Investigating the Role of Perceived Risk, Perceived Security and Perceived Trust on Smart m-Banking Application Using SEM
Abstract
:1. Introduction
2. Literature Review
2.1. Mobile Banking
2.2. Related Works
- Security and privacy concerns: Mobile banking involves the transfer of sensitive financial information over the internet, which can raise concerns about the security and privacy of these transactions [48].
- Technological barriers: Some users may be hesitant to adopt mobile banking due to a lack of familiarity with the technology or due to issues with device compatibility or internet connectivity [49].
- Limited availability of services: Mobile banking services may not be available in all areas or may not offer all of the features and functions that users require [50].
- Cost: Mobile banking services may require users to pay fees for certain transactions, which can be a barrier to adoption for some users [51].
- Trust: Users may be hesitant to adopt mobile banking if they do not feel that their financial information is secure or if they do not trust the service provider [52].
3. The Proposed Research Model and Hypotheses Development
3.1. Perceived Risk
3.2. Perceived Trust
3.3. Perceived Security
3.4. Perceived Usefulness
3.5. Perceived Ease of Use
3.6. Social Influence
3.7. Service Quality
3.8. Attitude toward Use
4. Methodology
Measurements within the Model
5. Results and Analysis
5.1. Reliability Analysis
5.2. Construct Validity
5.3. Validity of Convergent
5.4. Analysis of the Structural Model
6. Discussion
Research and Practical Contributions and Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almaiah, M.; Al-Khasawneh, A.; Althunibat, A.; Khawatreh, S. Mobile government adoption model based on combining GAM and UTAUT to explain factors according to adoption of mobile government services. Int. J. Interact. Mob. Technol. 2020, 14, 199–225. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Amir, H.; Ahmed, M. The role of university switching costs, perceived service quality, perceived university image and student satisfaction in shaping student loyalty. J. Mark. High. Educ. 2021, 31, 1–22. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Rahmi, A.; Alturise, F.; Hassan, L.; Lutfi, A.; Alrawad, M.; Alkhalaf, S.; Al-Rahmi, W.M.; Al-sharaieh, S.; Aldhyani, T.H. Investigating the Effect of Perceived Security, Perceived Trust, and Information Quality on Mobile Payment Usage through Near-Field Communication (NFC) in Saudi Arabia. Electronics 2022, 11, 3926. [Google Scholar] [CrossRef]
- Althunibat, A.; Binsawad, M.; Almaiah, M.A.; Almomani, O.; Alsaaidah, A.; Al-Rahmi, W.; Seliaman, M.E. Sustainable applications of smart-government services: A model to understand smart-government adoption. Sustainability 2021, 13, 3028. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Nasereddin, Y. Factors influencing the adoption of e-government services among Jordanian citizens. Electron. Gov. Int. J. 2020, 16, 236–259. [Google Scholar] [CrossRef]
- Lutfi, A.; Alsyouf, A.; Almaiah, M.A.; Alrawad, M.; Abdo, A.A.; Al-Khasawneh, A.L.; Ibrahim, N.; Saad, M. Factors influencing the adoption of big data analytics in the digital transformation era: Case study of Jordanian SMEs. Sustainability 2022, 14, 1802. [Google Scholar] [CrossRef]
- Achsan, W.; Achsani, N.A.; Bandono, B. The Demographic and Behavior Determinant of Credit Card Default in Indonesia. Signifikan J. Ilmu Ekon. 2022, 11, 43–56. [Google Scholar] [CrossRef]
- Afandi, A.; Fadhillah, A.; Sari, D.P. Pengaruh Persepsi Kegunaan, Persepsi Kemudahan dan Persepsi Kepercayaan Terhadap Niat Menggunakan E-Wallet Dengan Sikap Sebagai Variabel Intervening. Innov. J. Soc. Sci. Res. 2021, 1, 568–577. [Google Scholar]
