Bibliometric and Knowledge Network of Global Research on Pile Foundations: A Review of Recent Developments
Abstract
:1. Introduction
1.1. General
1.2. Research Focus
2. Procedure of Analysis
3. Results
3.1. Type of Document
3.2. Features of Document Computed
3.3. Subject Category, Journals and Publishers
3.4. Author and Language
3.5. Author Keyword
3.6. Ten Most Cited Articles in Pile Foundation Research
3.7. Countries Involved
3.8. Sustainablity in Focus
3.9. Significance of the Analysis
4. Discussion and Conclusions
- There has been a huge increase in pile foundation research over the past three decades, with China accounting for nearly 35% of all publications.
- Research on pile foundations developed rapidly after 2008 and is accelerating exponentially, which shows the severity and importance of pile foundations in modern infrastructure taking place around the globe.
- As the research on pile foundation has increased in the last decade, every individual area, i.e., soil structure interaction, pile group, settlement, liquefaction, monopile, etc., has been touched extensively by researchers.
- The People’s Republic of China allocates around 2.14% of its GDP for R&D has nearly 35% of total publications, whereas South Korea allocates the highest 4.53% for R&D, out of the top productive countries considered in the study.
- Based on current trends, it is evident that future research on pile foundation will prioritize sustainable development.
- It can be mentioned that future studies will be focused on the dynamics of pile foundations and software involvement with artificial intelligence.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bea, R.G.; Jin, Z.; Valle, C.; Ramos, R. Evaluation of reliability of platform pile foundations. J. Geotech. Geoenviron. Eng. 1999, 125, 696–704. [Google Scholar] [CrossRef]
- Tang, W.H.; Kulhawy, F.H. Uncertainties in Offshore Axial Pile Capacity. In Foundation Engineering; ASCE: Reston, VA, USA, 1989; pp. 833–847. [Google Scholar]
- Magade, S.B.; Ingle, R.K. Analysis methods for pile foundation: A critical review of the literature and recommended suggestions. Innov. Infrastruct. Solut. 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Pender, M.J. Aseismic pile foundation design analysis. Bull. New Zealand Soc. Earthq. Eng. 1993, 26, 49–160. [Google Scholar] [CrossRef] [Green Version]
- Vugts, J.H.; Dob, S.L.; Harland, L.A. The extreme dynamic response of bottom supported structures using an equivalent quasi-static design wave procedure. Appl. Ocean. Res. 1998, 20, 37–53. [Google Scholar] [CrossRef]
- Liang, R.Y.; Nusier, B.O.; Malkawi, A.H. A reliability based approach for evaluating the slope stability of embankment dams. Eng. Geol. 1999, 54, 271–285. [Google Scholar] [CrossRef]
- Novak, M. Dynamic stiffness and damping of piles. Can. Geotech. J. 1974, 11, 574–598. [Google Scholar] [CrossRef]
- Zheng, C.; Ding, X.; Sun, Y. Vertical vibration of a pipe pile in viscoelastic soil considering the three-dimensional wave effect of soil. Int. J. Geomech. 2016, 16, 04015037. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, Y.; Wang, P.; Cao, Y.; Du, X. An analytical solution for the dynamic response of an end-bearing pile subjected to vertical P-waves considering water-pile-soil interactions. Soil Dyn. Earthq. Eng. 2022, 153, 107126. [Google Scholar] [CrossRef]
- Di Laora, R.; Mandolini, A.; Mylonakis, G. Insight on kinematic bending of flexible piles in layered soil. Soil Dyn. Earthq. Eng. 2012, 43, 309–322. [Google Scholar] [CrossRef]
- Anoyatis, G.; Di Laora, R.; Mandolini, A.; Mylonakis, G. Kinematic response of single piles for different boundary conditions: Analytical solutions and normalization schemes. Soil Dyn. Earthq. Eng. 2013, 44, 183–195. [Google Scholar] [CrossRef]
