multifaceted sustainable utilization. New Future Dev. Microb. Biotechnol. Bioeng. 2022, 2022, 73–87. [Google Scholar]
- Bighiu, M.A.; Goedkoop, W. Interactions with freshwater biofilms cause rapid removal of common herbicides through degradation—Evidence from microcosm studies. Environ. Sci. Process. Impacts 2020, 23, 66–72. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Colla, L.M.; Reinehr, C.O.; Reichert, C.; Costa, J.A.V. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 2007, 98, 1489–1493. [Google Scholar] [CrossRef]
- Knoot, C.J.; Ungerer, J.; Wangikar, P.P.; Pakrasi, H.B. Cyanobacteria: Promising biocatalysts for sustainable chemical production. J. Biol. Chem. 2018, 293, 5044–5052. [Google Scholar] [CrossRef] [Green Version]
- Subashchandrabose, S.R.; Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnol. Adv. 2011, 29, 896–907. [Google Scholar] [CrossRef]
- Singh, J.; Gu, S. Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 2010, 14, 2596–2610. [Google Scholar] [CrossRef]
- Scott, S.A.; Davey, M.P.; Dennis, J.S.; Horst, I.; Howe, C.J.; Lea-Smith, D.J.; Smith, A.G. Biodiesel from algae: Challenges and prospects. Curr. Opin. Biotechnol. 2010, 21, 277–286. [Google Scholar] [CrossRef]
- Mendoza, A.; Vicente, G.; Bautista, L.F.; Morales, V. Opportunities for biomass through the isolation of its components and biodiesel production. Green Process. Synth. 2015, 4, 97–102. [Google Scholar]
- Kim, B.-H.; Kang, Z.; Ramanan, R.; Choi, J.-E.; Cho, D.-H.; Oh, H.-M.; Kim, H.-S. Nutrient Removal and Biofuel Production in High Rate Algal Pond Using Real Municipal Wastewater. J. Microbiol. Biotechnol. 2014, 24, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- El-Sheekh, M.M.; El-Shouny, W.A.; Osman, M.E.; El-Gammal, E.W.; El-Gammal, E. Treatment of sewage and industrial wastewater effluents by the cyanobacteria Nostoc muscorum and Anabaena subcylinderica. J. Water Chem. Technol. 2014, 36, 190–197. [Google Scholar] [CrossRef]
- Tsolcha, O.N.; Tekerlekopoulou, A.G.; Akratos, C.S.; Aggelis, G.; Genitsaris, S.; Moustaka-Gouni, M.; Vayenas, D.V. Agroindustrial Wastewater Treatment with Simultaneous Biodiesel Production in Attached Growth Systems Using a Mixed Microbial Culture. Water 2018, 10, 1693. [Google Scholar] [CrossRef] [Green Version]
- Arbib, Z.; Ruiz, J.; Álvarez-Díaz, P.; Garrido-Pérez, C.; Perales, J. Capability of different microalgae species for phytoremedi-ation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res. 2014, 49, 465–474. [Google Scholar] [CrossRef]
- Anjaneyulu, B.; Kaki, S.S.; Kanjilal, S.; Reddy, J.R.C.; Ravinder, T.; Prasad, R.B.N.; Rao, B.V.S.K. Physico-chemical characterization and biodiesel preparation from ailanthus excelsa seed oil, Energy Sources. Part A Recovery Util. Environ. Eff. 2017, 8, 811–817. [Google Scholar]
- Tabatabai, B.; Chen, H.; Lu, J.; Giwa-Otusajo, J.; McKenna, A.M.; Shrivastava, A.K.; Sitther, V. Fremyella diplosiphon as a Biodiesel Agent: Identification of Fatty Acid Methyl Esters via Microwave-Assisted Direct In Situ Transesterification. BioEnergy Res. 2018, 11, 528–537. [Google Scholar] [CrossRef]
- de Oliveira, D.T.; Vasconcelos, C.T.; Feitosa, A.M.T.; Aboim, J.B.; de Oliveira, A.D.N.; Xavier, L.P.; Santos, A.S.; Gonçalves, E.C.; da Rocha Filho, G.N.; do Nascimento, L.A.S. Lipid profile analysis of three new amazonian cyanobacteria as potential sources of biodiesel. Fuel 2018, 234, 785–788. [Google Scholar] [CrossRef]