- Almaiah, M.A.; Al-Khasawneh, A.; Althunibat, A. Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic. Educ. Inf. Technol. 2020, 25, 5261–5280. [Google Scholar] [CrossRef]
- Ahmed, W.; Rasool, A.; Javed, A.R.; Kumar, N.; Gadekallu, T.R.; Jalil, Z.; Kryvinska, N. Security in next generation mobile payment systems: A comprehensive survey. IEEE Access 2021, 9, 115932–115950. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Jalil, M.A.; Man, M. Extending the TAM to examine the effects of quality features on mobile learning acceptance. J. Comput. Education. 2016, 3, 453–485. [Google Scholar] [CrossRef]
- Alamoudi, H. Examining Retailing Sustainability in the QR Code-Enabled Mobile Payments Context During the COVID-19 Pandemic. Int. J. Cust. Relatsh. Mark. Manag. (IJCRMM) 2022, 13, 1–22. [Google Scholar] [CrossRef]
- Asravor, R.K.; Boakye, A.N.; Essuman, J. Adoption and intensity of use of mobile money among smallholder farmers in rural Ghana. Inf. Dev. 2021, 38, 204–217. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Alismaiel, O.A. Examination of factors influencing the use of mobile learning system: An empirical study. Educ. Inf. Technol. 2019, 24, 885–909. [Google Scholar] [CrossRef]
- Baabdullah, A.M.; Alalwan, A.A.; Rana, N.P.; Kizgin, H.; Patil, P. Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. Int. J. Inf. Manag. 2019, 44, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Balakrishnan, V.; Shuib, N.L.M. Drivers and inhibitors for digital payment adoption using the Cashless Society Readiness-Adoption model in Malaysia. Technol. Soc. 2021, 65, 101554. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Hajjej, F.; Ali, A.; Pasha, M.F.; Almomani, O. A novel hybrid trustworthy decentralized authentication and data preservation model for digital healthcare IoT based CPS. Sensors 2022, 22, 1448. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Man, M. Empirical investigation to explore factors that achieve high quality of mobile learning system based on students’ perspectives. Eng. Sci. Technol. Int. J. 2016, 19, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Jaiswal, D.; Kant, R. Augmenting bank service quality dimensions: Moderation of perceived trust and perceived risk. Int. J. Product. Perform. Manag. 2021, 72, 469–490. [Google Scholar] [CrossRef]
- Bojjagani, S.; Sastry, V.N.; Chen, C.M.; Kumari, S.; Khan, M.K. Systematic survey of mobile payments, protocols, and security infrastructure. J. Ambient. Intell. Humaniz. Comput. 2021, 14, 609–654. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al Mulhem, A. Analysis of the essential factors affecting of intention to use of mobile learning applications: A comparison between universities adopters and non-adopters. Educ. Inf. Technol. 2019, 24, 1433–1468. [Google Scholar] [CrossRef]
- Caldeira, T.A.; Ferreira, J.B.; Freitas, A.; Falcão, R.P.D.Q. Adoption of Mobile Payments in Brazil: Technology Readiness, Trust and Perceived Quality. Braz. Bus. Rev. 2021, 18, 415–432. [Google Scholar]
- Cao, T. The study of factors on the small and medium enterprises’ adoption of mobile payment: Implications for the COVID-19 Era. Front. Public Health 2021, 9, 646592. [Google Scholar] [CrossRef] [PubMed]
- Almaiah, M.A.; Al-Khasawneh, A. Investigating the main determinants of mobile cloud computing adoption in university campus. Educ. Inf. Technol. 2020, 25, 3087–3107. [Google Scholar] [CrossRef]
