The Effects of Climate Variability on Florida’s Major Water Resources
Abstract
:1. Introduction
1.1. Global Warming and Climate-Change Impacts
1.2. Global Climate Projections through Coupled Model Intercomparison Project
1.3. Climate-Change Impacts on Florida’s Water Resources
1.4. Sustainable Development Goals—Florida’s Water Resources
1.5. The Objectives of this Review Paper
2. Major Impacts of Climate Change on Florida
2.1. Changes in Florida’s Temperature and Precipitation Patterns, and Rising Sea Level
2.2. Future Impacts of Hurricanes and Tropical Storms in Florida
2.3. Eutrophication of Florida’s Lakes and Estuaries
2.4. Ocean Acidification
3. Water Management Districts in Florida
4. Florida’s Water Resources
Water Withdrawals and Their Uses in Florida
5. Climate-Change Impact on Florida’s Water Resources
5.1. Groundwater Resources of Florida
5.1.1. Florida’s Aquifers
The Floridan Aquifer
The Biscayne Aquifer
The Surficial Aquifer System
5.2. Interaction of Climate Change and Eutrophication
5.2.1. Lake Okeechobee
5.2.2. Indian River Lagoon System
5.3. Impacts of Changing Climate on the Florida Everglades
5.4. Climate-Change Influences on Runoff and Sediment Loads to Apalachicola River
5.5. Influences of Ocean Acidification on Florida’s Coastal Water
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petit, J.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.-M.; Bender, M.; Chappellaz, M.D.; Delaygue, G.; Delmotte, M.; Kotlyakov, V.M.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Bloetscher, F.; Meeroff, D.; Heimlich, B.N.; Brown, A.R.; Bayler, D.; Loucraft, M. Improving resilience against the effects of climate change. J. AWWA 2010, 102, 36–46. [Google Scholar] [CrossRef]
- Myhre, G.; Myhre, C.E.L.; Samset, B.H.; Storelvmo, T. Aerosols and Their Relation to Global Climate and Climate Sensitivity. Nat. Educ. Knowl. 2013, 4, 7. Available online: https://www.nature.com/scitable/knowledge/library/aerosols-and-their-relation-to-global-climate-102215345/ (accessed on 13 June 2023).
- Tully, K.; Gedan, K.; Epanchin-Niell, R.; Strong, A.; Bernhardt, E.S.; BenDor, T.; Mitchell, M.; Konimoski, J.; Jordan, T.E.; Neubauer, S.C.; et al. The invisible flood: The chemistry, ecology, and social implications of coastal saltwater intrusion. BioScience 2019, 69, 368–378. [Google Scholar] [CrossRef]
- IPCC. AR4 Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; Available online: https://www.ipcc.ch/report/ar4/wg1/ (accessed on 23 September 2021).
- IPCC. Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007; Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg2_full_report.pdf (accessed on 22 September 2021).
- NASA. Global Climate Change Vital Signs of the Planet. 2021. Available online: https://climate.nasa.gov/vital-signs/sea-level/ (accessed on 24 September 2021).
- IPCC. Fifth Assessment Report (2014). Global Climate Change Impacts in the United States; United States Global Change Research Program; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Misra, V.; Moeller, L.; Stefanova, L.; Chan, S.; O’Brien, J.J.; Smith, T.J., III; Plant, N. The influence of Atlantic warm pool on the Florida panhandle sea breeze. Geophys. Res. Atmos. 2011, 116, D21. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.A.; Nunn, P.D.; et al. Sea Level Change. In The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Available online: https://www.ipcc.ch/site/assets/uploads/2018/07/WGI_AR5.Chap_.13_SM.1.16.14.pdf (accessed on 13 June 2023).
- Lindsey, R. Climate Change: Global Sea Level. 2021. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level (accessed on 22 September 2021).
- Miller, K.G.; Kopp, R.E.; Horton, B.P.; Browning, J.V.; Kemp, A. A Geological Perspective on Sea-Level Rise and its Impacts along the U.S. Mid-Atlantic Coast. Earth’s Future 2013, 1, 3–18. [Google Scholar] [CrossRef]
- Parris, A.S.; Bromirski, P.; Burkett, V.; Cayan, D.; Culver, M.; Hall, J.; Horton, R.; Knuuti, K.; Moss, R.; Obeysekera, J.; et al. Global Sea Level Rise Scenarios for the United States National Climate Assessment. NOAA Technical Report OAR CPO 1; 2012; 37p. Available online: https://scenarios.globalchange.gov/sites/default/files/NOAA_SLR_r3_0.pdf (accessed on 24 September 2021).
- Theuerkauf, E.J.; Rodriguez, A.B.; Fegley, S.R.; Luettich, R.A., Jr. Sea level anomalies exacerbate beach erosion. Geophys. Res. Lett. 2014, 41, 5139–5147. [Google Scholar] [CrossRef]
- Haque, S.E.; Nahar, N. Bangladesh: Climate Change Issues, Mitigation, and Adaptation in the Water Sector. ACS EST Water 2023, 3, 1484–1501. [Google Scholar] [CrossRef]
- Strauss, B.H.; Ziemlinski, R.; Weiss, J.L.; Overpeck, J.T. Tidally Adjusted Estimates of Topographic Vulnerability to Sea Level Rise and Flooding of the Contiguous United States. Environ. Res. Lett. 2012, 7, 014033. Available online: https://arizona.pure.elsevier.com/en/publications/tidally-adjusted-estimates-of-topographic-vulnerability-to-sea-le (accessed on 21 September 2021). [CrossRef]
- Islam, S.M.F.; Karim, Z. World’s demand for food and water. The consequences of climate change. In Desalination—Challenges and Opportunities; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Climate Change Indicators in the United States, 2014. Third Edition. EPA 430-R-14-004. 2014. Available online: www.epa.gov/climatechange/indicators (accessed on 30 August 2021).
- USEPA. What Climate Change Means for Florida. EPA 430-F-16-011. 2016. Available online: https://www.epa.gov/sites/production/files/2016-08/documents/climate-change-fl.pdf (accessed on 2 September 2021).
- UN. UN-Water Policy Brief on Climate Change and Water. 2019. Available online: https://www.unwater.org/publications/un-water-policy-brief-on-climate-change-and-water/ (accessed on 1 September 2021).
- NASA. Climate Change Impacts in the United States. U.S. National Climate Assessment. U.S. Global Change Research Program. 2014. Available online: https://nca2014.globalchange.gov/ (accessed on 24 September 2021).
- USEPA. Climate Change Indicators: U.S. and Global Temperature. 2021. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-us-and-global-temperature (accessed on 31 August 2021).
- Maul, G.A.; Martin, D.M. Sea level rise at Key West, Florida, 1846–1992: America’s longest instrument record? Geophys. Res. Lett. 1993, 20, 1955–1958. [Google Scholar] [CrossRef]
- FOCC. Climate Change and Sea-Level Rise in Florida: An Update of the Effects of Climate Change on Florida’s Ocean and Coastal Resources; FOCC: Tallahassee, FL, USA, 2010; Available online: https://floridadep.gov/sites/default/files/Climate%20Change%20and%20Sea-Level%20Rise%20in%20Florida_1.pdf (accessed on 5 June 2021).
- Raimi, D.; Keyes Al Kingdon, C. Florida Climate Outlook: Assessing Physical and Economic Impacts through 2040. Report 20-01, Resources for the Future. 2020. Available online: https://www.rff.org/publications/reports/florida-climate-outlook/ (accessed on 25 September 2021).
