Uses of Bamboo for Sustainable Construction—A Structural and Durability Perspective—A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Density
2.2. Moisture Content
3. Mechanical Properties
3.1. Compressive Strength
3.2. Tensile Strength
3.3. Flexural Strength
3.4. Buckling
3.5. Shear Strength
4. Cross-Laminated Bamboo
5. Connections
6. Preservation
6.1. Oil-Heated Treatment
6.2. Borax Solution
6.3. Water Soaking
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chung, K.F.; Yu, W.K. Mechanical Properties of Structural Bamboo for Bamboo Scaffoldings. Eng. Struct. 2002, 24, 429–442. [Google Scholar] [CrossRef]
- Follett, P.; Jayanetti, D. Bamboo in Construction. In Modern Bamboo Structures; Taylor & Francis: London, UK, 2008; pp. 23–32. [Google Scholar]
- Wei, X.; Zhou, H.; Chen, F.; Wang, G. Bending Flexibility of Moso Bamboo (Phyllostachys Edulis) with Functionally Graded Structure. Materials 2019, 12, 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, R.; García, J.J. Bamboo Joints with Steel Clamps Capable of Transmitting Moment. Constr. Build. Mater. 2019, 216, 249–260. [Google Scholar] [CrossRef]
- Hong, C.; Li, H.; Lorenzo, R.; Wu, G.; Corbi, I.; Corbi, O.; Xiong, Z.; Yang, H.; Zhang, D. Review on Connections for Original Bamboo Structures. J. Renew. Mater. 2019, 7, 713–730. [Google Scholar] [CrossRef] [Green Version]
- Correal, F.F. Bamboo Design and Construction. In Nonconventional and Vernacular Construction Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 521–559. [Google Scholar]
- Nugroho, N.; Bahtiar, E.T. Structural Grading of Gigantochloa Apus Bamboo Based on Its Flexural Properties. Constr. Build. Mater. 2017, 157, 1173–1189. [Google Scholar] [CrossRef]
- Yu, D.; Tan, H.; Ruan, Y. A Future Bamboo-Structure Residential Building Prototype in China: Life Cycle Assessment of Energy Use and Carbon Emission. Energy Build. 2011, 43, 2638–2646. [Google Scholar] [CrossRef]
- Gan, J.; Chen, M.; Semple, K.; Liu, X.; Dai, C.; Tu, Q. Life Cycle Assessment of Bamboo Products: Review and Harmonization. Sci. Total Environ. 2022, 849, 157937. [Google Scholar] [CrossRef]
- Gatóo, A.; Sharma, B.; Bock, M.; Mulligan, H.; Ramage, M.H. Sustainable Structures: Bamboo Standards and Building Codes. Proc. Inst. Civ. Eng. Eng. Sustain. 2014, 167, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Lakkad, S.C.; Patel, J.M. Mechanical Properties of Bamboo, a Natural Composite. Fibre Sci. Technol. 1981, 14, 319–322. [Google Scholar] [CrossRef]
- Chandrakeerthy, S.D.S. Design Recommendations for Bamboo Elements in Exposed Temporary Structures; Institution of Engineers Sri Lanka: Colombo, Sri Lanka, 1995; pp. 101–109. [Google Scholar]
- Bahtiar, E.T.; Imanullah, A.P.; Hermawan, D.; Nugroho, N. Abdurachman Structural Grading of Three Sympodial Bamboo Culms (Hitam, Andong, and Tali) Subjected to Axial Compressive Load. Eng. Struct. 2019, 181, 233–245. [Google Scholar] [CrossRef]
- Trujillo, D.J.; López, L.F. Bamboo Material Characterisation. In Nonconventional and Vernacular Construction Materials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 491–520. [Google Scholar]
- Nugroho, N.; Kartini; Bahtiar, E.T. Cross-Species Bamboo Grading Based on Flexural Properties. IOP Conf. Ser. Earth Environ. Sci. 2021, 891, 012008. [Google Scholar] [CrossRef]
- ISO/TR. 22157-1; Bamboo–Determination of Physical and Mechanical Properties—Part 1: Requirement. International Organization for Standardization: Geneva, Switzerland, 2004.