- Coskun, E.; Ferman, M. Factors Encouraging and Hindering A Wider Acceptance And More Frequent Utilization Of Mobile Payment Systems: An Empirical Study Among Mobile Phone Subscribers In Turkey. J. Manag. Mark. Logist. 2021, 8, 164–183. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Almaiah, M.A.; Jalil, M.M. Investigating Students’ Perceptions on Mobile Learning Services. Int. J. Interact. Mob. Technol. 2014, 8, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Dogra, P.; Kaushal, A. The impact of Digital Marketing and Promotional Strategies on attitude and purchase intention towards financial products and service: A Case of emerging economy. J. Mark. Commun. 2022, 29, 403–430. [Google Scholar] [CrossRef]
- Dospinescu, O.; Anastasiei, B.; Dospinescu, N. Key factors determining the expected benefit of customers when using bank cards: An analysis on millennials and generation Z in Romania. Symmetry 2019, 11, 1449. [Google Scholar] [CrossRef] [Green Version]
- Duggal, E.; Verma, H.V. Offline to online shopping: Shift in volition or escape from violation. J. Indian Bus. Res. 2022, 14, 339–357. [Google Scholar] [CrossRef]
- Lutfi, A.; Saad, M.; Almaiah, M.A.; Alsaad, A.; Al-Khasawneh, A.; Alrawad, M.; Alsyouf, A.; Al-Khasawneh, A.L. Actual use of mobile learning technologies during social distancing circumstances: Case study of King Faisal University students. Sustainability 2022, 14, 7323. [Google Scholar] [CrossRef]
- Gbongli, K.; Xu, Y.; Amedjonekou, K.M. Extended technology acceptance model to predict mobile-based money acceptance and sustainability: A multi-analytical structural equation modeling and neural network approach. Sustainability 2019, 11, 3639. [Google Scholar] [CrossRef] [Green Version]
- Geebren, A.; Jabbar, A.; Luo, M. Examining the role of consumer satisfaction within mobile eco-systems: Evidence from mobile banking services. Comput. Hum. Behav. 2021, 114, 106584. [Google Scholar] [CrossRef]
- Gerbing, D.W.; Anderson, J.C. Monte Carlo evaluations of goodness of fit indices for structural equation models. Sociol. Methods Res. 1992, 21, 132–160. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al Mulhem, A. Thematic analysis for classifying the main challenges and factors influencing the successful implementation of e-learning system using NVivo. Int. J. Adv. Trends Comput. Sci. Eng. 2020, 9, 142–152. [Google Scholar] [CrossRef]
- Gupta, S.; Dhingra, S. Modeling the key factors influencing the adoption of mobile financial services: An interpretive structural modeling approach. J. Financ. Serv. Mark. 2021, 27, 96–110. [Google Scholar] [CrossRef]
- Ntsiful, A.; Kwarteng, M.A.; Jibril, A.B.; Popesko, B.; Pilik, M. Factors Driving the Adoption of Mobile Banking App: An Empirical Assessment in the Less Digitalized Economy. In Reimagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation, Proceedings of the IFIP WG 8.6 International Conference on Transfer and Diffusion of IT (TDIT 2020), Tiruchirappalli, India, 18–19 December 2020; Proceedings, Part II; Springer International Publishing: Cham, Switzerland, 2020; pp. 114–125. [Google Scholar]
- Nair, A.B.; Prabhu, K.S.; Aditya, B.R.; Durgalashmi, C.V.; Prabhu, A.S. Study on the usage of mobile banking application during COVID-19 pandemic. Webology 2021, 18, 190–207. [Google Scholar] [CrossRef]
- Kumar, A.; Dhingra, S.; Batra, V.; Purohit, H. A framework of mobile banking adoption in India. J. Open Innov. Technol. Mark. Complex. 2020, 6, 40. [Google Scholar] [CrossRef]
- Alnemer, H.A. Determinants of digital banking adoption in the Kingdom of Saudi Arabia: A technology acceptance model approach. Digit. Business. 2022, 2, 100037. [Google Scholar] [CrossRef]