- NRDC. Miami and the Keys, Florida: Identifying and Becoming More Resilient to Impacts of Climate Change. 2011. Available online: https://www.nrdc.org/sites/default/files/ClimateWaterFS_MiamiFL.pdf (accessed on 3 June 2021).
- Vose, R.S.; Easterling, D.R.; Kunkel, K.E.; LeGrande, A.N.; Wehner, M.F. Temperature changes in the United States. In Climate Science Special Report: Fourth National Climate Assessment, Volume 1; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; pp. 185–206. [Google Scholar] [CrossRef] [Green Version]
- Brekke, L.; Wood, A.; Pruitt, T. Downscaled CMIP3 and CMIP5 Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs; U.S. Department of the Interior Bureau of Reclamation: Denver, CO, USA, 2014; Available online: http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/ (accessed on 12 January 2022).
- Obeysekera, J.; Barnes, J.; Nungesser, M. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the Greater Florida Everglades Ecosystem to climate change. Environ. Manag. 2015, 55, 749–762. [Google Scholar] [CrossRef]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. The Performance of CMIP6 Versus CMIP5 in Simulating Temperature Extremes Over the Global Land Surface. Geophys. Res. Atmos. 2020, 125, e2020JD033031. [Google Scholar] [CrossRef]
- NOAA. Ocean and Coastal Resource Management in Your State: States and Territories Working with NOAA on Ocean and Coastal Management. National Oceanic and Atmospheric Administration; 2011. Available online: https://www.coast.noaa.gov/czm/mystate/ (accessed on 25 May 2021).
- Kirtman, B.P.; Misra, V.; Anandhi, A.; Diane, P.; Johnna, I. Future Climate Change Scenarios for Florida. Florida’s Climate: Changes, Variations, & Impacts. 2017. Available online: http://purl.flvc.org/fsu/fd/FSU_libsubv1_scholarship_submission_1515511768_f4ca0fd1 (accessed on 21 September 2021).
- Karl, T.R.; Melillo, J.M.; Peterson, T.C. Global Climate Change Impacts in the United States; Cambridge University Press: Cambridge, UK, 2009; Available online: http://www.globalchange.gov/publications/reports/scientific-assessments/us-impacts/full-report (accessed on 20 September 2021).
- Heimlich, B.N.; Bloetscher, F.; Meeroff, D.E.; Murley, J. Southeast Florida’s Resilient Water Resources. Adaptation to Sea Level Rise and Other Climate Change Impacts; Florida Atlantic University: Boca Raton, FL, USA, 2009; Available online: http://www.ces.fau.edu/files/projects/climate_change/SE_Florida_Resilient_Water_Resources.pdf (accessed on 23 September 2021).
- Koch-Rose, M.; Mitsova-Boneva, D.; Root, T.; Bery, L.; Bloetcher, F.; Hammer, N.H.; Restrepo, J.; Teegavarapu, R. Florida Water Management and Adaptation in the Face of Climate Change. Florida Water Management and Adaptation in the Face of Climate Change, Florida Climate Change Task Force. 2011. Available online: http://www.ces.fau.edu/publications/pdfs/water_managment.pdf (accessed on 23 August 2021).
- Fu, X.; Song, J.; Sun, B.; Peng, Z.-R. Living on the edge: Estimating the economic cost of sea level rise on coastal real estate in the Tampa Bay Region, Florida. Ocean Coast. Manag. 2016, 133, 11–17. [Google Scholar] [CrossRef]
- Martinich, J.; Neumann, J.; Ludwig, L.; Jantarasami, L. Risks of sea level rise to disadvantaged communities in the United States. Mitig. Adapt. Strateg. Glob. Chang. 2012, 18, 169–185. [Google Scholar] [CrossRef] [Green Version]
- FOCC. The Effects of Climate Change on Florida’s Ocean and Coastal Resources. A Special Report to the Florida Energy and Climate Commission and the People of Florida; FOCC: Tallahassee, FL, USA, 2009; Available online: https://floridadep.gov/sites/default/files/The%20Effects%20of%20Climate%20Change%20on%20Florida%27s%20Ocean%20and%20Coastal%20Resources_0.pdf (accessed on 25 May 2021).
- Palm, R.; Bolson, T. Climate change and sea levels rise in South Florida—The view of coastal residents. Coast. Res. Libr. 2020, 34. [Google Scholar] [CrossRef]
- Mcinnes, K.L.; Walsh, K.J.E.; Hubbert, G.D.; Beer, T. Impact of sea-level rise and storm surges on a coastal community. Nat. Hazards 2003, 30, 187–207. [Google Scholar] [CrossRef]
- Lin, N.; Emanuel, K.; Oppenheimer, M.; Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nat. Clim. Chang. 2012, 2, 462–467. [Google Scholar] [CrossRef] [Green Version]
- McVoy, C.; Said, W.P.; Obeysekera, J.; VanArman, J.; Dreschel, T. Landscapes and Hydrology of the Predrainage Everglades; University Press of Florida: Gainesville, FL, USA, 2011. [Google Scholar]
- Dessu, S.B.; Price, R.M.; Troller, T.G.; Kominoski, J.S. Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida coastal Everglades. Environ. Manag. 2018, 211, 164–176. [Google Scholar] [CrossRef]
- Charles, S.P.; Kominoski, J.S.; Troxler, T.G.; Gaiser, E.E.; Servais, S.; Wilson, B.J.; Davis, S.E.; Sklar, F.H.; Coronado-Molina, C.; Madden, C.J.; et al. Experimental saltwater intrusion drives rapid soil elevation and carbon loss in freshwater and brackish Everglades marshes. Estuar. Coasts 2019, 42, 1868–1881. [Google Scholar] [CrossRef]
- Guha, H.; Panday, S. Impact of sea level rise on groundwater salinity in a coastal community of South Florida. J. Am. Water Resour. Assoc. 2012, 48, 3. [Google Scholar] [CrossRef]
- Langevin, C.D.; Zygnerski, M. Effect of sea-level rise on saltwater intrusion near a coastal well field in southeastern Florida. Groundwater 2012, 51, 781–803. [Google Scholar] [CrossRef]
- Marella, R.L.; Dixon, J.F. Data tables summarizing the source-specific estimated water withdrawals in Florida by water source, category, county, and water management district, 2015. U.S. Geol. Surv. Data Release 2018, 5147, 52. [Google Scholar] [CrossRef]
- NCEI. State Climate Summaries Florida. NOAA. 2022. Available online: https://statesummaries.ncics.org/chapter/fl/ (accessed on 20 September 2021).
- Maliva, R.G.; Manahan, W.; Missimer, T.M. Climate change and water supply: Governance and adaptation planning in Florida. Water Policy 2021, 23, 521–536. [Google Scholar] [CrossRef]
- U.S. Census Bureau. QuickFacts Florida. 2019. Available online: https://www.census.gov/quickfacts/FL (accessed on 31 August 2021).
- NOAA. National Coastal Population Report: Population Trends from 1970 to 2020. 2013. Available online: https://aambpublicoceanservice.blob.core.windows.net/oceanserviceprod/facts/coastal-population-report.pdf (accessed on 6 September 2021).