- Anoyatis, G.; Lemnitzer, A. Kinematic Winkler modulus for laterally-loaded piles. Soils Found. 2017, 57, 453–471. [Google Scholar] [CrossRef]
- Ke, W.; Zhang, C. A closed-form solution for kinematic bending of end-bearing piles. Soil Dyn. Earthq. Eng. 2017, 103, 15–20. [Google Scholar] [CrossRef]
- Zhang, C.; Deng, P.; Ke, W. Assessing physical mechanisms related to kinematic soil-pile interaction. Soil Dyn. Earthq. Eng. 2018, 114, 22–26. [Google Scholar] [CrossRef]
- Xu, Q.; Zhu, H.; Ma, X.; Ma, Z.; Li, X.; Tang, Z.; Zhuo, K. A case history of shield tunnel crossing through group pile foundation of a road bridge with pile underpinning technologies in Shanghai. Tunn. Undergr. Space Technol. 2015, 45, 20–33. [Google Scholar] [CrossRef]
- Yan, K.; He, J.; Cheng, Q.; Fan, G.; Wang, Z.; Zhang, J. A centrifugal experimental investigation on the seismic response of group-pile foundation in a slope with an inclined weak intercalated layer. Soil Dyn. Earthq. Eng. 2020, 130, 105961. [Google Scholar] [CrossRef]
- Bhaduri, A.; Choudhury, D. Steady-state response of flexible combined pile-raft foundation under dynamic loading. Soil Dyn. Earthq. Eng. 2021, 145, 106664. [Google Scholar] [CrossRef]
- Chanda, D.; Saha, R.; Haldar, S. Behaviour of piled raft foundation in sand subjected to combined VMH loading. Ocean Engineering. 2020, 216, 107596. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Wu, W.; Wen, M.; El Naggar, M.H.; Yang, Y. Investigation on the behavior of hybrid pile foundation and its surrounding soil during cyclic lateral loading. Ocean. Eng. 2021, 240, 110006. [Google Scholar] [CrossRef]
- Matlock, H.; Reese, L.C. Generalized solutions for laterally loaded piles. Trans. Am. Soc. Civ. Eng. 1962, 127, 1220–1248. [Google Scholar] [CrossRef]
- Randolph, M.F. The response of flexible piles to lateral loading. Geotechnique 1981, 31, 247–259. [Google Scholar] [CrossRef]
- Rollins, K.M.; Peterson, K.T.; Weaver, T.J. Lateral load behavior of full-scale pile group in clay. J. Geotech. Geoenviron. Eng. 1998, 124, 468–478. [Google Scholar] [CrossRef]
- Khari, M.; Dehghanbandaki, A.; Armaghani, D.J. Physical modelling of bending moments in single piles under combined loads in layered soil. Geomech. Eng. 2021, 25, 373. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, H.; Ng, C.W.; Ding, X.; Gunawan, A. Three-dimensional numerical analysis of the stress transfer mechanism of XCC piled raft foundation. Comput. Geotech. 2014, 55, 365–377. [Google Scholar] [CrossRef]
- Mendonca, A.V.; Paiva, J.B. An elastostatic FEM/BEM analysis of vertically loaded raft and piled raft foundation. Eng. Anal. Bound. Elem. 2003, 27, 919–933. [Google Scholar] [CrossRef]
- Zeng, J.; Qu, J.; Ma, H.; Gou, X. Characteristics and Trends of household carbon emissions research from 1993 to 2019: A bibliometric analysis and its implications. J. Clean. Prod. 2021, 295, 126468. [Google Scholar] [CrossRef]
- Björdal, C.G.; Elam, J. Bacterial degradation of nine wooden foundation piles from Gothenburg historic city center and correlation to wood quality, environment, and time in service. Int. Biodeterior. Biodegrad. 2021, 164, 105288. [Google Scholar] [CrossRef]
- Li, L.; Gong, W.; Li, J. Service life of prestressed high-strength concrete pile in marine environment considering effects of concrete stratification and temperature. Constr. Build. Mater. 2020, 253, 119233. [Google Scholar] [CrossRef]
- Yu, Q.; Yu, H.; Zhou, L.; Meng, A.; Hu, X.; Hou, X. Structural energy transfer to the elevated pile-cap foundation of an offshore wind turbine based on extracted transfer path analysis. J. Sound Vib. 2021, 512, 116388. [Google Scholar] [CrossRef]
