Optimized Design of Skylight Arrangement to Enhance the Uniformity of Indoor Sunlight Illumination
Abstract
:1. Introduction
2. Modeling of Skylight Arrangement
2.1. The Distribution of Natural Light in China
2.2. Skylight Lighting Model
2.3. Skylight Arrangement Model
2.4. Objective Function
3. Optimization Algorithm and Analysis of Optimization Results
3.1. Nonlinear Programming
3.2. Principle of Genetic Algorithm
3.3. Analysis of Genetic Algorithm Optimization Simulation
4. Practical Scenario Application of Optimization Algorithm
4.1. Analysis of the Ideal Gymnasium
4.2. Analysis of the Gymnasium with Obstruction
4.3. Analysis of the Gymnasium with Seating
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doulos, L.; Kontadakis, A.; Madias, E.; Sinou, M.; Tsangrassoulis, A. Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems. Energy Build. 2019, 194, 201–217. [Google Scholar] [CrossRef]
- Gan, V.J.; Lo, I.M.; Ma, J.; Tse, K.T.; Cheng, J.C.; Chan, C.M. Simulation optimisation towards energy efficient green buildings: Current status and future trends. J. Clean. Prod. 2020, 254, 120012. [Google Scholar] [CrossRef]
- Daú, G.; Scavarda, A.; Scavarda, L.F.; Portugal, V.J.T. The healthcare sustainable supply chain 4.0: The circular economy transition conceptual framework with the corporate social responsibility mirror. Sustainability 2019, 11, 3259. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, Y.; He, B.-J.; Xu, W.; Jin, G.; Zhang, X. Application and suitability analysis of the key technologies in nearly zero energy buildings in China. Renew. Sustain. Energy Rev. 2019, 101, 329–345. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, Q.; Ji, H.; Wang, R.; Zhou, N.; Ye, Q.; Hao, B.; Li, Y.; Luo, D.; Lau, S.S.Y. A review of net zero energy buildings in hot and humid climates: Experience learned from 34 case study buildings. Renew. Sustain. Energy Rev. 2019, 114, 109303. [Google Scholar] [CrossRef]
- Gabriel Zougheib, R. The planning and design of Terminal buildings: A case study of Beirut international airport. Arts Archit. J. 2023, 4, 83–119. [Google Scholar] [CrossRef]
- Seo, D. Articulate Design Thinking for Sustainable Airport Environment: A Case Study of Singapore Changi Airport T3. Transp. Res. Procedia 2021, 56, 136–142. [Google Scholar] [CrossRef]
- Huihui, L. The advantages of C-pillars in the large space of the terminal: A case study of Beijng Daxing international airport terminal. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020, 780, 062035. [Google Scholar] [CrossRef]
- Laudis, L.L.; Ramadass, N.; Shyam, S.; Benschwartz, R.; Suresh, V. An Adaptive Symbiosis based Metaheuristics for Combinatorial Optimization in VLSI. Procedia Comput. Sci. 2020, 167, 205–212. [Google Scholar] [CrossRef]
- Drori, I.; Kharkar, A.; Sickinger, W.R.; Kates, B.; Ma, Q.; Ge, S.; Dolev, E.; Dietrich, B.; Williamson, D.P.; Udell, M. Learning to solve combinatorial optimization problems on real-world graphs in linear time. In Proceedings of the 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 14–17 December 2020; pp. 19–24. [Google Scholar]
- Shunmugathammal, M.; Christopher Columbus, C.; Anand, S. A novel B* tree crossover-based simulated annealing algorithm for combinatorial optimization in VLSI fixed-outline floorplans. Circuits Syst. Signal Process. 2020, 39, 900–918. [Google Scholar] [CrossRef]
- Sudan, M.; Tiwari, G.; Al-Helal, I. Dynamic analysis of daylight metrics and energy saving for rooftop window integrated flat roof structure of building. Sol. Energy 2015, 122, 834–846. [Google Scholar] [CrossRef]
- Zhao, N.; Fan, Z.; Liu, J. Daylight oriented optimization of photovoltaic integrated skylights for railway station waiting hall represented large space buildings in China. Energy Build. 2023, 285, 112777. [Google Scholar] [CrossRef]
- Isoardi, G.; Garcia Hansen, V.; Hirning, M. Evaluation of the luminous environment in open-plan offices with skylights. In Proceedings of the World Renewable Energy Forum (WREF) 2012, Denver, CO, USA, 13–17 May 2012; Volume 5, pp. 3818–3825. [Google Scholar]