- Jouda, H. Expanding TAM and investigating the factors that effect consumer intention to adopt mobile banking in Palestine. Financ. Internet Q. 2020, 16, 29–50. [Google Scholar] [CrossRef]
- Fülöp, M.T.; Topor, D.I.; Ionescu, C.A.; Căpușneanu, S.; Breaz, T.O.; Stanescu, S.G. Fintech accounting and Industry 4.0: Future-proofing or threats to the accounting profession? J. Bus. Econ. Manag. 2022, 23, 997–1015. [Google Scholar] [CrossRef]
- Cordoş, G.S.; Fülöp, M.T. Understanding audit reporting changes: Introduction of Key Audit Matters. Account. Manag. Inf. Syst. Contab. Inform. Gestiune 2015, 14, 128–152. [Google Scholar]
- Hair, J.F., Jr.; Howard, M.C.; Nitzl, C. Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. J. Bus. Res. 2020, 109, 101–110. [Google Scholar] [CrossRef]
- Kratschmann, M.; Dütschke, E. Selling the sun: A critical review of the sustainability of solar energy marketing and advertising in Germany. Energy Res. Soc. Sci. 2021, 73, 101919. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Ayouni, S.; Hajjej, F.; Lutfi, A.; Almomani, O.; Awad, A.B. Smart Mobile Learning Success Model for Higher Educational Institutions in the Context of the COVID-19 Pandemic. Electronics 2022, 11, 1278. [Google Scholar] [CrossRef]
- Lew, S.; Tan, G.W.H.; Loh, X.M.; Hew, J.J.; Ooi, K.B. The disruptive mobile wallet in the hospitality industry: An extended mobile technology acceptance model. Technol. Soc. 2020, 63, 101430. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Molinillo, S.; Japutra, A. Exploring the determinants of intention to use P2P mobile payment in Spain. Inf. Syst. Manag. 2021, 38, 165–180. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Singh, N.; Kalinic, Z.; Carvajal-Trujillo, E. Examining the determinants of continuance intention to use and the moderating effect of the gender and age of users of NFC mobile payments: A multi-analytical approach. Inf. Technol. Manag. 2021, 22, 133–161. [Google Scholar] [CrossRef]
- Luna, I.R.D.; Montoro-Ríos, F.; Liébana-Cabanillas, F.; Luna, J.G.D. NFC technology acceptance for mobile payments: A Brazilian Perspective. Rev. Bras. Gestão Negócio 2017, 19, 82–103. [Google Scholar]
- Malaquias, R.F.; Hwang, Y. Mobile banking use: A comparative study with Brazilian and US participants. Int. J. Inf. Manag. 2019, 44, 132–140. [Google Scholar] [CrossRef]
- Tatnall, A. Editorial for EAIT issue 2, 2019. Educ. Inf. Technol. 2019, 24, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Migliore, G.; Wagner, R.; Cechella, F.S.; Liébana-Cabanillas, F. Antecedents to the Adoption of Mobile Payment in China and Italy: An Integration of UTAUT2 and Innovation Resistance Theory. Inf. Syst. Front. 2022, 24, 2099–2122. [Google Scholar] [CrossRef] [PubMed]
- Almaiah, M.A.; Hajjej, F.; Lutfi, A.; Al-Khasawneh, A.; Shehab, R.; Al-Otaibi, S.; Alrawad, M. Explaining the factors affecting students’ attitudes to using online learning (Madrasati Platform) during COVID-19. Electronics 2022, 11, 973. [Google Scholar] [CrossRef]
- Adil, M.; Khan, R.; Almaiah, M.A.; Binsawad, M.; Ali, J.; Al Saaidah, A.; Ta, Q.T. An efficient load balancing scheme of energy gauge nodes to maximize the lifespan of constraint oriented networks. IEEE Access 2020, 8, 148510–148527. [Google Scholar] [CrossRef]
- Mohd Thas Thaker, H.; Mohd Thas Thaker, M.A.; Khaliq, A.; Allah Pitchay, A.; Iqbal Hussain, H. Behavioural intention and adoption of internet banking among clients’ of Islamic banks in Malaysia: An analysis using UTAUT2. J. Islam. Mark. 2021, 13, 1171–1197. [Google Scholar] [CrossRef]