- Rahman, M.; Haque, T.L.; Fukui, T. Research Articles Published in Clinical Radiology Journals: Trend of Contribution from Different Countries1. Acad. Radiol. 2005, 12, 825–829. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Wang, B. A bibliometric analysis of climate change adaptation based on massive research literature data. J. Clean. Prod. 2018, 199, 1072–1082. [Google Scholar] [CrossRef]
- Peng, Y.; Lin, A.; Wang, K.; Liu, F.; Zeng, F.; Yang, L. Global trends in DEM-related research from 1994 to 2013: A bibliometric analysis. Scientometrics 2015, 105, 347–366. [Google Scholar] [CrossRef]
- Narin, F. Patent bibliometrics. Scientometrics 1994, 30, 147–155. [Google Scholar] [CrossRef]
- Dastidar, P.G.; Kumar, J.D. Content analysis of documents using neural networks: A study of antarctic science research articles published in international journals. Adv. Polar Sci. 2012, 23, 41–46. [Google Scholar] [CrossRef]
- Mindeli, L.E.; Markusova, V.A. Bibliometric studies of scientific collaboration: International trends. Autom. Doc. Math. Linguist. 2015, 49, 59–64. [Google Scholar] [CrossRef]
- Rajendram, R.; Lewison, G.; Preedy, V.R. Worldwide alcohol-related research and the disease burden. Alcohol Alcohol. 2006, 41, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Jiang, Y.; Zhou, Z.; Yang, Z. Global trends in karst-related studies from 1990 to 2016: A bibliometric analysis. Alex. Eng. J. 2021, 60, 2551–2562. [Google Scholar] [CrossRef]
- Zhai, L.; Yan, X.; Zhu, B. The h l-index: Improvement of h-index based on quality of citing papers. Scientometrics 2014, 98, 1021–1031. [Google Scholar] [CrossRef]
- Powell, W.W.; Koput, K.W.; Smith-Doerr, L. Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology. Adm. Sci. Q. 1996, 1, 16–45. [Google Scholar] [CrossRef] [Green Version]
- Brandl, H. Energy foundations and other thermo-active ground structures. Géotechnique 2006, 56, 81–122. [Google Scholar] [CrossRef]
- Boulanger, R.W.; Curras, C.J.; Kutter, B.L.; Wilson, D.W.; Abghari, A. Seismic soil-pile-structure interaction experiments and analyses. J. Geotech. Geoenviron. Eng. 1999, 125, 750–759. [Google Scholar] [CrossRef]
- Deeks, A.J.; Randolph, M.F. Axisymmetric time-domain transmitting boundaries. J. Eng. Mech. 1994, 120, 25–42. [Google Scholar] [CrossRef]
- LeBlanc, C.; Houlsby, G.T.; Byrne, B.W. Response of stiff piles in sand to long-term cyclic lateral loading. Géotechnique 2010, 60, 79–90. [Google Scholar] [CrossRef]
- Laloui, L.; Nuth, M.; Vulliet, L. Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int. J. Numer. Anal. Methods Geomech. 2006, 30, 763–781. [Google Scholar] [CrossRef]
- Randolph, M.F. Science and empiricism in pile foundation design. Géotechnique 2003, 53, 847–875. [Google Scholar] [CrossRef]
- Bourne-Webb, P.J.; Amatya, B.; Soga, K.; Amis, T.; Davidson, C.; Payne, P. Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 2009, 59, 237–248. [Google Scholar] [CrossRef]
- Poulos, H.G. Piled raft foundations: Design and applications. Géotechnique 2001, 51, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Achmus, M.; Kuo, Y.S.; Abdel-Rahman, K. Behavior of monopile foundations under cyclic lateral load. Comput. Geotech. 2009, 36, 725–735. [Google Scholar] [CrossRef]
- Man, Y.; Yang, H.; Diao, N.; Liu, J.; Fang, Z. A new model and analytical solutions for borehole and pile ground heat exchangers. Int. J. Heat Mass Transf. 2010, 53, 2593–2601. [Google Scholar] [CrossRef]
- The World Bank, Research and Development Expenditure (%GDP). Available online: https://data.worldbank.org/indicator/GB.XPD.RSDV.GD.ZS (accessed on 20 April 2022).