- Johnson, T.J.; Jahandideh, A.; Johnson, M.D.; Fields, K.H.; Richardson, J.W.; Muthukumarappan, K.; Cao, Y.; Gu, Z.; Halfmann, C.; Zhou, R.; et al. Producing next-generation biofuels from filamentous cyanobacteria: An economic feasibility analysis. Algal Res. 2016, 20, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Oluwoye, I.; Altarawneh, M.; Gore, J.; Dlugogorski, B.Z. Products of incomplete combustion from biomass reburning. Fuel 2020, 274, 117805. [Google Scholar] [CrossRef]
- Rulli, M.C.; Bellomi, D.; Cazzoli, A.; De Carolis, G.; D’odorico, P. The water-land-food nexus of first-generation biofuels. Sci. Rep. 2016, 6, 22521. [Google Scholar] [CrossRef] [Green Version]
- Bhuiy, M.M.K.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Azad, A.K.; Hazrat, M.A. Second generation biodiesel: Potential alternative toedible oil-derived biodiesel. Energy Procedia 2014, 61, 1969–1972. [Google Scholar] [CrossRef] [Green Version]
- Leong, W.H.; Lim, J.W.; Lam, M.K.; Uemura, Y.; Ho, Y.C. Third generation biofuels: A nutritional per-spective in enhancing microbial lipid production. Renew Sustain. Energy Rev. 2008, 91, 950–961. [Google Scholar] [CrossRef]
- Abdullah, B.; Muhammad, S.A.F.S.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.A. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Maliha, A.; Abu-Hijleh, B. A review on the current status and post-pandemic prospects of third-generation biofuels. Energy Syst. 2022. [Google Scholar] [CrossRef]
- Mahyari, Z.F.; Khorasanizadeh, Z.; Khanali, M.; Mahyari, K.F. Biodiesel production from slaughter wastes of broiler chicken: A potential survey in Iran. SN Appl. Sci. 2021, 3, 57. [Google Scholar] [CrossRef]
- AKanakdande, P.; Khobragade, C.N. Biodiesel synthesis from non edible oil using agro waste and evaluation of its physicochemical properties. Int. J. Eviron. Sci. Technol. 2020, 17, 3785–3800. [Google Scholar]
- Furtado, A.; Lupoi, J.S.; Hoang, N.V.; Healey, A.; Singh, S.; Simmons, B.A.; Henry, R.J. Modifying plants for biofuel and biomaterial production. Plant Biotechnol. J. 2014, 12, 1246–1258. [Google Scholar] [CrossRef]
- Rezki, B.; Essamlali, Y.; Aadil, M.; Semlal, N.; Zahouily, M. Biodiesel production from rapeseed oil and low free fatty acid waste cooking oil using a cesium modified natural phosphate catalyst. RSC Adv. 2020, 10, 41065–41077. [Google Scholar] [CrossRef]
- Hachicha, R.; Elleuch, F.; Ben Hlima, H.; Dubessay, P.; de Baynast, H.; Delattre, C.; Pierre, G.; Hachicha, R.; Abdelkafi, S.; Michaud, P.; et al. Biomolecules from microalgae and cyanobacteria: Applications and market survey. Appl. Sci. 2022, 12, 1924. [Google Scholar] [CrossRef]
- Velmurugan, R.; Incharoensakdi, A. Metabolic transformation of cyanobacteria for biofuel production. Chemosphere 2022, 299, 134342. [Google Scholar] [CrossRef]
- Peng, L.; Lei, L.; Xiao, L.; Han, B. Cyanobacterial removal by a red soil-based flocculant and its effect on zooplankton: An experiment with deep enclosures in a tropical reservoir in China. Environ. Sci. Pollut. Res. 2018, 26, 30663–30674. [Google Scholar] [CrossRef] [Green Version]
- Vandamme, D.; Foubert, I.; Muylaert, K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013, 31, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Quintana, N.; Van der Kooy, F.; Van de Rhee, M.D.; Voshol, G.P.; Verpoorte, R. Renewable energy from Cyanobacteria: Energy production optimization by metabolic pathway engineering. Appl. Microbiol. Biotechnol. 2011, 91, 471–490. [Google Scholar] [CrossRef] [Green Version]
- Sandrini, G.; Matthijs, H.C.P.; Verspagen, J.M.H.; Muyzer, G.; Huisman, J. Genetic diversity of inorganic carbon uptake systems causes variation in CO2 response of the cyanobacterium Microcystis. ISME J. 2013, 8, 589–600. [Google Scholar] [CrossRef] [Green Version]