- Obeysekera, J.; Graham, W.; Sukop, M.C.; Tiru, A.; Dingbao, W.; Kebreab, G.; Benjamin, M. Implications of climate change on Florida’s water resources. In Florida’s Climate: Changes, Variations, & Impacts; CreateSpace Independent Publishing Platform: Charleston, SC, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Asefa, T.; Adam, A.; Kajtezovic-Blankenship, I. A tale of integrated regional water supply planning: Meshing socio-economic, policy, governance, and sustainability desires together. J. Hydrol. 2014, 519, 2632–2641. [Google Scholar] [CrossRef]
- Hauserman. Florida’s Coastal and Ocean Future. A Blueprint for Economic and Environmental Leadership; Natural Resources Defense Council, Inc.: New York, NY, USA, 2006; Available online: https://www.floridaoceanalliance.org/wp-content/uploads/2015/08/flfuture.pdf (accessed on 2 September 2021).
- Spechler, R.M. Saltwater intrusion and quality of water in the Floridan Aquifer System, northeastern Florida. Water-Resour. Investig. Rep. 1994, 92, 4174. [Google Scholar] [CrossRef]
- Feely, R.A.; Sabine, C.L.; Hernandez-Ayon, J.M.; Ianson, D.; Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 2008, 320, 1490–1492. [Google Scholar] [CrossRef] [Green Version]
- Carlton, S.J.; Jacobson, S.K. Climate change and coastal environmental risk perceptions in Florida. Environ. Manag. 2013, 130, 32–39. [Google Scholar] [CrossRef]
- Heil, C.A.; Dixon, K.L.; Hall, E.; Garrent, M.; Lenes, J.M.; O’Neil, J.M.; Walsh, B.M.; Bronk, D.A.; Killberg-Thoreson, L.; Hitchcock, G.L.; et al. Blooms of Karenia brevis (Davis) G. Hansen & Ø. Moestrup on the West Florida Shelf: Nutrient sources and potential management strategies based on a multi-year regional study. Harmful Algae 2014, 38, 127–140. [Google Scholar] [CrossRef]
- Muehllehner, N.; Langdon, C.; Venti, A.; Kadko, D. Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009–2010): Evidence for seasonal dissolution. Glob. Biochem. Cycles 2016, 30, 661–688. [Google Scholar] [CrossRef]
- Ocean Conservancy. How Ocean Acidification Impacts Florida’s Ecosystems. Blog Ocean Currents. 2016. Available online: https://oceanconservancy.org/blog/2016/06/15/how-ocean-acidification-impacts-floridas-ecosystems/ (accessed on 24 August 2021).
- Precht, W.; Gintert, B.; Robbart, M.; Fura, R.; van Woesik, R. Unprecedented disease-related coral mortality in southeastern Florida. Sci. Rep. 2016, 6, 31374. [Google Scholar] [CrossRef] [Green Version]
- Hoegh-Guldberg, O.; Poloczanska, E.S.; Skirving, W.; Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 2017, 4, 158. [Google Scholar] [CrossRef] [Green Version]
- Robbins, L.L.; Lisle, J.T. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature, and salinity. Estuar. Coasts 2018, 41, 1268–1281. [Google Scholar] [CrossRef] [Green Version]
- Krediet, C.J.; Ritche, K.; Teplitski, M. The Importance and Status of Florida Coral Reefs: Questions and Answers. University of Florida IFAS Extension. SL 305. 2009. Available online: http://ufdcimages.uflib.ufl.edu/IR/00/00/31/58/00001/SS51800.pdf (accessed on 5 September 2021).
- UNGA. Resolution Adopted by the General Assembly on 25 September 2015. Transforming Our World: The 2030 Agenda for Sus-tainable Development (A/RES/70/1). 2015. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 7 September 2021).
- Dinka, M.O. Safe Drinking Water: Concepts, Benefits, Principles and Standards; Intechopen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Echeverri, L. Climate and development: Enhancing impact through stronger linkages in the implementation of the Paris Agreement and the Sustainable Development Goals (SDGs). Philos. Trans. R. Soc. A 2018, 376, 20160444. [Google Scholar] [CrossRef] [Green Version]
- Bogardi, J.J.; Leentvaar, J.; Sebesvári, Z. Biologia Futura: Integrating freshwater ecosystem health in water resources management. Biol. Futura 2020, 71, 337–358. [Google Scholar] [CrossRef]
- Bloetscher, F. Climate Change Impacts on Florida (with a Specific Look at Groundwater Impacts). Florida Water Resour. J. 2009. Available online: https://fwrj.com/techarticles/0909%20FWRJ_tech1.pdf (accessed on 11 June 2023).
- SFWMD. Water Reuse. Available online: https://www.sfwmd.gov/our-work/alternative-water-supply/reuse (accessed on 8 September 2021).
- FDEP. Florida’s Reuse Activities. Available online: https://floridadep.gov/water/domestic-wastewater/content/floridas-reuse-activities (accessed on 9 September 2021).
- Toor, G.S.; Rainey, D.P. History and Current Status of Reclaimed Water Use in Florida. Department of Soil and Water Sciences. #SL308. 2016. Available online: https://edis.ifas.ufl.edu/publication/SS520 (accessed on 9 September 2021).
- Borisova, T.; Cutillo, M.; Beggs, K.; Hoenstine, K. Addressing the scarcity of traditional water sources through investments in alternative water supplies: Case study from Florida. Water 2020, 12, 2089. [Google Scholar] [CrossRef]
- Missimer, T.M.; Maliva, R.G.; Guo, W. Sustainability & the Management of Water Resources in Florida. Florida Water Resour. J. 2007. Available online: https://www.fwrj.com/TechArticle07/1007%20FWRJ%20tech1.pdf (accessed on 4 June 2021).
- FDEP. Alternative Water Supply. 2020. Available online: https://floridadep.gov/water-policy/water-policy/content/alternative-water-supply (accessed on 2 June 2021).
- Scavia, D.; Field, J.C.; Boesch, D.F.; Buddemeier, R.W.; Burkett, V.; Cayan, D.R.; Fogarty, M.; Harwell, M.A.; Howarth, R.W.; Mason, C.; et al. Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 2002, 25, 149–164. [Google Scholar] [CrossRef]
- Hovenga, P.A.; Wang, D.; Medeiros, M.; Hagen, S.C.; Alizad, K. The response of runoff and sediment loading in the Apalachicola River, Florida to climate and land use land cover change. Earth’s Future 2016, 4, 124–142. [Google Scholar] [CrossRef] [Green Version]
- Havens, K.E. Effects of Climate Change on the Eutrophication of Lakes and Estuaries; UF IFAS, University of Florida: Gainesville, FL, USA, 2019; Available online: https://edis.ifas.ufl.edu/publication/sg127 (accessed on 10 September 2021).
- Maul, G.A.; Sims, H.J. Florida Coastal Temperature Trends: Comparing Independent Datasets. Fla. Sci. 2007, 70, 7182. Available online: https://research.fit.edu/media/site-specific/researchfitedu/coast-climate-adaptation-library/united-states/florida/statewide---florida/Maul--Sims.-2007.-Florida-Temperature-Trends.pdf (accessed on 13 June 2023).
- Irizarry-Ortiz, M.M.; Obeysekera, J.; Park, J.; Trimble, P.; Barnes, J.; Park-Said, W.; Gadzinski, E. Historical trends in Florida temperature and precipitation. Hydrol. Process. 2011, 8259, 22. [Google Scholar] [CrossRef]
- Marshall, C.H.; Pielke, R.A., Sr.; Steyart, L.T.; Willard, D.A. The impact of anthropegenic land-cover change on the Florida Peninsula sea breezes and warm season sensible weather. USGS Mon. Weather Rev. 2004, 132, 28–52. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impact on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Barlow, P.M.; Reichard, E.G. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- SERCC. State Average Data. Precipitation & Temperature. 2021. Available online: https://sercc.com/state-climate-data/ (accessed on 16 September 2021).