- World GDP Ranking 2020, Data and Charts. Available online: https://knoema.com/nwnfkne/world-gdp-ranking-2020-gdp-by-country-data-and-charts (accessed on 20 April 2022).
- Wang, C.; Xiao, J.; Liu, W.; Ma, Z. Unloading and reloading stress-strain relationship of recycled aggregate concrete reinforced with steel/polypropylene fibers under uniaxial low-cycle loadings. Cem. Concr. Compos. 2022, 131, 104597. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Li, C. Hysteresis and damping properties of steel and polypropylene fiber reinforced recycled aggregate concrete under uniaxial low-cycle loadings. Constr. Build. Mater. 2022, 319, 126191. [Google Scholar] [CrossRef]
Document Type | N | % |
---|---|---|
Article | 4494 | 93.5 |
Article, Proceedings Paper | 102 | 2.1 |
Article, Early Access | 88 | 1.8 |
Review | 70 | 1.4 |
Editorial Material | 29 | 0.6 |
Years | P | PG | PG/P | CR | CR/P | TC | TC/P |
---|---|---|---|---|---|---|---|
1992 | 18 | 227 | 13 | 291 | 16 | 418 | 23 |
1993 | 21 | 267 | 13 | 350 | 17 | 371 | 18 |
1994 | 33 | 457 | 14 | 539 | 16 | 1124 | 34 |
1995 | 26 | 344 | 13 | 582 | 22 | 487 | 19 |
1996 | 31 | 362 | 12 | 1025 | 33 | 624 | 20 |
1997 | 34 | 434 | 13 | 622 | 18 | 1002 | 29 |
1998 | 35 | 373 | 11 | 603 | 17 | 916 | 26 |
1999 | 35 | 494 | 14 | 815 | 23 | 1184 | 34 |
2000 | 43 | 484 | 11 | 715 | 17 | 1529 | 36 |
2001 | 35 | 462 | 13 | 832 | 24 | 1674 | 48 |
2002 | 55 | 696 | 13 | 1136 | 21 | 1861 | 34 |
2003 | 52 | 674 | 13 | 1140 | 22 | 2066 | 40 |
2004 | 60 | 692 | 12 | 1230 | 21 | 1803 | 30 |
2005 | 65 | 932 | 14 | 1643 | 25 | 1922 | 30 |
2006 | 69 | 874 | 13 | 1431 | 21 | 3134 | 45 |
2007 | 61 | 697 | 11 | 1363 | 22 | 1728 | 28 |
2008 | 110 | 1322 | 12 | 2638 | 24 | 2482 | 23 |
2009 | 108 | 1380 | 13 | 2874 | 27 | 3495 | 32 |
2010 | 123 | 1398 | 11 | 3017 | 25 | 2846 | 23 |
2011 | 138 | 1698 | 12 | 3356 | 24 | 3081 | 22 |
2012 | 166 | 1964 | 12 | 4098 | 25 | 3182 | 19 |
2013 | 219 | 2632 | 12 | 5917 | 27 | 4362 | 20 |
2014 | 236 | 3002 | 13 | 7125 | 30 | 4991 | 21 |
2015 | 268 | 3334 | 12 | 8868 | 33 | 4797 | 18 |
2016 | 306 | 3901 | 13 | 9888 | 32 | 4388 | 14 |
2017 | 320 | 4296 | 13 | 11,616 | 36 | 4049 | 13 |
2018 | 377 | 5023 | 13 | 13,931 | 37 | 3759 | 10 |
2019 | 430 | 6044 | 14 | 16,314 | 38 | 2771 | 6 |
2020 | 595 | 8353 | 14 | 24,301 | 41 | 2444 | 4 |
2021 | 644 | 9393 | 15 | 26,053 | 40 | 636 | 1 |
Subject Category | TP | R | % |
---|---|---|---|
Geological | 2264 | 1 | 47.14 |
Geosciences | 1608 | 2 | 33.48 |
Civil | 1493 | 3 | 31.08 |