- Zulqarnain; Yusoff, M.H.M.; Ayoub, M.; Jusoh, N.; Abdullah, A.Z. The Challenges of a Biodiesel Implementation Program in Malaysia. Processes 2020, 8, 1244. [Google Scholar] [CrossRef]
- Krishania, N.; Rajak, U.; Verma, T.N.; Birru, K.A.; Pugazhendhi, A. Effect of microalgae, tyre pyrolysis oil and Jatropha bio-diesel enriched with diesel fuel on performance and emission characteristics of CI engine. Fuel 2020, 278, 118252. [Google Scholar] [CrossRef]
- Agarwal, P.; Soni, R.; Kaur, P.; Madan, A.; Mishra, R.; Pandey, J.; Singh, S.; Singh, G. Cyanobacteria as a Promising Alternative for Sustainable Environment: Synthesis of Biofuel and Biodegradable Plastics. Front. Microbiol. 2022, 13, 939347. [Google Scholar] [CrossRef]
- Anahas, A.M.P.; Muralitharan, G. Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers. Manag. 2018, 157, 423–437. [Google Scholar] [CrossRef]
- Sivagurulingam, A.P.A.; Sivanandi, P.; Pandian, S. Isolation, mass cultivation, and biodiesel production potential of marine microalgae identified from Bay of Bengal. Environ. Sci. Pollut. Res. 2022, 29, 6646–6655. [Google Scholar] [CrossRef]
- Anahas, A.M.P.; Muralitharan, G. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles. Bioresour. Technol. 2015, 184, 9–17. [Google Scholar] [CrossRef]
- Sharafi, H.; Fooladi, J.; Tabatabaei, M.; Heravi, M.M.; Memar, H.R. Lipid production capacity of a newly characterized cyanobacterial strain synechocystis sp. MH01: A comparative performance evaluation of cyanobacterial lipid-based biodiesel. Iran. J. Biotechnol. 2021, 19, e2313. [Google Scholar]
- Luque, R.; Lovett, J.C.; Datta, B.; Clancy, J.; Campelo, J.M.; Romero, A.A. Biodiesel as feasible petrol fuel replacement: A multidisciplinary overview. Energy Environ. Sci. 2010, 3, 1706–1721. [Google Scholar] [CrossRef]
- Li, R.; Watanabe, M.M. Fatty acid profiles and their chemotaxonomy in planktonic species of Anabaena (Cyanobacteria) with straight trichomes. Phytochemistry 2001, 57, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Jawaharraj, K.; Karpagam, R.; Ashokkumar, B.; Kathiresan, S.; Varalakshmi, P. Green renewable energy production from Myxosarcina sp.: Media optimization and assessment of biodiesel fuel properties. RSC Adv. 2015, 5, 51149–51157. [Google Scholar] [CrossRef]
- Aboim, J.B.; Oliveira, D.; Ferreira, J.E.; Siqueira, A.S.; Dall’Agnol, L.T.; Filho, G.N.R.; Gonçalves, E.C.; Nascimento, L.A. Determination of biodiesel properties based on a fatty acid profile of eight Amazon cyanobacterial strains grown in two different culture media. RSC Adv. 2016, 6, 109751–109758. [Google Scholar] [CrossRef]
- Converti, A.; Oliveira, R.P.; Torres, B.R.; Lodi, A.; Zilli, M. Biogas production and valorization by means of a two-step bio-logical process. Bioresour. Technol. 2009, 100, 5771–5776. [Google Scholar] [CrossRef]
- Sánchez, Á.; Maceiras, R.; Cancela, Á.; Pérez, A. Culture aspects of Isochrysis galbana for biodiesel production. Appl. Energy 2013, 101, 192–197. [Google Scholar] [CrossRef]
- Jahromi, K.G.; Koochi, Z.H.; Kavoosi, G.; Shahsavar, A. Manipulation of fatty acid profle and nutritional quality of chlorella vulgaris by supplementing with citrus peel fatty acid. Sci. Rep. 2022, 12, 8151. [Google Scholar] [CrossRef]
- Catalanotti, C.; Yang, W.; Posewitz, M.C.; Grossman, A.R. Fermentation metabolism and its evolution in algae. Front. Plant Sci. 2013, 4, 150. [Google Scholar] [CrossRef] [Green Version]
- Eshaq, F.S.; Ali, M.N.; Mohd, M.K. Production of bioethanol from next generation feed-stock alga Spirogyra species. Int. J. Eng. Sci. Technol. 2011, 3, 1749–1755. [Google Scholar]