- Dong, S.; Baringer, M.O.; Goni, G.J. Slow down of the Gulf Stream during 1993–2016. Sci. Rep. 2019, 9, 6672. [Google Scholar] [CrossRef] [Green Version]
- Todd, R.E.; Asher, T.G.; Heiderich, J.; Bane, J.M.; Luettich, R.A. Transient response of the Gulf Stream to multiple hurricanes in 2017. Geophys. Res. Lett. 2018, 45, 10509. [Google Scholar] [CrossRef]
- Camelo, J.; Mayo, T.L.; Gutmann, E.D. Projected climate change impacts on hurricane storm surge inundation in the coastal United States. Front. Built Environ. 2020, 6, 588049. [Google Scholar] [CrossRef]
- Park, J.; Sweet, W.V. Accelerated sea level rise and Florida Current transport. Ocean Sci. 2015, 11, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Ezer, T.; Atkinson, L.P.; Corlett, W.B.; Blanco, J.L. Gulf Stream’s induced sea level rise and variability along the U.S. mid-Atlantic coast. Geophys. Res. 2013, 118, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Harper, D. What is eutrophication. In Eutrophication of Freshwaters; Springer: Dordrecht, The Netherlands, 1992. [Google Scholar] [CrossRef]
- Schindler, D.W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 2006, 51, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E. Eutrophication: Causes, Consequences, and Controls in Aquatic Ecosystems. Nature Educ. Knowl. 2013, 4, 10. Available online: https://www.nature.com/scitable/knowledge/library/eutrophication-causes-consequences-and-controls-in-aquatic-102364466/ (accessed on 13 June 2023).
- Haque, S.E. How effective are existing phosphorus management strategies in mitigating surface water quality problems in the U.S.? Sustainability 2021, 13, 6565. [Google Scholar] [CrossRef]
- Hoyer, M.V.; Watson, D.L.; Willis, D.J.; Canfield, D.E., Jr. Fish Kills in Florida’s Canals, Creeks/Rivers, and Ponds/Lakes. J. Aquat. Plant Manag. 2009, 47, 53–56. Available online: https://www.apms.org/wp/wp-content/uploads/2012/10/v47p053_2009.pdf (accessed on 12 January 2022).
- Vaquer-Sunyer, R.; Duarte, C.M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. USA 2008, 105, 15452–15457. [Google Scholar] [CrossRef]
- Meszaros, J. Dead Zone in Gulf of Mexico is Larger Than Average for 2021. WUSF Public Media. 2021. Available online: https://wusfnews.wusf.usf.edu/environment/2021-08-04/gulf-dead-zone-is-larger-than-average (accessed on 27 September 2021).
- NOAA. Harmful Algal Blooms. 2021. Available online: https://oceanservice.noaa.gov/hazards/hab/ (accessed on 29 August 2021).
- Shumway, S.E. A review of the effects of algal blooms on shellfish and aquaculture. World Aquac. Soc. 1990, 21, 65–104. [Google Scholar] [CrossRef]
- Moss, B.; Kosten, S.; Meerhoff, M.; Batter, R.W.; Jeppesen, E.; Mazzeo, N.; Lacerot, G.; Liu, Z.; De Meester, L.; Paerl, H.; et al. Allied attack: Climate change and eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Phlips, E.J.; Badylak, S.; Nelson, N.G.; Havens, K.E. Hurricanes, El Niño and harmful algal blooms in two sub-tropical Florida estuaries: Direct and indirect impacts. Sci. Rep. 2020, 5, 1910. [Google Scholar] [CrossRef] [Green Version]
- Barker, S.; Ridgewell, A. Ocean Acidification. Nat. Educ. Knowl. 2012, 3, 21. Available online: https://www.nature.com/scitable/knowledge/library/ocean-acidification-25822734/ (accessed on 12 June 2023).
- Ekwurzel, B.; Boneham, J.; Dalton, M.W.; Heede, R.; Mera, R.J.; Allen, M.R.; Frumhoff, P.C. The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers. Clim. Chang. 2017, 144, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Friedlingstein, P.; Jones, M.W.; O’sullivan, M.; Andrew, R.M.; Hauck, J.; Peters, G.P.; Pongratz, J.; Sitch, S.; Le Quéré, C.; Bakker, C.E. Global Carbon Budget 2019. Earth Syst. Sci. Data 2019, 11, 1783–1838. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.J.; Hu, X.; Huang, W.J.; Murrell, M.C.; Lehter, J.C.; Lohrenz, S.E.; Chou, W.C.; Zhai, W.; Hollibaugh, J.T.; Wang, Y.; et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 2011, 4, 766–770. [Google Scholar] [CrossRef]
- Ning, Z.H.; Turner, R.E.; Doyle, T.W.; Abdollahi, K. Integrated Assessment of the Climate Change Impacts on the Gulf Coast Region; Gulf Coast Climate Change Assessment Council (GCRCC), Louisiana State University (LSU) Graphic Services: Baton Rouge, LA, USA, 2003; Available online: https://www.cakex.org/documents/integrated-assessment-climate-change-impacts-gulf-coast-region (accessed on 27 June 2023).
- Gledhill, D.K.; Wanninkhof, R.; Millero, F.J.; Eakin, M. Ocean acidification of the greater Caribbean region 1996–2006. Geophys. Res. Oceans 2008, 113, C10031. [Google Scholar] [CrossRef] [Green Version]
- Doney, S.C.; Busch, D.S.; Cooley, S.R.; Kroeker, K.J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 2020, 4, 83–112. [Google Scholar] [CrossRef]
- Engstrom, D.R.; Schottler, S.P.; Leavitt, P.R.; Havens, K.E. A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records. Ecol. Appl. 2006, 16, 1194–1206. [Google Scholar] [CrossRef]
- SFWMD. Water Conservation—A Comprehensive Program for South Florida. 2008. Available online: https://www.sfwmd.gov/sites/default/files/documents/waterconservationplan.pdf (accessed on 10 September 2021).
- FDEP. Water Management Districts. 2019. Available online: https://floridadep.gov/water-policy/water-policy/content/water-management-districts (accessed on 9 June 2021).
- Romie, K. Water Chemistry of Lakes in the Southwest Florida Water Management District; Environmental Section, Resource Management Department, SWFWMD: Brooksville, FL, USA, 2000; Available online: https://www.swfwmd.state.fl.us/sites/default/files/medias/documents/WaterChemistryofSWFWMDLakes.pdf (accessed on 17 January 2022).
- Marella, R.L. Water Withdrawals in Florida, 2012; Open-File Report 2015-115; U.S. Geological Survey: Reston, VA, USA, 2015; 10p. [Google Scholar] [CrossRef] [Green Version]
- Haque, S.E. Hydrogeochemical characterization of groundwater quality in the States of Texas and Florida, United States. In Global Groundwater: Source, Scarcity, Sustainability, Security, and Solutions; Mukherjee, A., Scanlon, B.R., Aureli, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Borisova, T.R. Water Withdrawals and Their Use in Florida in 2010. Publication no. FE943. 2018. Available online: https://edis.ifas.ufl.edu/publication/FE943 (accessed on 10 September 2021).