Construction and Building Technology | 426 | 4 | 8.87 |
Ocean | 402 | 5 | 8.37 |
Materials Science | 348 | 6 | 7.25 |
Oceanography | 323 | 7 | 6.72 |
Mechanical | 303 | 8 | 6.31 |
Computer Science | 295 | 9 | 6.14 |
Mechanics | 264 | 10 | 5.50 |
Journal Name | TP (R) | TC | TC/TP | IF |
---|---|---|---|---|
Soil Dynamics and Earthquake Engineering | 294 (1) | 5573 | 19.0 | 3.718 |
Journal of Geotechnical and Geoenvironmental Engineering | 253 (2) | 7711 | 30.5 | 4.012 |
Computers and Geotechnics | 205 (3) | 4124 | 20.1 | 4.956 |
Canadian Geotechnical Journal | 169 (4) | 3759 | 22.2 | 3.725 |
Ocean Engineering | 135 (5) | 1433 | 10.6 | 3.795 |
Proceedings of The Institution of Civil Engineers-Geotechnical Engineering | 133 (6) | 1278 | 9.6 | 1.341 |
Soils and Foundations | 133 (6) | 2372 | 17.8 | 2.436 |
International Journal of Geomechanics | 120 (7) | 1396 | 11.6 | 3.819 |
Géotechnique | 105 (8) | 5518 | 52.6 | 4.592 |
Advances in Civil Engineering | 98 (9) | 193 | 2.0 | 1.924 |
Marine Georesources and Geotechnology | 91 (10) | 450 | 4.9 | 2.673 |
Engineering Structures | 84 (11) | 1180 | 14.0 | 4.471 |
International Journal for Numerical and Analytical Methods in Geomechanics | 72 (12) | 2279 | 31.7 | 4.264 |
Geomechanics and Engineering | 71 (13) | 440 | 6.2 | 3.223 |
Soil Mechanics and Foundation Engineering | 69 (14) | 141 | 2.0 | 0.806 |
Geotechnical Testing Journal | 62 (15) | 575 | 9.3 | 1.469 |
Acta Geotechnica | 60 (16) | 774 | 12.9 | 5.856 |
KSCE Journal of Civil Engineering | 59 (17) | 381 | 6.5 | 1.805 |
Journal of Bridge Engineering | 57 (18) | 785 | 13.8 | 3.066 |
Bautechnik | 52 (19) | 135 | 2.6 | 0.408 |
Publisher | TP | (%) | TC | TC/TP |
---|---|---|---|---|
Elsevier Sci Ltd. | 763 | 15.9 | 14,360 | 18.82 |
ASCE | 591 | 12.3 | 12,757 | 21.59 |
Pergamon-Elsevier Science Ltd. | 335 | 7.0 | 7019 | 20.95 |
Ice Publishing | 265 | 5.5 | 4704 | 17.75 |
Springer | 206 | 4.3 | 2131 | 10.34 |
Hindawi Ltd. | 179 | 3.7 | 426 | 2.38 |
MDPI | 165 | 3.4 | 638 | 3.87 |
Springer Heidelberg | 147 | 3.1 | 1018 | 6.93 |
Japanese Geotechnical Soc | 133 | 2.8 | 2372 | 17.83 |
Techno-Press | 113 | 2.4 | 723 | 6.40 |
Taylor & Francis Ltd. | 102 | 2.1 | 688 | 6.75 |
Taylor & Francis Inc. | 101 | 2.1 | 534 | 5.29 |
Wiley | 96 | 2.0 | 1354 | 14.10 |
Amer Soc Testing Materials | 80 | 1.7 | 608 | 7.60 |
Elsevier | 76 | 1.6 | 871 | 11.46 |
Canadian Science Publishing, NRC Research Press | 72 | 1.5 | 1588 | 22.06 |
Elsevier Science BV | 65 | 1.4 | 1580 | 24.31 |
Ernst & Sohn | 62 | 1.3 | 117 | 1.89 |