- Adams, J.M.; Gallagher, J.A.; Donnison, I.S. Fermentation study on Saccharina latissima for bioethanol production consid-ering variable pre-treatments. J. Appl. Phycol. 2009, 21, 569–574. [Google Scholar] [CrossRef]
- Wang, M.; Luan, G.; Lu, X. Engineering ethanol production in a marine cyanobacterium Synechococcus sp. PCC7002 through simultaneously removing glycogen synthesis genes and introducing ethanolgenic cassettes. J. Biotechnol. 2020, 317, 1–4. [Google Scholar] [CrossRef]
- Bautista, L.F.; Vicente, G.; Mendoza, A.; González, S.; Morales, V. Enzymatic production of biodiesel from Nannochloropsis gaditana microalgae using immobilized lipases in mesoporous materials. Energy Fuels 2015, 29, 4981–4989. [Google Scholar] [CrossRef]
- Hwang, J.-H.; Church, J.; Lee, S.-J.; Park, J.; Lee, W.H. Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environ. Eng. Sci. 2016, 33, 882–897. [Google Scholar] [CrossRef] [Green Version]
- Halim, R.; Danquah, M.K.; Webley, P.A. Extraction of oil from microalgae for biodiesel production: A review. Biotechnol. Adv. 2012, 30, 709–732. [Google Scholar] [CrossRef]
- Tesfaw, A.; Assefa, F. Current trends in bioethanol production by Saccharomyces cerevisiae: Substrate, inhibitor reduction, growth variables, coculture, and immobilization. Int. Sch. Res. Not. 2014, 8, 532852. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Bajar, S.; Bishnoi, N.R. Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel 2014, 116, 699–702. [Google Scholar] [CrossRef]
- Brandt, B.A.; García-Aparicio, M.D.; Görgens, J.F.; Willem, H.; Zyl, V. Rational engineering of saccharomyces cerevisiae towards improved tolerance to multiple inhibitors in lignocellulose fermentations. Biotechnol. Biofuels 2021, 14, 173. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, J.-S.; Chen, Y.-P.; Zhang, H.-D.; Zheng, X.-X.; Zhang, X.-M.; Bai, F.-W. Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium. J. Biotechnol. 2012, 160, 229–235. [Google Scholar] [CrossRef]
- Sivaramakrishnan, R.; Suresh, S.; Kanwal, S.; Ramadoss, G.; Ramprakash, B.; Incharoensakdi, A. Microalgal biorefinery concepts’ developments for biofuel and bioproducts: Current perspective and bottlenecks. Int. J. Mol. Sci. 2022, 23, 2623. [Google Scholar] [CrossRef]
- Kushwaha, D.; Srivastava, N.; Prasad, D.; Mishra, P.K.; Upadhyay, S.N. Biobutanol production from hydrolysates of cyano-bacteria Lyngbya limnetica and Oscillatoria obscura. Fuel 2020, 271, 117583. [Google Scholar] [CrossRef]
- Freire, D.V.; Ketzer, F.; Rösch, C. Advanced metabolic engineering approaches and renewable energy to improve environmental benefts of algal biofuels: LCA of large scale biobutanol production with cyanobacteria Synechocystis PCC6803. BioEnergy Res. 2022, 15, 1515–1530. [Google Scholar] [CrossRef]
- Sharma, A.; Arya, S.K. Hydrogen from algal biomass: A review of production process. Biotechnol. Rep. 2017, 15, 63–69. [Google Scholar] [CrossRef]
- Abo-Hashesh, M.; Wang, R.; Hallenbeck, P.C. Metabolic engineering in dark fermentative hydrogen production; theory and practice. Bioresour. Technol. 2011, 102, 8414–8422. [Google Scholar] [CrossRef]
- Beer, L.L.; Boyd, E.S.; Peters, J.W.; Posewitz, M.C. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol. 2009, 20, 264–271. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Singh, R.; Syed, A.; Pal, D.B.; Elgorban, A.M.; Kushwaha, D.; Mishra, P.; Gupta, V.K. Co-fermentation of residual algal biomass and glucose under the influence of Fe3O4 nanoparticles to enhance biohydrogen production under dark mode. Bioresour. Technol. 2021, 342, 126034. [Google Scholar] [CrossRef]