- NWFWMD. Apalachicola River and Bay Surface Water Improvement and Management Plan. Program Development Series 17-09. 2017. Available online: https://www.nwfwater.com/ (accessed on 26 August 2021).
- Carriker, R.R. Florida’s Water: Supply, Use, and Public Policy. University of Florida Extension. Institute of Food and Agricultural Sciences. 2000. Available online: https://www.tampabay.wateratlas.usf.edu/upload/documents/FL-Water-Supply-Use-Public-Policy-.pdf (accessed on 13 June 2023).
- SWFWMD. Available online: https://www.sfwmd.gov/community-residents/what-can-you-do (accessed on 23 August 2021).
- Strong, A.L.; Kroeker, K.J.; Teneva, L.T.; Mease, L.A.; Kelly, R.P. Ocean acidification 2.0: Managing our changing coastal ocean chemistry. Bioscience 2014, 64, 581–592. [Google Scholar] [CrossRef]
- Canfield, D.E., Jr.; Bachmann, R.W.; Hoyer, M.V. Restoration of Lake Okeechobee, Florida: Mission impossible? Lake Reserv. Manag. 2020, 37, 95–111. [Google Scholar] [CrossRef]
- Frazer, T.K.; Jacoby, C.A.; Notestein, S.K. Compilation and Synthesis of Existing Data in Support of the Determination of Minimum Flows for Crystal River, Task 1—Summary of Previous Studies and Data Collection Efforts. 2010. Available online: https://www.swfwmd.state.fl.us/sites/default/files/documents-and-reports/appendix/CRKB_Apps2-Frazer_SWFWMD_2017A_0.pdf (accessed on 25 January 2022).
- SWFWMD. 2015 Regional Water Supply Plan, Tampa Bay Planning Region. Southwest Florida Water Management District, Brooksville. 2018. Available online: https://www.swfwmd.state.fl.us/resources/plans-reports/rwsp/2015-regional-water-supply-plan (accessed on 25 August 2021).
- SWFWMD. 2020 Regional Water Supply Plan. 2020. Available online: https://www.swfwmd.state.fl.us/resources/plans-reports/rwsp (accessed on 17 September 2021).
- Winkler, S.; Ceric, A. 2004 Status and Trends in Water Quality at Selected Sites in the St. Johns River Water Management District. Technical Publication SJ2006-6. St. Johns River Water Management District, Palatka, Florida. 2006. Available online: http://static.sjrwmd.com/sjrwmd/secure/technicalreports/TP/SJ2006-6.pdf (accessed on 20 February 2022).
- SJRWMD. The Indian River Lagoon. 2021. Available online: https://www.sjrwmd.com/waterways/indian-river-lagoon/ (accessed on 13 January 2022).
- SJRWMD. Sea-Level Rise and Resiliency. 2021. Available online: https://www.sjrwmd.com/localgovernments/sea-level-rise/ (accessed on 13 January 2022).
- SJRWMD. Renewing the Lagoon. 2022. Available online: https://www.sjrwmd.com/waterways/renew-lagoon/ (accessed on 18 January 2022).
- SRWMD. Environmental Resource Permit. Applicant’s Handbook Volume II. 2012. Available online: https://www.mysuwanneeriver.com/DocumentCenter/View/8654/Applicant-Handbook-II?bidId= (accessed on 16 January 2022).
- SRWMD. Nitrate Concentration. 2013. Available online: http://www.srwmd.org/419/Nitrate-Concentration (accessed on 15 January 2022).
- ESA. Suwannee River Basin Surface Water Improvement and Management (SWIM) Plan Update Final. ESA/D150586.00. 2017. Available online: https://www.mysuwanneeriver.com/DocumentCenter/View/12027/Suwannee-River-Basin-SWIM-Plan?bidId= (accessed on 10 September 2021).
- SRWMD. 2021–2025 Strategic Plans. Available online: https://www.mysuwanneeriver.com/DocumentCenter/View/17697/2021-2025-Strategic-Plan (accessed on 16 September 2021).
- Doyle, T.W.; Girod, G.F.; Books, M.A. Modeling Mangrove Forest Migration along the Southwest Coast of Florida under Climate Change. In Integrated Assessment of the Climate Change Impacts on the Gulf Coast Region; Gulf Coast Climate Change Assessment Council and Louisiana State University Graphic Services: Baton Rouge, LA, USA, 2003; Available online: http://www.climateimpacts.org/us-climate-assess-2000/regions/gulf-coast/gulfcoast-chapter12.pdf (accessed on 24 September 2021).
- Ruppert, T. Sea-Level Rise in Florida—The Facts and Science; Florida Sea Grant College Program; University of Florida: Gainesville, FL, USA, 2013; Available online: https://www.flseagrant.org/wp-content/uploads/2012/02/SLR-Fact-Sheet_dual-column-letterhead_8.2.13_pdf.pdf (accessed on 15 September 2021).
- Caffrey, J.M.; Murrell, M.C. A historical perspective on eutrophication in the Pensacola Bay estuary, FL, USA. In Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective; Springer: Cham, Switzerland, 2016; pp. 199–213. [Google Scholar] [CrossRef]
- Stevenson, C. Ghost Forests; IFAS Extension; University of Florida: Gainesville, FL, USA, 2021; Available online: https://nwdistrict.ifas.ufl.edu/nat/category/sea-level-rise/ (accessed on 14 September 2021).
- NWFWMD. About. 2017. Available online: https://www.nwfwater.com/About (accessed on 15 September 2021).
- Valk, K. Climate Adaptation Efforts of Coastal Cities in the Southeast United States; Climate Institute: New York, NY, USA, 2020; Available online: http://climate.org/climate-adaptation-efforts-of-coastal-cities-in-the-southeast-united-states/ (accessed on 14 November 2021).
- City of Pensacola Climate Mitigation and Adaptation Task Force. Climate Action Recommendations. A Blueprint for Addressing Climate Change at the Municipal Level. 2018. Available online: https://www.cityofpensacola.com/DocumentCenter/View/15491/Climate-Mitigation-and-Adaptation-Task-Force-Report-PDF (accessed on 17 September 2021).
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Kinsey, K.S. Estimated use of water in the United States in 2015. USGS Numbered Ser. 2018, 1441, 65. [Google Scholar] [CrossRef]
- University of Florida. Florida Estimates of Population 2015. Gainesville, Fla., Bureau of Economic and Business Research, 56. 2015. Available online: https://www.bebr.ufl.edu/population (accessed on 1 September 2021).
- Marella, R.L. Water Withdrawals, Uses, and Trends in Florida, 2015. U.S. Geological Survey. Sci. Investig. Rep. 2019, 2019, 52. [Google Scholar] [CrossRef] [Green Version]
- Barnett, C. Mirage: Florida and the Vanishing Water of the Eastern U.S.; The University of Michigan Press: Ann Arbor, MI, USA, 2007; Available online: https://www.press.umich.edu/334271/mirage (accessed on 23 September 2021).
- Borisova, T.; Wade, T. Florida’s Water Resources; UF IFAS Extension, FE757; University of Florida: Gainesville, FL, USA, 2018; Available online: https://edis.ifas.ufl.edu/publication/FE757 (accessed on 15 September 2021).
- EDR. Demographic Overview & Population Trends; Florida Complete Count Committee; The Florida Legislature Office of Economic and Demographic Research: Tallahassee, FL, USA, 2020; Available online: http://edr.state.fl.us/Content/presentations/population-demographics/DemographicTrends_1-28-20.pdf (accessed on 4 September 2021).