Korean Society of Civil Engineers-KSCE | 58 | 1.2 | 372 | 6.41 |
Canadian Science Publishing | 57 | 1.2 | 875 | 15.35 |
Author | TP | (%) | IP | CP | CP/TP | H-Index |
---|---|---|---|---|---|---|
El Naggar, MH | 59 | 1.23 | 0 | 59 | 1 | 19 |
Liu, HL | 39 | 0.81 | 0 | 39 | 1 | 39 |
Bhattacharya, S | 28 | 0.58 | 0 | 28 | 1 | 29 |
Aznarez, JJ | 27 | 0.56 | 0 | 27 | 1 | 16 |
Randolph, MF | 26 | 0.54 | 0 | 26 | 1 | 68 |
Ling, XZ | 26 | 0.54 | 0 | 26 | 1 | 19 |
Ding, XM | 26 | 0.54 | 0 | 26 | 1 | 20 |
Maeso, O | 25 | 0.52 | 0 | 25 | 1 | 17 |
Wang, KH | 24 | 0.50 | 0 | 24 | 1 | 16 |
Huang, MS | 24 | 0.50 | 0 | 24 | 1 | 30 |
Jeng, DS | 22 | 0.46 | 0 | 22 | 1 | 43 |
Kong, GQ | 20 | 0.42 | 0 | 20 | 1 | 24 |
Laloui, L | 20 | 0.42 | 0 | 20 | 1 | 45 |
Ng, CWW | 19 | 0.40 | 0 | 19 | 1 | 50 |
Ibsen, LB | 19 | 0.40 | 0 | 19 | 1 | 18 |
Gazetas, G | 19 | 0.40 | 0 | 19 | 1 | 50 |
Liang, FY | 18 | 0.37 | 1 | 17 | 0.95 | 15 |
Zhang, LM | 18 | 0.37 | 0 | 18 | 1 | 51 |
Zhang, F | 18 | 0.37 | 0 | 18 | 1 | 26 |
Sritharan, S | 18 | 0.37 | 0 | 18 | 1 | 23 |
Language | N |
---|---|
English | 4683 |
German | 87 |
Spanish | 11 |
Turkish | 6 |
Japanese | 4 |
Keywords | 1992–2021 | 1992–2001 | 2002–2011 | 2012–2021 |
---|---|---|---|---|
Pile | 431 | 48 | 114 | 269 |
Pile foundation | 360 | 16 | 87 | 257 |
Soil structure interaction | 292 | 19 | 67 | 206 |
Foundation | 248 | 17 | 76 | 155 |
Pile group | 159 | 5 | 46 | 108 |
Settlement | 153 | 16 | 28 | 109 |
Liquefaction | 152 | 5 | 39 | 108 |
Sand | 125 | 6 | 22 | 97 |
Bearing capacity | 115 | 9 | 17 | 89 |
Monopile | 107 | 0 | 4 | 103 |
Article | TC | Citation in Last 10 Years | PY |
---|---|---|---|
Energy foundations and other thermo-active ground structures | 684 | 258 | 2006 |
Seismic soil-pile-structure interaction experiments and analyses | 441 | 127 | 1999 |
Experimental and numerical investigations of the behavior of a heat exchanger pile | 413 | 109 | 2006 |
Science and empiricism in pile foundation design | 410 | 176 | 2003 |
Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles | 385 | 141 | 2009 |
Axisymmetrical time-domain transmitting boundaries | 331 | 34 | 1994 |
Piled raft foundations: Design and applications | 282 | 49 | 2001 |
Response of stiff piles in sand to long-term cyclic lateral loading | 275 | 138 | 2010 |
Behavior of monopile foundations under cyclic lateral load | 244 | 152 | 2009 |
A new model and analytical solutions for borehole and pile ground heat exchangers | 213 | 61 | 2010 |
Countries/Regions | TP | TC | TC/TP | % | GDP (in Trillion $) | % of GDP on R&D |
