Effects of Soybean–Corn Rotation on Crop Yield, Economic Benefits, and Water Productivity in the Corn Belt of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Field Management
2.3. Measurements and Calculations
2.4. Data Analysis
3. Results
3.1. Commercial Crop Yield and Corn Equivalent Yield
3.2. Relative Soil Water Content and Evapotranspiration
3.3. Water Productivity
3.4. Economic Benefits
4. Discussion
4.1. Yield and Economic Benefits under the Rotation of Soybean and Corn
4.2. Water Productivity under the Rotation of Soybean and Corn
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.Z.; Sun, Z.H. Optimized single irrigation can achieve high corn yield and water use efficiency in the Corn Belt of Northeast China. Eur. J. Agron. 2016, 75, 12–24. [Google Scholar] [CrossRef]
- Zheng, X. China’s Food Security Research in Future Based on Balance of Supply and Demand; Guangdong University of Technology: Guangzhou, China, 2019. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; National Bureau of Statistics of China: Beijing, China, 2021. (In Chinese)
- Liang, A.Z.; Yang, X.M.; Zhang, X.P.; Mclaughlin, N.; Shen, Y.; Li, W.F. Soil organic carbon changes in particle-size fractions following cultivation of Black soils in China. Soil Tillage Res. 2009, 105, 21–26. [Google Scholar] [CrossRef]
- Liu, S.X.; Zhao, L.P.; Liu, J.S.; Wu, J.G.; Qin, Z.J. Organic mineral complex component and distribution character of organic carbon of black soil under various cultivation pattern. J. Soil Water Conserv. 2007, 21, 105–108. [Google Scholar] [CrossRef]
- Han, X.Z.; Zou, W.X. Effects and suggestions of black soil protection and soil fertility increase in northeast China. Bull. Chin. Acad. Sci. 2018, 33, 206–212. [Google Scholar] [CrossRef]
- Wang, J.K.; Xu, X.R.; Pei, J.B.; Li, S.Y. Current situations of black soil quality and facing opportunities and challenges in northeast China. Chin. J. Soil Sci. 2021, 52, 695–701. [Google Scholar] [CrossRef]
- Li, B.G.; Liu, Z.; Huang, F.; Yang, X.G.; Liu, Z.J.; Wan, W.; Wang, J.K.; Xu, Y.D.; Li, Z.Z.; Ren, T.S. Ensuring national food security by strengthening high-productivity black soil granary in northeast China. Chin. J. Soil Sci. 2021, 36, 1184–1193. [Google Scholar] [CrossRef]
- Bilyeu, K.; Ratnaparkhe, M.B.; Kole, C. (Eds.) Genetics, Genomics, and Breeding of Soybean; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–18. [Google Scholar] [CrossRef]
- Pagano, M.C.; Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production; Miransari, M., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–26. [Google Scholar] [CrossRef]
- USDA-NASS. USDA-NASS Agricultural Statistics 2018. Available online: https://www.nass.usda.gov (accessed on 1 July 2020).
- Statistics Canada. Production of Principal Field Crops, November 2018. (Catalogue number 11-001X). Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/181206/dq181206b-eng.pdf (accessed on 1 July 2020).