- O’Brien, E. Florida’s Population Growing by 900 People a Day, Report Says. WUSF Public Media. 2019. Available online: https://wusfnews.wusf.usf.edu/news/2019-07-26/floridas-population-growing-by-900-people-a-day-report-says (accessed on 24 August 2021).
- FDEP. 2018 Annual Regional Water Supply Planning Report ADA Complaint; Florida Department of Environmental Protection (FDEP): Tallahassee, FL, USA, 2019; Available online: https://floridadep.gov/water-policy/water-policy/documents/2018-annual-regional-water-supply-planning-report-ada-compliant (accessed on 2 June 2021).
- Wicks, C.M.; Herman, J.S. The Effect of a Confining Unit on the Geochemical Evolution of Groundwater in the Upper Floridan Aquifer System. J. Hydrol. 1994, 153, 139–155. Available online: https://pubs.er.usgs.gov/publication/70017988 (accessed on 10 September 2021). [CrossRef]
- Plummer, N.L.; Sprinkle, C.L. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan Aquifer, Florida, USA. Hydrogeol. J. 2001, 9, 127–150. [Google Scholar] [CrossRef]
- Haque, S.; Johannesson, K.H. Arsenic concentrations and speciation along a groundwater flow path: The Carrizo Sand Aquifer, Texas, USA. Chem. Geol. 2006, 228, 57–71. [Google Scholar] [CrossRef]
- SWFWMD. West-Central Florida’s Aquifers—Florida’s Great Unseen Water Resources. 2017. Available online: https://www.swfwmd.state.fl.us/sites/default/files/store_products/flas_aquifers.pdf (accessed on 13 September 2021).
- Miller, J.A. Groundwater Atlas of the United States Alabama, Florida, Georgia, and South Carolina. U.S. Geological Survey. HA 730-G; 1990. Available online: https://pubs.usgs.gov/ha/ha730/ch_g/ (accessed on 5 June 2021).
- SWFWMD. Impact of Changing Climate on the Floridan Aquifer. Aquifer Characteristics within the Southwest Florida Water Management District. Fifth Edition Report 99-1. 2009. Available online: https://www.swfwmd.state.fl.us/sites/default/files/medias/documents/aquifer_characteristics.pdf (accessed on 5 June 2021).
- Miller, J.A. Hydrogeology of Florida. In The Geology of Florida; Randazzo, A.F., Jones, D.S., Eds.; University Press of Florida: Gainesville, FL, USA, 1997; pp. 69–88. [Google Scholar]
- USGS. National Water Summary 1984: Hydrologic events, selected water-quality trends, and ground-water resources. Water-Supply Pap. 1985, 2275, 467. [Google Scholar] [CrossRef]
- FDEP. Aquifers. 2015. Available online: https://fldep.dep.state.fl.us/swapp/Aquifer.asp (accessed on 9 June 2021).
- Dogan, A.; Fares, A. Effects of Land-Use Changes and Groundwater Pumping on Saltwater Intrusion in Coastal Watersheds. Progress in Water Resources. 2008. Available online: https://www.witpress.com/Secure/elibrary/papers/9781845640910/9781845640910008FU1.pdf (accessed on 15 June 2021).
- Ranjbar, A.; Ehteshami, M. Spatio-temporal mapping of salinity in the heterogeneous coastal aquifer. Appl. Water Sci. 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Fienen, M.N.; Arshad, M. The international scale of the groundwater issue. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., Ross, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef] [Green Version]
- Prinos, S.T. Saltwater Intrusion Monitoring in Florida, Special Isue: Status of Florida’s Groundwater Resources. Fla. Sci. 2016, 79, 269–278. Available online: https://www.jstor.org/stable/44113190 (accessed on 24 September 2021).
- Hutchings, W.C.; Tarbox, D.L. A Model of Seawater Intrusion in Surficial and Confined Aquifers of Northeast Florida. In Proceedings of the Second International Conference on Saltwater Intrusion and Coastal Aquifers—Monitoring, Modeling, and Management, Mérida, Yucatán, México, 30 March–2 April 2003; Available online: https://olemiss.edu/projects/sciencenet/saltnet/swica2/Hutchings_ext.pdf (accessed on 6 June 2021).
- Merritt, M.L. Assessment of saltwater intrusion in southern coastal Broward County, Florida. U.S. Geological Survey. Publications Warehouse. Water-Resour. Investig. Rep. 1996, 96, 4221. [Google Scholar]
- Prinos, S.T.; Wacker, M.A.; Cunningham, K.J.; Fitterman, D.V. Origins and delineation of saltwater intrusion in the Biscayne Aquifer and changes in the distribution of saltwater in Miami-Dade County, Florida. Sci. Investig. Rep. 2014, 2014–5025. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, J.; Sisto, B. The Everglades ecosystem: Under protection or under threat? Miranda 2012, 6. [Google Scholar] [CrossRef] [Green Version]
- Bloetscher, F. Protecting people, infrastructure, economies, and ecosystem assets: Water management in the face of climate change. Water 2012, 4, 367–388. [Google Scholar] [CrossRef]
- Mitchum, G.T. Sea Level Changes in the Southeastern United States: Past, Present, and Future; Florida Climate Institute, Southeast Climate Consortium: Boca Raton, FL, USA, 2011. [Google Scholar]
- Missimer, T.M.; Thomas, S.; Rosen, B.H. Legacy phosphorus in Lake Okeechobee (Florida, USA) sediments: A review and new perspective. Water 2021, 13, 39. [Google Scholar] [CrossRef]
- Shannon, E.E.; Brezonik, P.L. Limnological Characteristics of North and Central Florida Lakes. Limnol. Oceanogr. 1972, 17, 97–110. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.588.2307&rep=rep1&type=pdf (accessed on 16 September 2021). [CrossRef]
- McDiffett, W.F. Limnological characteristics of eutrophic Lake Istokpoga, Florida. Fla. Sci. 1981, 44, 172–181. [Google Scholar]
- Williams, V.P. Effects of point-source removal on lake water quality: A case history of Lake Tohopekaliga, Florida. Lake Reserv. Manag. 2001, 17, 315–329. [Google Scholar] [CrossRef]
- Tilman, D.H.; Cerco, C.F.; Noel, M.R.; Martin, J.L.; Hamrick, J. Three-Dimensional Eutrophication Model of the Lower St. John River, Florida. US Army Corps of Engineers. Engineer Research and Development Center. ERDC/EL TR-04-13. 2004. Available online: https://www.researchgate.net/publication/235115223_Three-Dimensional_Eutrophication_Model_of_the_Lower_St_John_River_Florida (accessed on 20 August 2021).
