Estimation of Crop Water Productivity Using GIS and Remote Sensing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Methodology
2.3. Datasets
2.3.1. Crop Data
2.3.2. Crop Masks
2.3.3. Reference Evapotranspiration
2.3.4. Remotely Sensed Data
2.3.5. Actual Evapotranspiration
2.4. Crop Calendars
3. Results and Discussions
3.1. River Flows
3.2. Actual Evapotranspiration
3.2.1. Wheat Crop
3.2.2. Cotton Crop
3.2.3. Rice Crop
3.3. Crop Water Productivity of Major Crops
3.3.1. Wheat Crop (2014–2015 and 2016–2017)
3.3.2. Cotton Crop
3.3.3. Rice Crop
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Döll, P.; Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 2002, 38, 8-1–8-10. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G.M.; de Fraiture, C.; Molden, D.J. WATPRO: A remote sensing based model for mapping water productivity of wheat. Agric. Water Manag. 2010, 97, 1628–1636. [Google Scholar] [CrossRef]
- Ahmad, D.; Chani, M.I.; Humayon, A.A. Major Crops Forecasting Area, Production and Yield Evidence from Agriculture Sector of Pakistan. Sarhad J. Agric. 2017, 33, 385–396. [Google Scholar] [CrossRef]
- Baig, M.B.; Shahid, S.A.; Straquadine, G.S. Making rainfed agriculture sustainable through environmental friendly technologies in Pakistan: A review. Int. Soil Water Conserv. Res. 2013, 1, 36–52. [Google Scholar] [CrossRef] [Green Version]
- Kazmi, D.H.; Rasul, G. Early Yield Assessment of Wheat on Meteorological Basis for Potohar Region. Pak. J. Meteorol. 2006, 6, 73–87. [Google Scholar]
- Adnan, S.; Khan, A.H. Effective Rainfall for Irrigated Agriculture Plains of Pakistan. J. Meteorol. 2011, 6, 61–72. [Google Scholar]
- Thakker, R.P.; Solanki, H.; Thakker, P.S. Indus Water from Sindh Pakistan Entered the Nal Sarovar, Located in Ahmedabad District, Gujarat, India. Life Sci. Leafl. 2010, 4297, 76–82. [Google Scholar]
- van Steenbergen, F.; Kaisarani, A.B.; Khan, N.U.; Gohar, M.S. A case of groundwater depletion in Balochistan, Pakistan: Enter into the void. J. Hydrol. Reg. Stud. 2015, 4, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Investment, F.A.O.; Occasional, C.; Series, P.; December, N. Pakistan Sindh Water Resources Management—By Fao/World Bank Cooperative Programme Pakistan Sindh Water Resources Management Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Shen, Y.; Li, S.; Chen, Y.; Qi, Y.; Zhang, S. Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989–2010. Agric. Water Manag. 2013, 128, 55–64. [Google Scholar] [CrossRef]
- Ahmad, M.-D.; Steward, J.; Peña-Arancibia, J.; Kirby, M. Sindh Water Outlook: Impacts of Climate Change, Dam Sedimentation and Urban Water Supply on Irrigated Agriculture; The Commonwealth Scientific and Industrial Research Organisation: Canberra, Australia, 2020; p. 35. [Google Scholar]
- Hussain, I.; Hussain, Z.; Sial, M.H.; Akram, W.; Farhan, M.F. Water Balance, Supply and Demand and Irrigation Efficiency of Indus Basin. Water 2011, 49, 13–38. [Google Scholar]
- Qureshi, A. Optimization of Irrigation Water Management: A Case Study OF Secondary Canal, Sindh, Pakistan. In Proceedings of the Sixteenth International Water Technology Conference, Istanbul, Turkey, 7–10 May 2012; pp. 1–15. [Google Scholar]
- Ahmad, M.D.; Turral, H.; Nazeer, A. Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan. Agric. Water Manag. 2009, 96, 551–564. [Google Scholar] [CrossRef]