- Mombeuil, C.; Uhde, H. Relative convenience, relative advantage, perceived security, perceived privacy, and continuous use intention of China’s WeChat Pay: A mixed-method two-phase design study. J. Retail. Consum. Serv. 2021, 59, 102384. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Alfaisal, R.; Salloum, S.A.; Hajjej, F.; Shishakly, R.; Lutfi, A.; Alrawad, M.; Al Mulhem, A.; Alkhdour, T.; Al-Maroof, R.S. Measuring institutions’ adoption of artificial intelligence applications in online learning environments: Integrating the innovation diffusion theory with technology adoption rate. Electronics 2022, 11, 3291. [Google Scholar] [CrossRef]
- Moore, G.C.; Benbasat, I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef] [Green Version]
- Almaiah, M.A.; Al-Rahmi, A.M.; Alturise, F.; Alrawad, M.; Alkhalaf, S.; Lutfi, A.; Al-Rahmi, W.M.; Awad, A.B. Factors influencing the adoption of internet banking: An integration of ISSM and UTAUT with price value and perceived risk. Front. Psychol. 2022, 13, 919198. [Google Scholar] [CrossRef]
- Alrawad, M.; Lutfi, A.; Alyatama, S.; Al Khattab, A.; Alsoboa, S.S.; Almaiah, M.A.; Ramadan, M.H.; Arafa, H.M.; Ahmed, N.A.; Alsyouf, A.; et al. Assessing customers perception of online shopping risks: A structural equation modeling–based multigroup analysis. J. Retail. Consum. Services. 2023, 71, 103188. [Google Scholar] [CrossRef]
- Patil, P.; Tamilmani, K.; Rana, N.P.; Raghavan, V. Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. Int. J. Inf. Manag. 2020, 54, 102144. [Google Scholar] [CrossRef]
- Pelaez, A.; Chen, C.W.; Chen, Y.X. Effects of perceived risk on intention to purchase: A meta-analysis. J. Comput. Inf. Syst. 2019, 59, 73–84. [Google Scholar] [CrossRef]
- Akour, I.; Alnazzawi, N.; Alshurideh, M.; Almaiah, M.A.; Al Kurdi, B.; Alfaisal, R.M.; Salloum, S. A Conceptual Model for Investigating the Effect of Privacy Concerns on E-Commerce Adoption: A Study on United Arab Emirates Consumers. Electronics 2022, 11, 3648. [Google Scholar] [CrossRef]
- Purwanto, A.; Asbari, M.; Santoso, T.I.; Paramarta, V.; Sunarsi, D. Social and Management Research Quantitative Analysis for Medium Sample: Comparing of Lisrel, Tetrad, GSCA, Amos, SmartPLS, WarpPLS, and SPSS. J. Ilm. Ilmu Adm. Publik 2020, 10, 518–532. [Google Scholar]
- Althunibat, A.; Abdallah, M.; Almaiah, M.A.; Alabwaini, N.; Alrawashdeh, T.A. An Acceptance Model of Using Mobile-Government Services (AMGS). Comput. Model. Eng. Sci. 2022, 131, 865–880. [Google Scholar] [CrossRef]
- Rabaa’i, A.A.; AlMaati, S. Exploring the determinants of users’ continuance intention to use mobile banking services in Kuwait: Extending the expectation-confirmation model. Asia Pac. J. Inf. Syst. 2021, 31, 141–184. [Google Scholar] [CrossRef]
- Ramos-de-Luna, I.; Montoro-Ríos, F.; Liébana-Cabanillas, F. Determinants of the intention to use NFC technology as a payment system: An acceptance model approach. Inf. Syst. e-Bus. Manag. 2016, 14, 293–314. [Google Scholar] [CrossRef]
- Rodrick, S.S.; Islam, H.; Sarker, S.A.; Tisha, F.F. Prospects and Challenges of using Credit Card Services: A Study on the users in Dhaka City. AIUB J. Bus. Econ. 2021, 18, 161–186. [Google Scholar]
- Sahi, A.M.; Khalid, H.; Abbas, A.F.; Khatib, S.F. The Evolving Research of Customer Adoption of Digital Payment: Learning from Content and Statistical Analysis of the Literature. J. Open Innov. Technol. Mark. Complex. 2021, 7, 230. [Google Scholar] [CrossRef]
- Saprikis, V.; Avlogiaris, G.; Katarachia, A. A Comparative Study of Users versus Non-Users’ Behavioral Intention towards M-Banking Apps’ Adoption. Information 2022, 13, 30. [Google Scholar] [CrossRef]