- Zaidi, A.A.; RuiZhe, F.; Shi, Y.; Khan, S.Z.; Mushtaq, K. Nanoparticles augmentation on biogas yield from microalgal biomass anaerobic digestion. Int. J. Hydrogen Energy 2018, 43, 14202–14213. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Stöckel, J.; Min, H.; Sherman, L.A.; Pakrasi, H.B. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat. Commun. 2010, 1, 139. [Google Scholar] [CrossRef] [Green Version]
- Kamshybayeva, G.K.; Kossalbayev, B.D.; Sadvakasova, A.K.; Zayadan, B.K.; Bozieva, A.M.; Dunikov, D.; Alwasel, S.; Allakhverdiev, S.I. Strategies and economic feasibilities in cyanobacterial hydrogen production. Int. J. Hydrogen Energy 2022, 47, 29661–29684. [Google Scholar] [CrossRef]
Type | Nature | Merits/Demerits | References |
---|---|---|---|
Conventional Energy Sources | Wood and plant residues (solid fuel) | Undergoes incomplete combustion; produces CO, CO2, SO2, NO2, and particulate material, which are injurious to health and environment | [62] |
First generation—Biofuel derived from edible plants, such as sugarcane | Competes with edible crops, resulting in the high price of eatable items as well as feedstocks | [63] | |
Second generation—Biofuel derived from non-edible parts of the plants, includes agricultural waste and switch grasses | Demands excessive use of land, water, chemical fertilizers, and pesticides; non-fuel parts discarded, causing a disposal issue | [64] | |
Advanced Energy Sources | Third generation—Biofuel derived with the help of traditional microorganisms (algae, yeast, and bacteria) | Does not compete with food crops; no demands of land, fertilizers, and pesticides; minimum use of land and water bodies | [65] |
Fourth generation—Biofuel derived with the help of genetically modified microorganisms with targeted efficiency | An extensive increase in biofuel production due to the modification of targeted genes of the microbial cells | [66] |
Cyanobacteria Species/Strain | Product(s) | Biosynthetic Pathway/ Mechanism |
---|---|---|
Spirulina platensis, Anacystis nidulans | Alkanes (C15–C17) | Photosynthesis |
Synechocystis sp. | Butanol | Fermentation |
Nostoc punctriforme | Biodisel | Transesterification |
Synechococcus strain | Bioethanol | Fermentation |
Gloeocapsa alpicola, Anabaena sp. | Biohydrogen | Fermentation |
Lyngbya sp. | Biogas | Co-digestion with manure |
Nature of Stored Macromolecules | Calorific Value (kJ/g) | Derived Fuel |
---|---|---|
Carbohydrates | 26.72 | Bioethanol |
32.5 | Biobutanol | |
Lipid/fatty acids | 37.27 | Biodiesel |
Carbohydrates and proteins | 150.00 | Biohydrogen |
43.00 | Biogas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, K.B.; Kaushalendra; Verma, S.; Lalnunpuii, R.; Rajan, J.P. Current Issues and Developments in Cyanobacteria-Derived Biofuel as a Potential Source of Energy for Sustainable Future. Sustainability 2023, 15, 10439. https://doi.org/10.3390/su151310439
Singh KB, Kaushalendra, Verma S, Lalnunpuii R, Rajan JP. Current Issues and Developments in Cyanobacteria-Derived Biofuel as a Potential Source of Energy for Sustainable Future. Sustainability. 2023; 15(13):10439. https://doi.org/10.3390/su151310439
Chicago/Turabian StyleSingh, Kshetrimayum Birla, Kaushalendra, Savita Verma, Rowland Lalnunpuii, and Jay Prakash Rajan. 2023. "Current Issues and Developments in Cyanobacteria-Derived Biofuel as a Potential Source of Energy for Sustainable Future" Sustainability 15, no. 13: 10439. https://doi.org/10.3390/su151310439
APA StyleSingh, K. B., Kaushalendra, Verma, S., Lalnunpuii, R., & Rajan, J. P. (2023). Current Issues and Developments in Cyanobacteria-Derived Biofuel as a Potential Source of Energy for Sustainable Future. Sustainability, 15(13), 10439. https://doi.org/10.3390/su151310439