- El-Abd, W.; Kamel, B.; Afify, M.; Dorra, M. Assessment of skylight design configurations on daylighting performance in shopping malls: A case study. Sol. Energy 2018, 170, 358–368. [Google Scholar] [CrossRef]
- Thakkar, V. Experimental study of Tubular Skylight and comparison with Artificial Lighting of standard ratings. Int. J. Enhanc. Res. Sci. Technol. Eng 2013, 2, 1–6. [Google Scholar]
- Futrell, B.J.; Ozelkan, E.C.; Brentrup, D. Optimizing complex building design for annual daylighting performance and evaluation of optimization algorithms. Energy Build. 2015, 92, 234–245. [Google Scholar] [CrossRef]
- Todorović, M.S.; Ećim-Đurić, O.; Nikolić, S.; Ristić, S.; Polić-Radovanović, S. Historic building’s holistic and sustainable deep energy refurbishment via BPS, energy efficiency and renewable energy—A case study. Energy Build. 2015, 95, 130–137. [Google Scholar] [CrossRef]
- Galatioto, A.; Ciulla, G.; Ricciu, R. An overview of energy retrofit actions feasibility on Italian historical buildings. Energy 2017, 137, 991–1000. [Google Scholar] [CrossRef]
- Shirzadnia, Z.; Goharian, A.; Mahdavinejad, M. Designerly approach to skylight configuration based on daylight performance; Toward a novel optimization process. Energy Build. 2023, 286, 112970. [Google Scholar] [CrossRef]
- Marzouk, M.; ElSharkawy, M.; Mahmoud, A. Optimizing daylight utilization of flat skylights in heritage buildings. J. Adv. Res. 2022, 37, 133–145. [Google Scholar] [CrossRef]
- Yi, Y.K.; Tariq, A.; Park, J.; Barakat, D. Multi-objective optimization (MOO) of a skylight roof system for structure integrity, daylight, and material cost. J. Build. Eng. 2021, 34, 102056. [Google Scholar] [CrossRef]
- Fernandez Bandera, C.; Muñoz Mardones, A.F.; Du, H.; Echevarria Trueba, J.; Ramos Ruiz, G. Exergy as a measure of sustainable retrofitting of buildings. Energies 2018, 11, 3139. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Qian, K. Optimal design of optical system for LED road lighting with high illuminance and luminance uniformity. Appl. Opt. 2013, 52, 5888–5893. [Google Scholar] [CrossRef]
- Kim, B.; Kim, J.; Ohm, W.-S.; Kang, S. Eliminating hotspots in a multi-chip LED array direct backlight system with optimal patterned reflectors for uniform illuminance and minimal system thickness. Opt. Express 2010, 18, 8595–8604. [Google Scholar] [CrossRef] [PubMed]
- Musa, M.M.M.; Qiu, H. A Novel Illumination Distribution Arrangement for Indoor VLC Using 17 Locations of Light Source. Adv. Wirel. Commun. Netw. 2018, 4, 5. [Google Scholar] [CrossRef]
- Li, D.H.; Chau, T.; Wan, K.K. A review of the CIE general sky classification approaches. Renew. Sustain. Energy Rev. 2014, 31, 563–574. [Google Scholar] [CrossRef]
- Wind Energy and Solar Energy Center of China. Meteorological Adiministration. China Wind and Solar Energy Resiurces Annual Bulletin (2022). China Energy News 2023, 723, 13–15. [Google Scholar]
- Yun, S.-I.; Kim, K.-S. Sky luminance measurements using CCD camera and comparisons with calculation models for predicting indoor illuminance. Sustainability 2018, 10, 1556. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, D.H.; Li, S.; Lou, S. Predicting diffuse solar irradiance on obstructed building façades under irregular skyline patterns for various ISO/CIE standard skies. J. Build. Eng. 2021, 40, 102370. [Google Scholar] [CrossRef]
- Biegler, L.T. New directions for nonlinear process optimization. Curr. Opin. Chem. Eng. 2018, 21, 32–40. [Google Scholar] [CrossRef]
- Li, Z.; Ma, L.; Long, X.; Chen, Y.; Deng, H.; Yan, F.; Gu, Q. Hardware-oriented algorithm for high-speed laser centerline extraction based on Hessian matrix. IEEE Trans. Instrum. Meas. 2021, 70, 1–14. [Google Scholar] [CrossRef]
- Yufka, M.; Ekici, B.; Cubukcuoglu, C.; Chatzikonstantinou, I.; Sariyildiz, I.S. Multi-Objective skylight optimization for a healthcare facility foyer space. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5–8 June 2017; pp. 1008–1014. [Google Scholar]