- Aslam, M. Agricultural Productivity Current Scenario, Constraints and Future Prospects in Pakistan. Sarhad J. Agric. 2016, 32, 289–303. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Molden, D.; Oweis, T.; Steduto, P.; Bindraban, P.; Hanjra, M.A.; Kijne, J. Improving agricultural water productivity: Between optimism and caution. Agric. Water Manag. 2010, 97, 528–535. [Google Scholar] [CrossRef]
- Mata, M.D.; Salunke, K.A.; PBhangale, P. Evaluation of Evapotranspiration. Int. J. Res. Eng. Technol. 2014, 3, 43–47. [Google Scholar] [CrossRef]
- Maupin, M.A.; Kenny, J.F.; Hutson, S.S.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of Water in the United States in 2010; Circular 1405; U.S. Geological Survey Circular: Reston, Virginia, 2010; ISBN 9781411338623. [Google Scholar]
- Allen, R.; Morton, C.; Kamble, B.; Kilic, A.; Huntington, J.; Thau, D.; Gorelick, N.; Erickson, T.; Moore, R.; Trezza, R.; et al. E EEFlux: A Landsat-Based Evapotranspiration Mapping Tool on the Google Earth Engine; DigitalCommons@University of Nebraska-Lincoln: Lincoln, NE, USA, 2015. [Google Scholar]
- Foley, D.J.; Thenkabail, P.S.; Aneece, I.P.; Teluguntla, P.G.; Oliphant, A.J. A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades. Int. J. Digit. Earth 2020, 13, 939–975. [Google Scholar] [CrossRef]
- Foolad, F.; Blankenau, P.; Kilic, A.; Ekonomiczno-humanistyczna, A.; Allen, R.G. Comparison of the Automatically Calibrated Google Evapotranspiration Application—EEFlux and the Manually Calibrated METRIC Application. Preprints.org 2022, 2018070040. [Google Scholar] [CrossRef] [Green Version]
- He, T.; Gao, F.; Liang, S.; Peng, Y. Mapping Climatological Bare Soil Albedos over the Contiguous United States Using MODIS Data. Remote Sens. 2019, 11, 666. [Google Scholar] [CrossRef] [Green Version]
- Faso, B. Policy Guide to Improve Water Productivity in Small-Scale Agriculture; FAO: Rome, Italy, 2020; ISBN 9789251321430. [Google Scholar]
- Varzi, M.M. Crop Water Production Functions—A Review of Available Mathematical Method. J. Agric. Sci. 2016, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Williams, J.R.; Zehnder, A.J.B.; Yang, H. GEPIC—Modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 2007, 94, 478–493. [Google Scholar] [CrossRef]
- Wang, X.; Xin, L.; Tan, M.; Li, X.; Wang, J. Impact of spatiotemporal change of cultivated land on food-water relations in China during 1990–2015. Sci. Total Environ. 2020, 716, 137119. [Google Scholar] [CrossRef] [PubMed]
- Solangi, G.S.; Shah, S.A.; Alharbi, R.S.; Panhwar, S.; Keerio, H.A.; Kim, T.W.; Memon, J.A.; Bughio, A.D. Investigation of Irrigation Water Requirements for Major Crops Using CROPWAT Model Based on Climate Data. Water 2022, 14, 2578. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency. Data Collection Survey on Agricultural Sector in Sindh Province in the Islamic Republic of Pakistan; Final Report; Japan International Cooperation Agency: Tokyo, Japan, 2022. [Google Scholar]
- JECFA. Evaluation of certain contaminants in food, Prepared by the Eighty-third report of the Joint FAO/WHO Expert Committee on Food Additives; JECFA: Rome, Italy, 2017; ISBN 9789241210027. [Google Scholar]
- Liaqat, M.U.; Cheema, M.J.M.; Huang, W.; Mahmood, T.; Zaman, M.; Khan, M.M. Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin. Comput. Electron. Agric. 2017, 138, 39–47. [Google Scholar] [CrossRef]
- Allen, R. Google Earth Engine Evapotranspiration Flux—EEFlux; EEFlux-Development Team: Fortaleza, Brasil, 2015. [Google Scholar]