---|---|---|---|---|---|---|
1672 | 16,279 | 9.74 | 34.81 | 13.4 | 2.14 | |
739 | 12,305 | 16.65 | 15.39 | 20.49 | 2.83 | |
344 | 6427 | 18.68 | 7.16 | 2.83 | 1.70 | |
303 | 7363 | 24.30 | 6.31 | 1.33 | 1.87 | |
247 | 4685 | 18.97 | 5.14 | 4.97 | 3.28 | |
237 | 2965 | 12.51 | 4.93 | 2.72 | 0.65 | |
212 | 3510 | 16.56 | 4.41 | 1.71 | 1.54 | |
203 | 2373 | 11.69 | 4.23 | 4.00 | 3.13 | |
191 | 2678 | 14.02 | 3.98 | 0.61 | 0.83 | |
180 | 2094 | 11.63 | 3.75 | 1.58 | 4.53 |
S.No. | Source Title | Publisher | Publication Year | Cited Reference Count |
---|---|---|---|---|
1 | Applied Acoustics | Elsevier Sci Ltd. | 2003 | 19 |
2 | Water Science and Technology | IWA Publishing | 2006 | 5 |
3 | Water Resources Management | Springer | 2011 | 21 |
4 | Journal Of Water Supply Research and Technology-Aqua | IWA Publishing | 2013 | 24 |
5 | Water Science and Technology | IWA Publishing | 2014 | 25 |
6 | Clean-Soil Air Water | Wiley | 2014 | 25 |
7 | Expert Systems with Applications | Pergamon-Elsevier Science Ltd. | 2014 | 52 |
8 | Materiales De Construccion | Consejo Superior Investigaciones Cientificas-Csic | 2015 | 41 |
9 | Construction And Building Materials | Elsevier Sci Ltd. | 2016 | 10 |
10 | Advances In Applied Ceramics | Taylor & Francis Ltd. | 2017 | 11 |
11 | Journal of Cleaner Production | Elsevier Sci Ltd. | 2018 | 54 |
12 | Proceedings of the Institution of Civil Engineers-Water Management | ICE Publishing | 2018 | 34 |
13 | Processes | MDPI | 2020 | 68 |
14 | Sustainability | MDPI | 2021 | 19 |
15 | Building And Environment | Pergamon-Elsevier Science Ltd. | 2021 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, A.; Dindorkar, N.; Kaur, S. Bibliometric and Knowledge Network of Global Research on Pile Foundations: A Review of Recent Developments. Sustainability 2023, 15, 11108. https://doi.org/10.3390/su151411108
Tiwari A, Dindorkar N, Kaur S. Bibliometric and Knowledge Network of Global Research on Pile Foundations: A Review of Recent Developments. Sustainability. 2023; 15(14):11108. https://doi.org/10.3390/su151411108
Chicago/Turabian StyleTiwari, Aman, Nitin Dindorkar, and Suneet Kaur. 2023. "Bibliometric and Knowledge Network of Global Research on Pile Foundations: A Review of Recent Developments" Sustainability 15, no. 14: 11108. https://doi.org/10.3390/su151411108
APA StyleTiwari, A., Dindorkar, N., & Kaur, S. (2023). Bibliometric and Knowledge Network of Global Research on Pile Foundations: A Review of Recent Developments. Sustainability, 15(14), 11108. https://doi.org/10.3390/su151411108