- Bachmann, R.W.; Bigham, D.L.; Hoyer, M.V.; Canfield, D.E., Jr. Phosphorus, nitrogen, and the designated uses of Florida Lakes. Lake Reserv. Manag. 2012, 28, 46–58. [Google Scholar] [CrossRef]
- Havens, K.E.; Ji, G.; Beaver, J.R.; Fulton, R.S., III; Teacher, C.E. Dynamics of cyanobacteria blooms are linked to the hydrology of shallow Florida lakes and provide insight into possible impacts of climate change. Hydrobiologia 2019, 829, 43–59. [Google Scholar] [CrossRef]
- Merel, S.; Walker, D.; Chicana, R.; Snyder, S.; Baurès, E.; Thomas, O. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ. Int. 2013, 59, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Preece, E.P.; Hardy, J.; Moore, B.C.; Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 2017, 61, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Lapointe, B.E.; Clark, M.W. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 1992, 15, 465–476. [Google Scholar] [CrossRef]
- Sime, P.S. Lucie Estuary and Indian River Lagoon conceptual ecological model. Wetlands 2005, 25, 898–907. [Google Scholar] [CrossRef]
- Lapointe, B.E.; Herren, L.W.; Debortoli, D.D.; Vogel, M.A. Evidence of sewage-driven eutrophication and harmful algal blooms in Florida’s Indian River Lagoon. Harmful Algae 2015, 43, 82–102. [Google Scholar] [CrossRef]
- Havens, K. The Future of Harmful Algal Blooms in Florida Inland and Coastal Waters. Publication #TP-231. 2018. Available online: https://edis.ifas.ufl.edu/pdf/SG/SG15300.pdf (accessed on 6 June 2021).
- Kramer, B.J.; Davis, T.W.; Meyer, K.A.; Rosen, B.H.; Goleski, J.A.; Dick, G.J.; Oh, G.; Gobler, C.J. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. PLoS ONE 2018, 13, e0196278. [Google Scholar] [CrossRef] [Green Version]
- Phlips, E.J.; Badylak, S.; Christman, M.; Wolny, J.; Brame, J.; Garland, J.; Hall, L.; Hart, J.; Landsberd, J.; Lasi, M.; et al. Scales of temporal and spatial variability in the distribution of harmful algae species in the Indian River Lagoon, Florida, USA. Harmful Algae 2011, 10, 277–290. [Google Scholar] [CrossRef]
- Brand, L.E.; Compton, A. Long-term increase in Karenia brevis abundance along the Southwest Florida Coast. Harmful Algae 2007, 6, 232–252. [Google Scholar] [CrossRef] [Green Version]
- Gannon, D.P.; McCabe, E.J.B.; Camilleri, S.A.; Gannon, J.G.; Brueggen, M.K.; Barley, A.A.; Palubok, V.I.; Kirkpatrick, G.J.; Wells, R.S. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in Southwest Florida. Mar. Ecol. Prog. Ser. 2009, 378, 171–186. [Google Scholar] [CrossRef]
- NOAA. Fall 2018 Red Tide Event That Affected Florida and the Gulf Coast. National Ocean Service Website; 2021. Available online: https://oceanservice.noaa.gov/hazards/hab/florida-2018.html (accessed on 28 August 2021).
- Havens, K. Managing high water levels in Florida’s largest lake: Lake Okeechobee. EDIS 2018. [Google Scholar] [CrossRef]
- USEPA. Impacts of Climate Change on the Occurrence of Harmful Algal Llooms. EPA 820-S-13-001. MC 4304T. 2013. Available online: https://www.epa.gov/sites/production/files/documents/climatehabs.pdf (accessed on 4 September 2021).
- Havens, K.E.; Ji, G. Multiyear oscillations in depth affect water quality in Lake Apopka. Inland Waters 2018, 8, 1. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.W.; Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Harmful cyanobacterial blooms: Causes, consequences, and control. Microb. Ecol. 2013, 65, 995–1010. [Google Scholar] [CrossRef] [PubMed]
- Heil, C.A.; Muni-Morgan, A.L. Florida’s harmful algal bloom (HAB) problem: Escalating risks to human, environmental and economic health with climate change. Front. Ecol. Evol. 2021, 9, 646080. [Google Scholar] [CrossRef]
- Jochens, A.E.; Malone, T.C.; Stumpf, R.P.; Richard, P.; Hickey, B.M.; Carter, C.; Morrison, R.; Juli, D.; Burt, J.; Trainer, V.L. Integrated ocean observing system in support of forecasting harmful algal blooms. Mar. Technol. Soc. 2010, 44, 99–121. [Google Scholar] [CrossRef]
- West, J.J.; Järnberg, L.; Berdalet, E.; Cusack, C. Understanding and managing harmful algal bloom risks in a changing climate: Lessons from the European CoCliME Project. Front. Clim. 2021, 3, 636723. [Google Scholar] [CrossRef]
- Aumen, N.G.; Havens, K.E. Okeechobee Lake, Florida, USA: Human impacts, research, and lake restoration. In Encyclopaedia of Hydrology and Lakes; Encyclopaedia of Earth Science; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar] [CrossRef]
- Havens, K.E.; James, R.T. Localized changes in transparency linked to mud sediment expansion in Lake Okeechobee, Florida: Ecological and management implications. Lake Reserv. Manag. 1999, 15, 54–69. [Google Scholar] [CrossRef]
- Galoustian, G. FAU Awarded $2.2 Million to Monitor Algal Blooms in Lake Okeechobee. Florida Atlantic University. 2020. Available online: https://www.fau.edu/newsdesk/articles/habs-lake-okeechobee.php (accessed on 20 September 2021).
- Lefler, F.W.; Barbosa, M.; Berthold, D.E.; Laughinghouse IV, H.D. Genome sequences of two Microcystis aeruginosa (Chroococcales, cyanobacteria) strains from Florida (United States) with disparate toxigenic potentials. Microbiol. Resour. Announc. 2020. [Google Scholar] [CrossRef]
- FDEP. 2020 Integrated Water Quality Assessment for Florida: Sections 303(d), 305(b), and 314 Report and Listing Update; Division of Environmental Assessment and Restoration Florida Department of Environmental Protection: Tallahassee, FL, USA, 2020; Available online: https://floridadep.gov/sites/default/files/2020_IR_Master_FINAL%20-%20ADA.pdf (accessed on 31 August 2021).
- Goly, A.; Teegavarapu, R.S. Individual and coupled influences of AMO and ENSO on regional precipitation characteristics and extremes. Water Resour. Res. 2014, 50, 4686–4709. [Google Scholar] [CrossRef]
- Steward, J.S.; Virnstein, R.W.; Morris, L.J.; Lowe, E.F. Setting seagrass depth, coverage, and light targets for the Indian River Lagoon System, Florida. Estuaries 2005, 28, 923–935. [Google Scholar] [CrossRef]
- Phlips, E.J.; Badylak, S.; Christman, M.C.; Lasi, M.A. Climatic trends and temporal patterns of phytoplankton composition, abundance, and succession in the Indian River Lagoon, Florida, USA. Estuar. Coasts 2010, 33, 498–512. [Google Scholar] [CrossRef]
- SJRWMD. The Indian River Lagoon—The Health and Future of This Estuary of National Significance. 2008. Available online: http://www.sjrwmd.com/irlinsert/#3 (accessed on 30 August 2021).
- NOAA. National Estuarine Eutrophication Survey. Volume 1: South Atlantic Region; Office of Ocean Resources Conservation and Assessment, National Ocean Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce: Washington, DC, USA, 1996; Available online: https://www.govinfo.gov/content/pkg/CZIC-qh91-8-e87-n63-1996-v-1/html/CZIC-qh91-8-e87-n63-1996-v-1.htm (accessed on 25 May 2021).
- FFWCC. Effects of Brown Tide in the Indian River Lagoon. 2012. Available online: https://myfwc.com/research/redtide/monitoring/historical-events/brown-tide/ (accessed on 22 September 2021).