- Zakikhani, P.; Zahari, R.; Bin Haji Hameed Sultan, M.T.; Abang Abdul Majid, D.L. Morphological, Mechanical, and Physical Properties of Four Bamboo Species. Bioresources 2017, 12, 2479–2495. [Google Scholar] [CrossRef] [Green Version]
- Kamthai, S.; Puthson, P. The Physical Properties, Fiber Morphology and Chemical Compositions of Sweet Bamboo (Dendrocalamus Asper Backer). Agric. Nat. Resour. 2005, 39, 581–587. [Google Scholar]
- Moroz, J.G.; Lissel, S.L.; Hagel, M.D. Performance of Bamboo Reinforced Concrete Masonry Shear Walls. Constr. Build. Mater. 2014, 61, 125–137. [Google Scholar] [CrossRef]
- Bhonde, D.; Nagarnaik, P.B.; Parbat, D.K.; Waghe, U.P. Physical and Mechanical Properties of Bamboo (Dendrocalmus Strictus). Int. J. Sci. Eng. Res. 2014, 5, 455–459. [Google Scholar]
- Fabiani, M. Physical and Mechanical Properties of Italian Bamboo Culms. In Proceedings of the 10th World Bamboo Congress, Damyang, Republic of Korea, 17–22 September 2015. [Google Scholar]
- Shastry, A.; Unnikrishnan, S. Investigation on Elastic Properties of Bamboo and Behavior of Bamboo Reinforced Concrete Beams. Int. J. Earth Sci. Eng. 2017, 10, 304–312. [Google Scholar] [CrossRef]
- Trujillo, D.; Jangra, S.; Gibson, J.M. Flexural Properties as a Basis for Bamboo Strength Grading. Proc. Inst. Civ. Eng.-Struct. Build. 2017, 170, 284–294. [Google Scholar] [CrossRef]
- Parasuram, M.; Baskaran, K. Study on Bamboo and Steel as Hybrid Reinforcement for Concrete Slab. In Proceedings of the Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 28–30 July 2020; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Bahtiar, E.T.; Trujillo, D.; Nugroho, N. Compression Resistance of Short Members as the Basis for Structural Grading of Guadua Angustifolia. Constr. Build. Mater. 2020, 249, 118759. [Google Scholar] [CrossRef]
- Iswanto, A.H.; Madyaratri, E.W.; Hutabarat, N.S.; Zunaedi, E.R.; Darwis, A.; Hidayat, W.; Susilowati, A.; Adi, D.S.; Lubis, M.A.R.; Sucipto, T.; et al. Chemical, Physical, and Mechanical Properties of Belangke Bamboo (Gigantochloa Pruriens) and Its Application as a Reinforcing Material in Particleboard Manufacturing. Polymers 2022, 14, 3111. [Google Scholar] [CrossRef]
- Navaratnam, S.; Christopher, P.B.; Ngo, T.; Le, T.V. Bending and Shear Performance of Australian Radiata Pine Cross-Laminated Timber. Constr. Build. Mater. 2020, 232, 117215. [Google Scholar] [CrossRef]
- Bandara, S.; Rajeev, P.; Gad, E. Structural Health Assessment Techniques for In-Service Timber Poles. Struct. Infrastruct. Eng. 2023, 19, 439–459. [Google Scholar] [CrossRef]
- Autengruber, M.; Lukacevic, M.; Gröstlinger, C.; Eberhardsteiner, J.; Füssl, J. Numerical Assessment of Wood Moisture Content-Based Assignments to Service Classes in EC 5 and a Prediction Concept for Moisture-Induced Stresses Solely Using Relative Humidity Data. Eng. Struct. 2021, 245, 112849. [Google Scholar] [CrossRef]
- Almeida, G.; Hernández, R.E. Changes in Physical Properties of Tropical and Temperate Hardwoods below and above the Fiber Saturation Point. Wood Sci. Technol. 2006, 40, 599–613. [Google Scholar] [CrossRef]