- Al-Kaisi, M.M.; Archontoulis, S.; Kwaw-Mensah, D. Soybean spatiotemporal yield and economic variability as affected by tillage and crop rotation. Agron. J. 2016, 108, 1267–1280. [Google Scholar] [CrossRef] [Green Version]
- Islam, N.; Wallender, W.W.; Mitchell, J.; Wicks, S.; Howitt, R.E. A comprehensive experimental study with mathematical modeling to investigate the effects of cropping practices on water balance variables. Agric. Water Manag. 2006, 82, 129–147. [Google Scholar] [CrossRef]
- Feng, H.X.; Wang, T.; Osborne, S.L.; Kumar, S. Yield and economic performance of crop rotation systems in South Dakota. Agrosyst. Geosci. Environ. 2021, 4, e20196. [Google Scholar] [CrossRef]
- Copeland, P.J.; Crookston, R.K. Crop sequence affects nutrient composition of corn and soybean grown under high fertility. Agron. J. 1992, 84, 503–509. [Google Scholar] [CrossRef]
- Zou, W.X.; Yan, J.; Yuan, Y.R.; You, M.Y.; Zhang, Z.M.; Yang, C.B.; Wang, Y.; Han, X.Z. A review on world soybean research conference ix in south Africa on the rotation and fertilization of soybean. Soybean Sci. 2013, 32, 852–853+861. (In Chinese) [Google Scholar]
- Zhang, Y.W.; Liu, W.Z.; Wang, J.; Yang, Y.L. Effects of long-term rotation and fertilization on the growth, yield and water use of spring maize. Bull. Soil Water Conserv. 2010, 30, 124–128. [Google Scholar] [CrossRef]
- Fernández, J.E.; Alcon, F.; Diaz-Espejo, A.; Hernandez-Santana, V.; Cuevas, M.V. Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard. Agric. Water Manag. 2020, 237, 106074. [Google Scholar] [CrossRef]
- Pikul, J.J.L.; Osborne, S.L.; Riedell, W.E. Corn yield and nitrogen- and water-use under no-tillage rotations. Commun. Soil Sci. Plant Anal. 2012, 43, 2722–2734. [Google Scholar] [CrossRef]
- Canalli, L.B.D.; da Costa, G.V.; Volsi, B.; Leocadio, A.L.M.; Neves, C.S.V.J.; Telles, T.S. Production and profitability of crop rotation systems in southern Brazil. Semin.-Cienc. Agrar. 2020, 6, 2541–2554. [Google Scholar] [CrossRef]
- Wang, H.Y. Comparative Study on Planting Mode of Spring Maize in Northeast of China; Jilin University: Changchun, China, 2019. [Google Scholar] [CrossRef]
- Agomoh, I.V.; Drury, C.F.; Phillips, L.A.; Reynolds, W.D.; Yang, X.M. Increasing crop diversity in wheat rotations increases yields but decreases soil health. Soil Sci. Soc. Am. J. 2020, 84, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H. Cover crops and water quality. Agron. J. 2018, 110, 1633–1647. [Google Scholar] [CrossRef]
- USDA—Natural Resources Conservation Service. Soil Survey Staff, Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Sun, T.; Li, Z.Z. Alfalfa-corn rotation and row placement affects yield, water use, and economic returns in Northeast China. Field Crops Res. 2018, 241, 107558. [Google Scholar] [CrossRef]
- Song, Z.Z.; Peng, Y.X.; Li, Z.Z.; Zhang, S.; Liu, X.T.; Tan, S.W. Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of northeast China. Agric. Water Manag. 2022, 260, 107291. [Google Scholar] [CrossRef]
- Mohammadi, A.; Besharat, S.; Abbasi, F. Effects of irrigation and fertilization management on reducing nitrogen losses and increasing corn yield under furrow irrigation. Agric. Water Manag. 2019, 213, 1116–1129. [Google Scholar] [CrossRef]
- Standardization Administration of the People’s Republic of China. Grade of Agricultural Drought. 2015. Available online: http://openstd.samr.gov.cn/bzgk/gb (accessed on 1 July 2020). (In Chinese)