- Lutfi, A.; Al-Khasawneh, A.L.; Almaiah, M.A.; Alshira’h, A.F.; Alshirah, M.H.; Alsyouf, A.; Alrawad, M.; Al-Khasawneh, A.; Saad, M.; Ali, R.A. Antecedents of Big Data Analytic Adoption and Impacts on Performance: Contingent Effect. Sustainability 2022, 14, 15516. [Google Scholar] [CrossRef]
- Shahid, S.; Islam, J.U.; Malik, S.; Hasan, U. Examining consumer experience in using m-banking apps: A study of its antecedents and outcomes. J. Retail. Consum. Serv. 2022, 65, 102870. [Google Scholar] [CrossRef]
- Shin, S.; Lee, W.J. Factors affecting user acceptance for NFC mobile wallets in the US and Korea. Innov. Manag. Review. 2021, 18, 417–433. [Google Scholar] [CrossRef]
- Singh, N.; Sinha, N.; Liébana-Cabanillas, F.J. Determining factors in the adoption and recommendation of mobile wallet services in India: Analysis of the effect of innovativeness, stress to use and social influence. Int. J. Inf. Manag. 2020, 50, 191–205. [Google Scholar] [CrossRef]
- Sreelakshmi, C.C.; Prathap, S.K. Continuance adoption of mobile-based payments in COVID-19 context: An integrated framework of health belief model and expectation confirmation model. Int. J. Pervasive Comput. Commun. 2020, 16, 351–369. [Google Scholar]
- Sulaiman, S.N.A.; Almunawar, M.N. The adoption of biometric point-of-sale terminal for payments. J. Sci. Technol. Policy Manag. 2021, 13, 585–609. [Google Scholar] [CrossRef]
- Sun, S.; Law, R.; Schuckert, M.; Hyun, S.S. Impacts of mobile payment-related attributes on consumers’ repurchase intention. Int. J. Tour. Res. 2022, 24, 44–57. [Google Scholar] [CrossRef]
- Taylor, S.; Todd, P.A. Understanding information technology usage: A test of competing models. Inf. Syst. Res. 1995, 6, 144–176. [Google Scholar] [CrossRef]
- Teng, S.; Khong, K.W. Examining actual consumer usage of E-wallet: A case study of big data analytics. Comput. Hum. Behav. 2021, 121, 106778. [Google Scholar] [CrossRef]
- Lutfi, A.; Al-Khasawneh, A.L.; Almaiah, M.A.; Alsyouf, A.; Alrawad, M. Business sustainability of small and medium enterprises during the COVID-19 pandemic: The role of AIS implementation. Sustainability 2022, 14, 5362. [Google Scholar] [CrossRef]
- Althunibat, A.; Almaiah, M.A.; Altarawneh, F. Examining the factors influencing the mobile learning applications usage in higher education during the COVID-19 pandemic. Electronics 2021, 10, 2676. [Google Scholar] [CrossRef]
- Trinh, H.N.; Tran, H.H.; Vuong, D.H.Q. Determinants of consumers’ intention to use credit card: A perspective of multifaceted perceived risk. Asian J. Econ. Bank. 2020, 4, 105–120. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Hajjej, F.; Lutfi, A.; Al-Khasawneh, A.; Alkhdour, T.; Almomani, O.; Shehab, R. A conceptual framework for determining quality requirements for mobile learning applications using Delphi Method. Electronics 2022, 11, 788. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Vladimirovich Platov, A.; Kazbekovich Tarchokov, S.; Sobirovna Zikirova, S.; Igorevna Litvinova, O.; Eduardovich Udalov, D. NFC Technology Acceptance Factors in Tourism. In Proceedings of the IV International Scientific and Practical Conference, St. Petersburg, Russia, 18–19 March 2021; pp. 1–7. [Google Scholar]
- Almaiah, M.A.; Alfaisal, R.; Salloum, S.A.; Hajjej, F.; Thabit, S.; El-Qirem, F.A.; Lutfi, A.; Alrawad, M.; Al Mulhem, A.; Alkhdour, T.; et al. Examining the impact of artificial intelligence and social and computer anxiety in e-learning settings: Students’ perceptions at the university level. Electronics 2022, 11, 3662. [Google Scholar] [CrossRef]
- Wang, E.S.T. Influences of Innovation Attributes on Value Perceptions And Usage Intentions Of Mobile Payment. J. Electron. Commer. Res. 2022, 23, 45–58. [Google Scholar]