- Liese, W.; Tang, T.K.H. Preservation and Drying of Bamboo. In Bamboo; Springer: Berlin/Heidelberg, Germany, 2015; pp. 257–297. [Google Scholar]
- Jiang, Z.; Wang, H.; Tian, G.; Liu, X.; Yu, Y. Sensitivity of several selected mechanical properties of moso bamboo to moisture content change under the fibre saturation point. Bioresources 2012, 7, 5048–5058. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, S.; Lawrence, A.; Trujillo, D.; Feltham, I.; Felipe López, L. Structural Use of Bamboo. Part 3: Design Values. Struct. Eng. 2016, 94, 42–45. [Google Scholar]
- Harries, K.A.; Sharma, B.; Richard, M. Structural Use of Full Culm Bamboo: The Path to Standardization. Int. J. Archit. Eng. Constr. 2012, 1, 66–75. [Google Scholar] [CrossRef]
- Sakaray, H.; Togati, N.V.V.K.; Reddy, I.R. Investigation on Properties of Bamboo as Reinforcing Material in Concrete. Int. J. Eng. Res. Appl. 2012, 2, 77–83. [Google Scholar]
- Awalluddin, D.; Ariffin, M.A.M.; Osman, M.H.; Hussin, M.W.; Ismail, M.A.; Lee, H.S.; Lim, N.H.A.S. Mechanical Properties of Different Bamboo Species. In Proceedings of the MATEC web of conferences, Sibiu, Romania, 7–9 June 2017; EDP Sciences: Les Ulis, France, 2017. [Google Scholar]
- Mahzuz, H.M.A.; Ahmed, M.; Dutta, J.; Rose, R.H. Determination of Several Properties of a Bamboo of Bangladesh. J. Civ. Eng. Res. 2013, 3, 16–21. [Google Scholar]
- Sabbir, M.A.; Hoq, S.A.; Fancy, S.F. Determination of Tensile Property of Bamboo for Using as Potential Reinforcement in the Concrete. Int. J. Civ. Environ. Eng. IJCEE-IJENS 2011, 11, 47–54. [Google Scholar]
- Nugroho, N.; Bahtiar, E.T. Grading Development of Indonesian Bamboo Culm: Case Study on Tali Bamboo (Gigantochloa Apus). In Proceedings of the 2018 World Conference on Timber Engineering, Seoul, Republic of Korea, 20–23 August 2018. [Google Scholar]
- Molari, L.; García, J.J. On the Radial Variation of the Transverse Mechanical Properties of Bamboo. J. Build. Eng. 2021, 33, 101557. [Google Scholar] [CrossRef]
- Li, X. Physical, Chemical, and Mechanical Properties of Bamboo and Its Utilization Potential for Fiberboard Manufacturing; Louisiana State University and Agricultural & Mechanical College: Baton Rouge, LA, USA, 2004. [Google Scholar]
- Lopez, J. Optimizing the Mechanical Characteristics of Bamboo to Improve the Flexural Behavior for Biocomposite Structural Application; California Polytechnic State University: San Luis Obispo, CA, USA, 2012. [Google Scholar]
- Taylor, D.; Kinane, B.; Sweeney, C.; Sweetnam, D.; O’Reilly, P.; Duan, K. The Biomechanics of Bamboo: Investigating the Role of the Nodes. Wood Sci. Technol. 2015, 49, 345–357. [Google Scholar] [CrossRef]
- Sá Ribeiro, R.A.; Sá Ribeiro, M.G.; Miranda, I.P.A. Bending Strength and Nondestructive Evaluation of Structural Bamboo. Constr. Build. Mater. 2017, 146, 38–42. [Google Scholar] [CrossRef]
- Liu, P.; Zhou, Q.; Fu, F.; Li, W. Bending Strength Design Method of Phyllostachys Edulis Bamboo Based on Classification. Polymers 2022, 14, 1418. [Google Scholar] [CrossRef] [PubMed]
- British Standard BS 5268-2; Structural Use of Timber Part 2: Code of Practice for Permissible Stress Design, Materials and Workmanship. British Standards Institution: London, UK, 2002.