- Valipour, M.; Bateni, S.M.; Sefidkouhi, M.A.; Raeini-sarjaz, M.; Singh, V.P. Complexity of forces driving trend of reference evapotranspiration and signals of climate change. Atmosphere 2020, 11, 1081. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Mansour, E.; Desoky, E.M.; Ali, M.M.; Abdul-Hamid, M.I.; Ullah, H.; Attia, A.; Datta, A. Identifying drought-tolerant genotypes of faba bean and their agro-physiological responses to different water regimes in an arid Mediterranean environment. Agric. Water Manag. 2021, 247, 1067754. [Google Scholar] [CrossRef]
- Majumder, B.; Mandal, B.; Bandyopadhyay, P.K. Soil organic carbon pools and productivity in relation to nutrient management in a 20-year-old rice-berseem agroecosystem. Biol. Fertil. Soils 2008, 44, 451–461. [Google Scholar] [CrossRef]
- Pradhan, A.; Chan, C.; Roul, P.K.; Halbrendt, J.; Sipes, B. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 2018, 163, 27–35. [Google Scholar] [CrossRef]
- Wilhelm, W.; Wortmann, C.S. Tillage and rotation interactions for corn and soybean grain yield as affected by precipitation and air temperature. Agron. J. 2004, 96, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Bi, Y.D.; Han, D.W.; Wang, L.; Wang, L.X.; Fan, C.; Zhang, D.; Wang, Z.; Liang, W.W.; Zhu, Z.J.; et al. Long-term corn–soybean rotation and soil fertilization: Impacts on yield and agronomic traits. Agron. J. 2022, 12, 2554. [Google Scholar] [CrossRef]
- Ru, J.R.; Liu, L.L.; Sun, J.Y.; Ma, Z.J.; Wang, H.P.; Qiu, G.W. Effects of different crop rotation patterns on major agronomic traits and yield of maize in alpine regions. Bull. Agric. Sci. Technol. 2021, 1, 229–230+289. (In Chinese) [Google Scholar]
- Agomoh, I.V.; Drury, C.F.; Yang, X.M.; Phillips, L.A.; Reynolds, W.D. Crop rotation enhances soybean yields and soil health indicators. Soil Sci. Soc. Am. J. 2021, 85, 1185–1195. [Google Scholar] [CrossRef]
- Han, X.Z.; Zou, W.X.; Lu, X.C. Recent research progress on the effect of fertilization—Rotation—Tillage on soybean yield in USA and Brazil. Soybean Sci. Technol. 2015, 3, 14–15. (In Chinese) [Google Scholar]
- Gagnon, B.; Pouleur, S.; Lafond, J.; Parent, G.; Pageau, D. Agronomic and economic benefits of rotating corn with soybean and spring wheat under different tillage in Eastern Canada. Agron. J. 2019, 111, 3109–3118. [Google Scholar] [CrossRef]
- Han, T.F.; Han, X.Z. On the agricultural development road of balanced and high yield of grain—Bean rotation. Soybean Sci. Technol. 2016, 1, 1–3. (In Chinese) [Google Scholar]
- Zhou, G.Y.; Zhang, X.P.; Fan, R.Q.; Liang, A.Z.; Huang, D.D.; Yang, X.M. No-tillage effects on corn and soybean yield and profitability: Based on a long-term field trial of black soil in northeast China. J. Jilin Agric. Univ. 2015, 37, 260–267. [Google Scholar] [CrossRef]
- Cattivelli, L.; Rizza, F.; Badeck, F.W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Mare, C.; Tondelli, A.; Stanca, A.M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Shearman, V.J.; Sylvesterbradley, R.; Scott, R.K.; Foulkes, M.J. Physiological processes associated with wheat yield progress in the UK. Crop Sci. 2005, 45, 175–185. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, S.Y.; Liu, M.Y.; Pei, D.; Sun, H.Y. Improved water use efficiency associated with cultivars and agronomic management in the North China Plain. Agron. J. 2005, 97, 783–790. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Gao, L.L.; Wang, J.Y.; Yang, J.H. Study on soil moisture utilization in different rotation patterns of maize and soybean. Anhui Agric. Sci. Bull. 2019, 25, 38–40. [Google Scholar] [CrossRef]