- Shahid, M.A.; Chauhdary, J.N.; Usman, M.; Qamar, M.U.; Shabbir, A. Assessment of Water Productivity Enhancement and Sustainability Potential of Different Resource Conservation Technologies: A Review in the Context of Pakistan. Agriculture 2022, 12, 1058. [Google Scholar] [CrossRef]
- Zaidi, A.; Khan, N.; Lashari, B.; Laghari, F.; Panhwar, V. Agricultural Water Balance Study in Sindh (Pakistan) Using Satellite-Derived Actual Evapotranspiration. In Proceedings of the 5th International Electronic Conference on Water Sciences, Online, 16–30 November 2020; p. 8021. [Google Scholar] [CrossRef]
- Khan, M.I.; Saddique, Q.; Zhu, X.; Ali, S.; Ajaz, A.; Zaman, M.; Saddique, N.; Buttar, N.A.; Arshad, R.H.; Sarwar, A. Establishment of Crop Water Stress Index for Sustainable Wheat Production under Climate Change in a Semi-Arid Region of Pakistan. Atmosphere 2022, 13, 2008. [Google Scholar] [CrossRef]
- Hong, Y. Actual evapotranspiration estimation for different land use and land cover in urban regions using Landsat 5 data. J. Appl. Remote Sens. 2010, 4, 041873. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, X.; Wang, X.; Zeng, Y. Phenology-Based Remote Sensing Assessment of Crop Water Productivity. Water 2023, 15, 329. [Google Scholar] [CrossRef]
- Zwart, S.J.; Bastiaanssen, W.G.M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric. Water Manag. 2004, 69, 115–133. [Google Scholar] [CrossRef]
- Summer, W.; Summer, A. Report on Wheat. In Taking Root: The Nature Writing of William and Adam Summer of Pomaria; Kibler, J.E., Ed.; University of South Carolina Press: Columbia, SC, USA, 2018; pp. 47–52. [Google Scholar] [CrossRef]
- Usman, M.; Liedl, R.; Shahid, M.A. Managing Irrigation Water by Yield and Water Productivity Assessment of a Rice-Wheat System Using Remote Sensing. J. Irrig. Drain. Eng. 2014, 140, 04014022. [Google Scholar] [CrossRef]
- Shabbir, A.; Arshad, M.; Bakhsh, A.; Usman, M.; Shakoor, A.; Ahmad, I.; Ahmad, A. Apparent and real water productivity for cotton-wheat zone of Punjab, Pakistan. Pak. J. Agric. Sci. 2012, 49, 323–329. [Google Scholar]
- Alzahrani, K.; Ali, M.; Azeem, M.I.; Alotaibi, B.A. Efficacy of Public Extension and Advisory Services for Sustainable Rice Production. Agriculture 2023, 13, 1062. [Google Scholar] [CrossRef]
Platform/Sensor | Year | Season | Spatial Resolution (m) | Bands | Crop | Source |
---|---|---|---|---|---|---|
Landsat 5 | 1998 | Kharif | 30 | 1 | Cotton, Rice | EEflux |
Landsat 8 | 2017 | Kharif | 30 | 1 | Cotton, Rice | EEflux |
Landsat 8 | 2014–2015 | Rabi | 30 | 1 | Wheat | EEflux |
Landsat 8 | 2016–2017 | Rabi | 30 | 1 | Wheat | EEflux |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talpur, Z.; Zaidi, A.Z.; Ahmed, S.; Mengistu, T.D.; Choi, S.-J.; Chung, I.-M. Estimation of Crop Water Productivity Using GIS and Remote Sensing Techniques. Sustainability 2023, 15, 11154. https://doi.org/10.3390/su151411154
Talpur Z, Zaidi AZ, Ahmed S, Mengistu TD, Choi S-J, Chung I-M. Estimation of Crop Water Productivity Using GIS and Remote Sensing Techniques. Sustainability. 2023; 15(14):11154. https://doi.org/10.3390/su151411154
Chicago/Turabian StyleTalpur, Zenobia, Arjumand Z. Zaidi, Suhail Ahmed, Tarekegn Dejen Mengistu, Si-Jung Choi, and Il-Moon Chung. 2023. "Estimation of Crop Water Productivity Using GIS and Remote Sensing Techniques" Sustainability 15, no. 14: 11154. https://doi.org/10.3390/su151411154
APA StyleTalpur, Z., Zaidi, A. Z., Ahmed, S., Mengistu, T. D., Choi, S. -J., & Chung, I. -M. (2023). Estimation of Crop Water Productivity Using GIS and Remote Sensing Techniques. Sustainability, 15(14), 11154. https://doi.org/10.3390/su151411154