- Wei, M.F.; Luh, Y.H.; Huang, Y.H.; Chang, Y.C. Young generation’s mobile payment adoption behavior: Analysis based on an extended UTAUT model. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 618–637. [Google Scholar] [CrossRef]
- Widagdo, B.; Roz, K. Hedonic shopping motivation and impulse buying: The effect of website quality on customer satisfaction. J. Asian Financ. Econ. Bus. 2021, 8, 395–405. [Google Scholar]
- Widyanto, H.A.; Kusumawardani, K.A.; Yohanes, H. Safety first: Extending UTAUT to better predict mobile payment adoption by incorporating perceived security, perceived risk and trust. J. Sci. Technol. Policy Manag. 2021, 13, 952–973. [Google Scholar] [CrossRef]
- Chatterjee, S.; Rana, N.P.; Khorana, S.; Mikalef, P.; Sharma, A. Assessing organizational users’ intentions and behavior to AI integrated CRM systems: A Meta-UTAUT approach. Inf. Syst. Front. 2021, 23, 1–5. [Google Scholar] [CrossRef]
No. | Factors | Code | Pilot Test | Final Test |
---|---|---|---|---|
1 | Perceived Security | PS | 0.708 | 0.856 |
2 | Perceived Trust | PT | 0.777 | 0.820 |
3 | Perceived Risk | PR | 0.801 | 0.890 |
4 | Service Quality | SQ | 0.711 | 0.881 |
5 | Perceived Usefulness | PEU | 0.782 | 0.889 |
6 | Perceived Ease of | PES | 0.716 | 0.865 |
7 | Social Influence | SI | 0.786 | 0.864 |
8 | Attitude towards to Use | ATU | 0.792 | 0.927 |
9 | Intention to Use | INU | 0.809 | 0.824 |
Factors | Items | Factor Loadings | Composite Reliability | Cronbach’s Alpha | AVE | R Square |
---|---|---|---|---|---|---|
ATU | ATU1 | 0.862 | 0.895 | 0.824 | 0.741 | 0.649 |
ATU2 | 0.919 | |||||
ATU3 | 0.798 | |||||
SI | SI1 | 0.898 | 0.912 | 0.856 | 0.775 | 0.000 |
SI2 | 0.880 | |||||
SI3 | 0.862 | |||||
INU | INU1 | 0.890 | 0.922 | 0.874 | 0.798 | 0.487 |
INU 2 | 0.887 | |||||
INU 3 | 0.903 | |||||
PR | PR1 | 0.901 | 0.926 | 0.881 | 0.808 | 0.000 |
PR2 | 0.898 | |||||
PR3 | 0.896 | |||||
PES | PES1 | 0.846 | 0.876 | 0.890 | 0.702 | 0.000 |
PES2 | 0.868 | |||||
PES3 | 0.799 | |||||
PU | PU1 | 0.865 | 0.885 | 0.804 | 0.720 | 0.000 |
PU2 | 0.905 | |||||
PU3 | 0.770 | |||||
PS | PS1 | 0.857 | 0.862 | 0.865 | 0.675 | 0.731 |
PS2 | 0.792 | |||||
PS3 | 0.816 | |||||
SQ | SQ1 | 0.939 | 0.953 | 0.927 | 0.872 | 0.762 |
SQ2 | 0.938 | |||||
SQ3 | 0.924 | |||||
PT | PT1 | 0.871 | 0.917 | 0.864 | 0.786 | 0.621 |
PT2 | 0.917 | |||||
PT3 | 0.871 |
Factors | Items | ATU | SI | INU | PR | PES | PU | PS | SQ | PT |
---|---|---|---|---|---|---|---|---|---|---|
ATU | ATU1 | 0.862 | 0.539 | 0.599 | 0.617 | 0.522 | 0.630 | 0.716 | 0.657 | 0.670 |
ATU 2 | 0.919 | 0.565 | 0.614 | 0.603 | 0.538 | 0.599 | 0.694 | 0.687 | 0.707 | |
ATU 3 | 0.798 | 0.544 | 0.477 | 0.507 | 0.372 | 0.366 | 0.549 | 0.586 | 0.572 | |
SI | SI1 | 0.584 | 0.898 | 0.579 | 0.496 | 0.476 | 0.465 | 0.502 | 0.504 | 0.556 |
SI2 | 0.613 | 0.880 | 0.557 | 0.516 | 0.426 | 0.429 | 0.535 | 0.570 | 0.539 | |
SI3 | 0.461 | 0.862 | 0.518 | 0.439 | 0.341 | 0.328 | 0.371 | 0.462 | 0.425 | |
INU | INU1 | 0.592 | 0.537 | 0.890 | 0.657 | 0.566 | 0.624 | 0.584 | 0.528 | 0.576 |
INU 2 | 0.541 | 0.517 | 0.887 | 0.558 | 0.509 | 0.533 | 0.528 | 0.554 | 0.527 | |
INU 3 | 0.628 | 0.625 | 0.903 | 0.680 | 0.530 | 0.548 | 0.607 | 0.599 | 0.605 | |
PR | PR1 | 0.631 | 0.532 | 0.668 | 0.901 | 0.532 | 0.625 | 0.764 | 0.650 | 0.609 |
PR2 | 0.568 | 0.503 | 0.620 | 0.898 | 0.538 | 0.577 | 0.706 | 0.667 | 0.588 | |
PR3 | 0.612 | 0.452 | 0.623 | 0.896 | 0.518 | 0.573 | 0.665 | 0.587 | 0.582 | |
PES | PES1 | 0.401 | 0.362 | 0.510 | 0.436 | 0.846 | 0.467 | 0.436 | 0.408 | 0.414 |
PES 2 | 0.511 | 0.446 | 0.539 | 0.530 | 0.868 | 0.632 | 0.617 | 0.517 | 0.512 | |