- Osborne, S.L.; Chim, B.K.; Riedell, W.E.; Schumacher, T.E. Root length density of cereal and grain legume crops grown in diverserotations. Crop Sci. 2020, 60, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.X.; Sun, T.; Li, Z.Z.; Peng, Y.X.; Sheng, T.T.; Du, M.Y.; Wu, Q. Alfalfa stand age at termination influences soil properties, root characteristics, and subsequent maize yield. Eur. J. Agron. 2023, 148, 126879. [Google Scholar] [CrossRef]
Depth | Silt | Clay | Sand | BD | θFC | TN | OM | AP | AK | pH |
---|---|---|---|---|---|---|---|---|---|---|
cm | ——%—— | g cm−3 | cm−3 | ——g kg−1—— | ——mg kg−—— | |||||
0–38 | 76 | 8 | 16 | 1.45 | 0.32 | 1.54 | 22.75 | 30.06 | 110.88 | 6.50 |
38–75 | 78 | 16 | 6 | 1.37 | 0.35 | 1.02 | 14.38 | 10.79 | 103.50 | 6.45 |
75–108 | 83 | 13 | 4 | 1.52 | 0.35 | 0.80 | 7.63 | 6.20 | 104.81 | 6.87 |
108–200 | 78 | 13 | 9 | 1.61 | 0.33 | 0.74 | 5.35 | 3.45 | 100.53 | 6.70 |
Years | Treatments | Total Input | Total Income | Net Income |
---|---|---|---|---|
---------------- USD ha−1 --------------- | ||||
2017 | CC | 1057 a | 3004 a | 1948 a |
CS | 773 b | 1084 b | 311 b | |
SC | 773 b | 1103 b | 330 b | |
SCC | 773 b | 1114 b | 341 b | |
2018 | CC | 1009 a | 2921 a | 1912 a |
CS | 734 b | 1936 b | 1202 b | |
SC | 1009 a | 2904 a | 1895 a | |
SCC | 1009 a | 2832 a | 1822 a | |
2019 | CC | 989 a | 2708 a | 1719 a |
CS | 719 b | 1762 b | 1043 b | |
SC | 719 b | 1974 b | 1255 b | |
SCC | 989 a | 2742 a | 1753 a | |
2020 | CC | 1042 a | 4019 a | 2977 a |
CS | 757 b | 2566 b | 1808 b | |
SC | 1042 a | 4178 a | 3136 a | |
SCC | 757 b | 2878 b | 2121 b | |
2017–2020 | CC | 4097 a | 12,653 a | 8556 a |
CS | 2983 d | 7348 c | 4366 c | |
SC | 3543 b | 10,159 b | 6616 b | |
SCC | 3528 c | 9565 b | 6037 b |
2017 | 2018 | 2019 | 2020 | ||
---|---|---|---|---|---|
ΔSW | CC | 59.9 b | 17.1 a | 47.0 ab | −24.2 ab |
CS | 68.9 b | −31.1 b | 60.8 a | −26.2 b | |
SC | 104.4 a | −8.1 ab | 38.2 b | −10.1 a | |
SCC | 84.1 ab | 10.2 a | 48.6 ab | −46.4 c | |
D | CC | 30.2 a | 33.9 a | 146.1 | 0.0 b |
(mm) | CS | 14.0 ab | 31.2 a | 114.9 | 18.3 a |
SC | 0.0 b | 1.5 b | 84.6 | 0.0 b | |
SCC | 18.0 a | 0.2 b | 97.3 | 0.0 b | |
P | CC | 473.8 | 480.6 | 543.6 | 554.8 |
(mm) | CS | 473.8 | 463.4 | 537.2 | 554.8 |
SC | 473.8 | 480.6 | 537.2 | 554.8 | |
SCC | 473.8 | 480.6 | 543.6 | 554.8 | |
ETc act-d | CC | 503.5 b | 483.8 a | 444.4 | 530.6 ab |
(mm) | CS | 528.7 b | 421.2 b | 483.1 | 510.3 b |
SC | 578.2 a | 491.0 a | 490.8 | 544.7 a | |
SCC | 540.0 ab | 510.6 a | 494.9 | 508.4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H. Effects of Soybean–Corn Rotation on Crop Yield, Economic Benefits, and Water Productivity in the Corn Belt of Northeast China. Sustainability 2023, 15, 11362. https://doi.org/10.3390/su151411362
Zhang H. Effects of Soybean–Corn Rotation on Crop Yield, Economic Benefits, and Water Productivity in the Corn Belt of Northeast China. Sustainability. 2023; 15(14):11362. https://doi.org/10.3390/su151411362
Chicago/Turabian StyleZhang, Huiqi. 2023. "Effects of Soybean–Corn Rotation on Crop Yield, Economic Benefits, and Water Productivity in the Corn Belt of Northeast China" Sustainability 15, no. 14: 11362. https://doi.org/10.3390/su151411362
APA StyleZhang, H. (2023). Effects of Soybean–Corn Rotation on Crop Yield, Economic Benefits, and Water Productivity in the Corn Belt of Northeast China. Sustainability, 15(14), 11362. https://doi.org/10.3390/su151411362