- Yu, W.K.; Chung, K.F.; Chan, S.L. Column Buckling of Structural Bamboo. Eng. Struct. 2003, 25, 755–768. [Google Scholar] [CrossRef]
- Yu, W.K.; Chung, K.F.; Chan, S.L. Axial Buckling of Bamboo Columns in Bamboo Scaffolds. Eng. Struct. 2005, 27, 61–73. [Google Scholar] [CrossRef]
- Nie, Y.; Wei, Y.; Huang, L.; Liu, Y.; Dong, F. Influence of Slenderness Ratio and Sectional Geometry on the Axial Compression Behavior of Original Bamboo Columns. J. Wood Sci. 2021, 67, 36. [Google Scholar] [CrossRef]
- Bahtiar, E.T.; Malkowska, D.; Trujillo, D.; Nugroho, N. Experimental Study on Buckling Resistance of Guadua Angustifolia Bamboo Column. Eng. Struct. 2021, 228, 111548. [Google Scholar] [CrossRef]
- Porteous, J.; Kermani, A. (Eds.) Structural Timber Design to Eurocode 5; Blackwell Science Ltd: Oxford, UK, 2007; ISBN 9780470697818. [Google Scholar]
- Wang, R.; Shi, J.J.; Xia, M.K.; Li, Z. Rolling Shear Performance of Cross-Laminated Bamboo-Balsa Timber Panels. Constr. Build. Mater. 2021, 299, 123973. [Google Scholar] [CrossRef]
- Yang, S.; Li, H.; Fei, B.; Zhang, X.; Wang, X. Bond Quality and Durability of Cross-Laminated Flattened Bamboo and Timber (CLBT). Forests 2022, 13, 1271. [Google Scholar] [CrossRef]
- Lv, Q.; Wang, W.; Liu, Y. Study on Thermal Insulation Performance of Cross-Laminated Bamboo Wall. J. Renew. Mater. 2019, 7, 1231–1250. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, Q.; Huang, D.; Deeks, A.J. Compressive Performance of Laminated Bamboo. Compos. B Eng. 2013, 54, 319–328. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Wei, Y.; Wang, B.J. Off-Axis Compressive Behavior of Cross-Laminated Bamboo and Timber Wall Elements. Structures 2022, 35, 452–468. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Wang, B.J.; Wei, Y. Study on In-Plane Compressive Performance of Cross-Laminated Bamboo and Timber (CLBT) Wall Elements. Eur. J. Wood Wood Prod. 2023, 81, 343–355. [Google Scholar] [CrossRef]
- Dong, W.; Wang, Z.; Zhou, J.; Gong, M. Experimental Study on Bending Properties of Cross-Laminated Timber-Bamboo Composites. Constr. Build. Mater. 2021, 300, 124313. [Google Scholar] [CrossRef]
- Lv, Q.; Wang, W.; Liu, Y. Flexural Performance of Cross-Laminated Bamboo (CLB) Slabs and CFRP Grid Composite CLB Slabs. Adv. Civ. Eng. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Xiao, Y.; Cai, H.; Dong, S.Y. A Pilot Study on Cross-Laminated Bamboo and Timber Beams. J. Struct. Eng. 2021, 147, 06021002. [Google Scholar] [CrossRef]
- Xing, W.; Hao, J.; Sikora, K.S. Shear Performance of Adhesive Bonding of Cross-Laminated Bamboo. J. Mater. Civ. Eng. 2019, 31, 04019201. [Google Scholar] [CrossRef]
- Li, Z.; Xia, M.K.; Shi, J.J.; Wang, R. Shear Properties of Composite Cross-Laminated Bamboo Panels. Eur. J. Wood Wood Prod. 2022, 80, 635–646. [Google Scholar] [CrossRef]
- Awaludin, A.; Andriani, V. Bolted Bamboo Joints Reinforced with Fibers. Procedia Eng. 2014, 95, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Camacho, V.; Páez, I. Estudio de Conexiones En Guadua Solicitadas a Momento Flector; Universidad Nacional de Colombia: Bogotá, Colombia, 2002. [Google Scholar]
- Davies, C. Bamboo Connections; The University of Bath: Bath, UK, 2008. [Google Scholar]
- Moreira, L.E.; Ghavami, K. Limit State Design of Steel Pin Connections for Bamboo Truss Structures. In Proceedings of the 16th International Conference on Non-conventional Materials and Technologies (16th NOCMAT 2015), Winnipeg, MB, Canada, 10–13 August 2015. [Google Scholar]