PES 3 | 0.484 | 0.381 | 0.453 | 0.503 | 0.799 | 0.434 | 0.495 | 0.423 | 0.484 | |
PU | PU1 | 0.517 | 0.319 | 0.510 | 0.544 | 0.521 | 0.865 | 0.658 | 0.478 | 0.528 |
PU2 | 0.595 | 0.485 | 0.611 | 0.580 | 0.577 | 0.905 | 0.669 | 0.505 | 0.506 | |
PU3 | 0.483 | 0.397 | 0.495 | 0.559 | 0.474 | 0.770 | 0.563 | 0.390 | 0.405 | |
PS | PS1 | 0.815 | 0.574 | 0.628 | 0.704 | 0.511 | 0.555 | 0.857 | 0.824 | 0.808 |
PS2 | 0.508 | 0.417 | 0.482 | 0.609 | 0.492 | 0.668 | 0.792 | 0.464 | 0.449 | |
PS3 | 0.489 | 0.300 | 0.440 | 0.632 | 0.550 | 0.650 | 0.816 | 0.529 | 0.494 | |
SQ | SQ1 | 0.695 | 0.588 | 0.605 | 0.633 | 0.484 | 0.494 | 0.703 | 0.939 | 0.787 |
SQ 2 | 0.729 | 0.557 | 0.580 | 0.702 | 0.566 | 0.523 | 0.768 | 0.938 | 0.793 | |
SQ 3 | 0.675 | 0.497 | 0.576 | 0.645 | 0.467 | 0.503 | 0.679 | 0.924 | 0.798 | |
PT | PT1 | 0.643 | 0.550 | 0.545 | 0.555 | 0.374 | 0.426 | 0.594 | 0.735 | 0.871 |
PT2 | 0.695 | 0.470 | 0.611 | 0.564 | 0.527 | 0.503 | 0.643 | 0.792 | 0.917 | |
PT3 | 0.679 | 0.535 | 0.543 | 0.638 | 0.596 | 0.580 | 0.734 | 0.729 | 0.871 |
No. | Factors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ATU | 1.000 | |||||||||
2 | INU | 0.659 | 1.000 | ||||||||
3 | SQ | 0.750 | 0.628 | 1.000 | |||||||
4 | PES | 0.561 | 0.599 | 0.542 | 1.000 | ||||||
5 | PR | 0.672 | 0.710 | 0.707 | 0.589 | 1.000 | |||||
6 | PS | 0.764 | 0.643 | 0.768 | 0.626 | 0.794 | 1.000 | ||||
7 | PT | 0.758 | 0.639 | 0.848 | 0.566 | 0.661 | 0.742 | 1.000 | |||
8 | PU | 0.628 | 0.636 | 0.543 | 0.619 | 0.659 | 0.745 | 0.569 | 1.000 | ||
9 | SI | 0.636 | 0.629 | 0.586 | 0.477 | 0.553 | 0.543 | 0.583 | 0.470 | 1.000 |
No. | Hypotheses Links | Path Coefficient | Mean | S.D | S.E | t-Values |
---|---|---|---|---|---|---|
1 | PR → PT | −0.063 | 0.071 | 0.091 | 0.091 | −0.694 |
2 | PR → ATU | −0.193 | 0.171 | 0.117 | 0.117 | −1.650 |
3 | PT → ATU | 0.321 | 0.330 | 0.107 | 0.107 | 2.999 |
4 | PS → PT | 0.075 | 0.080 | 0.127 | 0.127 | 0.592 |
5 | PS → ATU | 0.077 | 0.098 | 0.117 | 0.117 | 0.658 |
6 | PEU → ATU | 0.044 | 0.051 | 0.101 | 0.101 | 0.432 |
7 | PES → ATU | 0.453 | 0.443 | 0.109 | 0.109 | 4.162 |
8 | SI → ATU | 0.072 | 0.097 | 0.160 | 0.160 | 0.451 |
9 | SQ → ATU | 0.074 | 0.060 | 0.113 | 0.113 | 0.659 |
10 | ATU → INU | 0.182 | 0.176 | 0.139 | 0.139 | 1.309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almaiah, M.A.; Al-Otaibi, S.; Shishakly, R.; Hassan, L.; Lutfi, A.; Alrawad, M.; Qatawneh, M.; Alghanam, O.A. Investigating the Role of Perceived Risk, Perceived Security and Perceived Trust on Smart m-Banking Application Using SEM. Sustainability 2023, 15, 9908. https://doi.org/10.3390/su15139908
Almaiah MA, Al-Otaibi S, Shishakly R, Hassan L, Lutfi A, Alrawad M, Qatawneh M, Alghanam OA. Investigating the Role of Perceived Risk, Perceived Security and Perceived Trust on Smart m-Banking Application Using SEM. Sustainability. 2023; 15(13):9908. https://doi.org/10.3390/su15139908
Chicago/Turabian StyleAlmaiah, Mohammed Amin, Shaha Al-Otaibi, Rima Shishakly, Lamia Hassan, Abdalwali Lutfi, Mahmoad Alrawad, Mohammad Qatawneh, and Orieb Abu Alghanam. 2023. "Investigating the Role of Perceived Risk, Perceived Security and Perceived Trust on Smart m-Banking Application Using SEM" Sustainability 15, no. 13: 9908. https://doi.org/10.3390/su15139908
APA StyleAlmaiah, M. A., Al-Otaibi, S., Shishakly, R., Hassan, L., Lutfi, A., Alrawad, M., Qatawneh, M., & Alghanam, O. A. (2023). Investigating the Role of Perceived Risk, Perceived Security and Perceived Trust on Smart m-Banking Application Using SEM. Sustainability, 15(13), 9908. https://doi.org/10.3390/su15139908