Work | Optimization Objectives Included | Application Scenario | |||
---|---|---|---|---|---|
Skylight Area | Skylight Angle | Considerations of the Surroundings or Climate | Illuminance Variation | ||
Shirzadnia, Z. et al. [20] | ✔ | ✔ | ✔ | An old boiler building in Iran | |
Marzouk, M. et al. [21] | ✔ | ✔ | A historical palace in Egypt | ||
Yi, Y.K. et al. [22] | ✔ | ✔ | Part of an art museum in America | ||
Fernandez Bandera, C. et al. [23] | ✔ | ✔ | School of architecture at a university in Spain | ||
This work | ✔ | ✔ | Universal rectangular gymnasiums |
Area | Representative Province/City | Total Horizontal Irradiation (kWh/m2) | Sunshine Duration (h) |
---|---|---|---|
I | Tibet | 1819.8 | 2887.2 |
Qinghai | 1747.2 | 2443.2 | |
II | Beijing | 1527.6 | 2630.6 |
Tianjin Xinjiang | 1561.7 1588.6 | 2617.1 2780.0 | |
III | Shanghai | 1448.5 | 1740.7 |
Guangdong Jiangsu | 1460.6 1458.5 | 1811.0 1731.4 | |
IV | Hunan Chongqing | 1388.6 1311.0 | 1279.7 1097.6 |
Guizhou | 1289.9 | 1130.3 |
Arrangement | Center Square | Scattered Vertical Bars | Five-Point Square | Nonlinear Programming | Genetic Algorithm Optimization |
---|---|---|---|---|---|
Skylight area (m2) | 3.91 | 3.98 | 4 | 4.15 | 4.15 |
Average illumination (lux) | 510.64 | 486.11 | 454.74 | 450.3 | 450.5 |
Variance rate Q | 22.94 | 14.85 | 6.76 | 6.55 | 5.13 |
Maximum illumination (lux) | 735.48 | 641.41 | 554.38 | 540.92 | 529.55 |
Minimum illumination (lux) | 289.75 | 280.37 | 311.56 | 306.18 | 316.07 |
Arrangement | Uniform Dispersion | Dispersed Vertical Bars | X-Shape Arrangement | Genetic Algorithm Optimization |
---|---|---|---|---|
Skylight area (m2) | 864.15 | 868 | 859.95 | 871.85 |
Average illumination (lux) | 993.12 | 1050.2 | 989.12 | 950.53 |
Variance rate Q | 41.76 | 75.84 | 72.78 | 28.37 |
Maximum illumination (lux) | 1347.5 | 1576.3 | 1573.3 | 1239.8 |
Minimum illumination (lux) | 493.64 | 475.55 | 485.46 | 531.8 |
Arrangement | Uniform Dispersion | Dispersed Vertical Bars | X-Shape Arrangement | Genetic Algorithm Optimization | NSGA-II Optimization [33] |
---|---|---|---|---|---|
Skylight area (m2) | 624.05 | 672 | 628.95 | 619.85 | 627.59 |
Average illumination (lux) | 715.26 | 812.16 | 706.44 | 668.83 | 672.38 |
Variance rate Q | 27.19 | 59.38 | 58.99 | 18.71 | 17.57 |
Maximum illumination (lux) | 929.59 | 1198.9 | 1163.3 | 838.11 | 840.47 |
Minimum illumination (lux) | 364.8 | 367.43 | 317.39 | 363.45 | 361.40 |
Arrangement | Uniform Dispersion | Dispersed Vertical Bars | X-Shape Arrangement | Genetic Algorithm Optimization |
---|---|---|---|---|
Skylight area (m2) | 624.05 | 672 | 628.95 | 619.85 |
Average illumination (lux) | 625.11 | 711.36 | 619.97 | 583.72 |
Variance rate Q | 83.92 | 139.24 | 121.99 | 66.34 |
Maximum illumination (lux) | 932.86 | 1202.6 | 1166.3 | 841.15 |
Minimum illumination (lux) | 175.73 | 172.13 | 156.52 | 186.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, B.; Li, W.; Chen, G.; Sun, W.; Wang, B.; Xu, N. Optimized Design of Skylight Arrangement to Enhance the Uniformity of Indoor Sunlight Illumination. Sustainability 2023, 15, 11257. https://doi.org/10.3390/su151411257
Jia B, Li W, Chen G, Sun W, Wang B, Xu N. Optimized Design of Skylight Arrangement to Enhance the Uniformity of Indoor Sunlight Illumination. Sustainability. 2023; 15(14):11257. https://doi.org/10.3390/su151411257
Chicago/Turabian StyleJia, Bowen, Wenjie Li, Guanyu Chen, Wenbin Sun, Bowen Wang, and Ning Xu. 2023. "Optimized Design of Skylight Arrangement to Enhance the Uniformity of Indoor Sunlight Illumination" Sustainability 15, no. 14: 11257. https://doi.org/10.3390/su151411257
APA StyleJia, B., Li, W., Chen, G., Sun, W., Wang, B., & Xu, N. (2023). Optimized Design of Skylight Arrangement to Enhance the Uniformity of Indoor Sunlight Illumination. Sustainability, 15(14), 11257. https://doi.org/10.3390/su151411257