- Masdar, A.; Suhendro, B.; Siswosukarto, S.; Sulistyo, D. The Study of Wooden Clamps for Strengthening of Connection on Bamboo Truss Structure. J. Teknol. 2015, 72, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Moreira, L.E.; Ghavami, K. Limits States Analysis for Bamboo Pin Connections. Key Eng. Mater. 2012, 517, 3–12. [Google Scholar] [CrossRef]
- Nie, S.; Ran, S.; Wu, D.; Chen, J.; Wang, H.; Wei, Q. Mechanical Properties of Moso Bamboo Connections with External Clamp Steel Plates. J. Renew. Mater. 2022, 10, 487–510. [Google Scholar] [CrossRef]
- Paraskeva, T.; Pradhan, N.P.N.; Stoura, C.D.; Dimitrakopoulos, E.G. Monotonic Loading Testing and Characterization of New Multi-Full-Culm Bamboo to Steel Connections. Constr. Build. Mater. 2019, 201, 473–483. [Google Scholar] [CrossRef]
- Masdar, A.; Suhendro, B.; Siswosukarto, S.; Sulistyo, D. Determinant of Critical Distance of Bolt on Bamboo Connection. J. Teknol. 2014, 69, 3319. [Google Scholar] [CrossRef] [Green Version]
- Paraskeva, T.S.; Grigoropoulos, G.; Dimitrakopoulos, E.G. Design and Experimental Verification of Easily Constructible Bamboo Footbridges for Rural Areas. Eng. Struct. 2017, 143, 540–548. [Google Scholar] [CrossRef]
- Lin, Q.; Huang, Y.; Li, X.; Yu, W. Effects of Shape, Location and Quantity of the Joint on Bending Properties of Laminated Bamboo Lumber. Constr. Build. Mater. 2020, 230, 117023. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, Y.; Jiang, J.; Zhao, K.; Zheng, K. Comparative Study on Mechanical Behavior of Bamboo-Concrete Connections and Wood-Concrete Connections. Front. Mater. 2020, 7, 587580. [Google Scholar] [CrossRef]
- Bui, Q.-B.; Grillet, A.-C.; Tran, H.-D. A Bamboo Treatment Procedure: Effects on the Durability and Mechanical Performance. Sustainability 2017, 9, 1444. [Google Scholar] [CrossRef] [Green Version]
- Kenya Forestry Research Institute Bamboo Harvesting and Preservation Bamboo Training Manual 1. United Nations Industrial Development Organization, 2012. Available online: http://lankaboo.lk/wp-content/uploads/2016/11/1_bamboo_harvesting_and_prese.pdf (accessed on 12 July 2023).
- Singha, B.L.; Borah, R.K. Traditional Methods of Post Harvest Bamboo Treatment for Durability Enhancement. Int. J. Sci. Eng. Res. 2017, 8, 518–522. [Google Scholar]
- Amede, E.A.; Hailemariama, E.K.; Hailemariam, L.M.; Nuramo, D.A. A review of codes and standards for bamboo structural design. Adv. Mater. Sci. Eng. 2021, 2021, 4788381. [Google Scholar] [CrossRef]
- ISO 22156; Bamboo Structures—Bamboo Culms—Structural Design. International Organization for Standardization: Geneva, Switzerland, 2021.
- ISO 19624; Bamboo Structures—Grading of Bamboo Culms—Basic Principles and Procedures. International Organization for Standardization: Geneva, Switzerland, 2018.
Reference | Species | Average Specific Gravity |
---|---|---|
Chung and Yu [1] | Bambusa pervariabili | 0.708 |
Phyllostachya pubescens | 0.794 | |
Kamthai and Puthson [18] | Dendrocalamus asper | 0.725 |
Moroz et al. [19] | Arundinaria amabilis | 1.100 |
Nagarnaik et al. [20] | Dendrocalmus strictus | 0.799 |
Fabiani [21] | Phyllostachys edulis | 0.765 |
Phyllostachys viridiglaucescens | 0.805 | |
Unnikrishnan and Shastry [22] | Not mentioned | 0.731 |
Trujillo et al. [23] | Guadua angustifolia | 0.669 |
Parasuram and Baskaran [24] | Bambusa vulgaris | 0.700 |
Bahtiar et al. [25] | Guadua angustifolia | 0.564 |
Correal [6] | Dendrocalamus strictus | 0.64 |
Guadua angustifolia | 0.68 | |
Phyllostachys edulis | 0.79 | |
Nugroho et al. [15] | Bambusa vulgaris | 0.698 |
Gigantochloa pseudoarundinaceae | 0.576 | |
Dendrocalamus asper | 0.640 | |
Gigantochloa atroviolacea | 0.626 | |
Gigantochloa apus | 0.642 | |
Iswanto et al. [26] | Gigantochloa pruriens | 0.593 |
Study & Country | Species | Type of Preservation | Moisture Content % | Compressive Strength (MPa) | Tensile Strength (MPa) | Flexural Strength (MPa) | Youngs Modulus (GPa) |
---|---|---|---|---|---|---|---|
Chandrakeerthy [12] (Sri Lanka) | Bambusa vulgaris | Seasoning | 30 | 29.33 | 89.91 | 53.88 | 18.57 |
Chung and Yu [1] (China) | Bambusa pervariabili | Air drying | 5–20 | 69 | - | 82 | 9.3 |
Phyllostachya pubescens | 5–30 | 75 | - | 88 | 9.4 | ||
Mahzuz et al. [37] (Bangladesh) | Bambusa balcooa | - | - | - | 92.84 | - | 6.26 |
Sabbir et al. [38] (Bangladesh) | - | Untreated | - | - | 117.1 | - | 51.4 |
Sakaray et al. [35] (India) | Bambusa vulgaris | Seasoning and applying a waterproof coating | - | 108.2 | 121.0 | - | 15.00 |
Parasuram and Baskaran [24] (Sri Lanka) | Bambusa vulgaris | Air seasoning and applying wood preservatives | 13.3 | - | 90.0 | - | 9.92 |
Fabiani [21] (Italy) | Phyllostachys edulis | - | 43.7 | 55.70 | 126.7 | 97.3 | 13.21 |
Phyllostachys viridiglaucescens | 24.9 | 56.8 | 159.0 | - | - | ||
Bhonde et al. [20] (India) | Dendrocalmus strictus | Untreated | 6.92 | 78.03 | 95.78 | - | - |
Awalluddin et al. [36] (Malayasia) | Dendrocalamus asper | Boric acid treatment | 15.9–18.4 | 73.65 | 232.8 | - | 20.00 |
Bambusa vulgaris | 14.0–19.2 | 78.74 | 231.67 | - | - | ||
Gigantochloa scortechinii | 15.6–18.1 | 68.62 | 187.67 | - | - | ||
Schizos tachyum grande | 16.9–19.6 | 40.03 | 149.20 | - | - | ||
Nugroho et al. [39] (Indonesia) | Gigantochloa apus | Air drying | 16.9 | - | - | 67.3 | 17.95 |
Nugroho et al. [15] (Indonesia) | Bambusa vulgaris | Conditioning using a fan in an indoor environment | 15.3 | - | - | 40.05 | - |
Gigantochloa pseudoarundinaceae | 16.7 | - | - | 63.98 | 10.46 | ||
Dendrocalamus asper | 14.4 | - | - | 99.74 | 18.00 | ||
Gigantochloa atroviolacea | 15.9 | - | - | 91.87 | - | ||
Gigantochloa apus | 16.9 | - | - | 76.9 | 15.68 |
Species | Tensile Strains | Effective Modulus (MPa) | Young’s Modulus (MPa) | Tensile Strength (MPa) | |||
---|---|---|---|---|---|---|---|
Inner | Outer | Inner | Outer | Inner | Outer | ||
Phyllostachys edulis | 0.014–0.035 | 0.008–0.0019 | 1209–2983 | 30% Lower than the outer | 1976–4694 | 39.9 | 14.5 |
Phyllostachys bambusoides | 796–1694 | 17.6 | 30.5 | ||||
Phyllostachys iridescens | 16.9 | 23.2 | |||||
Phyllostachys violascens | 24.1 | 22.6 | |||||
Guadua angustifolia | 931–1148 | 17.6 | 30.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhushan, S.; Buddika, S.; Bandara, S.; Navaratnam, S.; Abeysuriya, N. Uses of Bamboo for Sustainable Construction—A Structural and Durability Perspective—A Review. Sustainability 2023, 15, 11137. https://doi.org/10.3390/su151411137
Madhushan S, Buddika S, Bandara S, Navaratnam S, Abeysuriya N. Uses of Bamboo for Sustainable Construction—A Structural and Durability Perspective—A Review. Sustainability. 2023; 15(14):11137. https://doi.org/10.3390/su151411137
Chicago/Turabian StyleMadhushan, Sumeera, Samith Buddika, Sahan Bandara, Satheeskumar Navaratnam, and Nandana Abeysuriya. 2023. "Uses of Bamboo for Sustainable Construction—A Structural and Durability Perspective—A Review" Sustainability 15, no. 14: 11137. https://doi.org/10.3390/su151411137
APA StyleMadhushan, S., Buddika, S., Bandara, S., Navaratnam, S., & Abeysuriya, N. (2023). Uses of Bamboo for Sustainable Construction—A Structural and Durability Perspective—A Review. Sustainability, 15(14), 11137. https://doi.org/10.3390/su151411137