- Landsberg, J.H.; Hall, S.; Johannessen, J.N.; White, K.D.; Conrad, S.M.; Abbott, J.P.; Flewelling, L.J.; Richardson, R.W.; Dickey, R.W.; Jester, E.L.E.; et al. Saxitoxin puffer fish poisoning in the United States, with the first report of Pyrodinium Bahamense as the putative toxin source. Environ. Health Perspect. 2006, 114, 1502–1507. [Google Scholar] [CrossRef] [Green Version]
- Phlips, E.J.; Badylak, S.; Bledsoe, E.; Cicjra, M. Factors affecting the distribution of Pyrodinium Bahamense var. Bahamense in coastal waters of Florida. Mar. Ecol. Prog. Ser. 2006, 322, 99–115. [Google Scholar] [CrossRef]
- Gobler, C.J.; Koch, F.; Kang, Y.; Berry, D.L.; Tang, Y.Z.; Lasi, M.; Walters, L.; Hall, L.; Miller, J.D. Expansion of harmful brown tides caused by the pelagophyte, Aureoumbra lagunensis DeYoe et Stockwell, to the US East Coast. Harmful Algae 2013, 27, 9–41. [Google Scholar] [CrossRef]
- Kang, Y.; Koch, F.; Gobler, C. The interactive roles of nutrient loading and zooplankton grazing in facilitating the expansion of harmful algal blooms caused by the pelagophyte, Aureoumbra lagunensis, to the Indian River Lagoon, FL, USA. Harmful Algae 2015, 49, 162–173. [Google Scholar] [CrossRef]
- Ingebritsen, S.E.; McVoy, C.; Glaz, B.; Park, W. Florida Everglades. In Subsidence Threatens Agriculture and Complicates Ecosystem Restoration; Galloway, D., Jones, D.R., Ingebritsen, S.E., Eds.; Land Subsidence in the United States; U.S. Geological Survey Circular: Reston, VA, USA, 1999; Volume 1182, pp. 95–106. [Google Scholar]
- Harvey, J.W.; McCormick, P.V. Groundwater’s significance to changing hydrology, water chemistry, and biological communities of a floodplain ecosystem, Everglades, South Florida, USA. Hydrogeol. J. 2009, 17, 185–201. [Google Scholar] [CrossRef] [Green Version]
- Harvey, R.G.; Loftus, W.F.; Rehage, J.S.; Mazzotti, F.J. Effect of Canals and Levees on Everglades Ecosystems: Circular. Publication #WEC304. 2011. Available online: https://edis.ifas.ufl.edu/publication/UW349 (accessed on 9 September 2021).
- Wright, A.L.; Reddy, K.R.; Newman, S. Biogeochemical Response of the Everglades Landscape to Eutrophication. Glob. Environ. Res. 2008, 2, 102–109. Available online: https://soils.ifas.ufl.edu/wetlands/publications/PDF-articles/329.Biogeochemical%20Response%20of%20the%20Everglades%20Landscape%20to%20Eutrophication.pdf (accessed on 9 September 2021).
- Piccininni, F. Adaptation to climate change and the Everglades ecosystem. Environ. Claims 2014, 26, 63–68. [Google Scholar] [CrossRef] [Green Version]
- National Academy of Sciences. Progress toward Restoring the Everglades: The Third Biennial Review; The National Academies Press: Washington, DC, USA, 2014; Available online: https://nap.nationalacademies.org/resource/12988/Everglades-Report-Brief-Final.pdf (accessed on 9 September 2021).
- Kozacek, C. Algal Blooms Are No Accident for Florida Everglades and Estuaries. Circle of Blue Where Water Speaks. 2016. Available online: https://www.circleofblue.org/2016/united-states/algal-blooms-no-accident-florida-everglades-estuaries/ (accessed on 24 August 2021).
- Childers, D.L.; Doren, R.F.; Jones, R.; Noe, G.B.; Rugge, M.; Scinto, L.J. Decadal Change in Vegetation and Soil Phosphorus Patterns Across the Everglades Landscape. Environ. Qual. 2003, 32, 344–362. Available online: https://water.usgs.gov/nrp/sheetflow/publications/Childers_2003_JEQtransect.pdf (accessed on 13 June 2023). [CrossRef]
- NPS. Sea-Level Rise in Everglades National Park. 2015. Available online: https://www.nps.gov/ever/learn/nature/cceffectsslrinpark.htm (accessed on 29 May 2021).
- NPS. Comprehensive Everglades Restoration Plan. 2017. Available online: https://www.nps.gov/ever/learn/nature/cerp.htm (accessed on 6 June 2021).
- Schade-Poole, K.; Möller, G. Impact and mitigation of nutrient pollution and overland water flow change on the Florida Everglades, USA. Sustainability 2016, 8, 940. [Google Scholar] [CrossRef] [Green Version]
- van der Valk, A.G.; Volin, J.C.; Wetzel, P.R. Predicted changes in the Southeast United States interannual water-level fluctuations due to climate change and its implications for the vegetation of the Florida Everglades. Environ. Manag. 2015, 55, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Stabenau, E.; Engel, V.; Sadle, J.; Pearlstine, L.G. Sea-Level Rise: Observations, Impacts, and Proactive Measures in Everglades National Park. Park Sci. 2011, 28, 26–30. Available online: https://www.researchgate.net/publication/286374988_Sea-level_rise_Observations_impacts_and_proactive_measures_in_Everglades_National_park (accessed on 13 June 2023).
- Shoemaker, W.B.; Sumner, D.M. Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration. Wetlands 2006, 26, 528–543. [Google Scholar] [CrossRef]
- Shoemaker, W.B.; Lopez, C.D.; Duever, M.J. Evapotranspiration over Spatially Extensive Plant Communities in the Big Cypress National Preserve, Southern Florida, 2007–2010. United States Geological Survey, Scientific Investigations Report 2011–5212; 2011; pp. 1–59. Available online: https://pubs.usgs.gov/sir/2011/5212/ (accessed on 28 August 2021).
- McCarthy, K.M. Apalachicola Bay; Pineapple Press, Inc.: Sarasota, FL, USA, 2004. [Google Scholar]
- Torak, L.J.; Crilley, D.M.; Painter, J.A. Physical and Hydrochemical Evidence of Lake Leakage near Jim Woodruff Lock and Dam and of Ground-Water Inflow to Lake Seminole, and an Assessment of Karst Features in and near the Lake, Southwestern Georgia and Northwestern Florida; Scientific Investigations Report 2005-5084; U.S. Department of the Interior, U.S. Geological Survey: Reston, VA, USA, 2005. Available online: https://pubs.usgs.gov/sir/2005/5084/pdf/sir05-5084.pdf (accessed on 21 September 2021).
- USGS. Surface-Water Annual Statistics for Florida; U.S. Department of the Interior and U.S. Geological Survey: Reston, VA, USA, 2012. Available online: http://waterdata.usgs.gov/fl/nwis/sw (accessed on 12 June 2021).
- Chen, X.; Alizad, K.; Wang, D.; Hagen, S.C. Climate change impact on runoff and sediment loads to the Apalachicola River at seasonal and event scales. Coast Res. 2014, 68, 35–42. [Google Scholar] [CrossRef]
- Wang, D.; Hagen, S.C.; Alizad, K. Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River Basin, Florida. J. Hydrol. 2013, 480, 125–135. [Google Scholar] [CrossRef]
- Manzello, D.P.; Enochs, I.C.; Melo, N.; Gledhill, D.K.; Johns, E.M. Ocean acidification refugia of the Florida Reef Tract. PLoS ONE 2012, 7, e41715. [Google Scholar] [CrossRef] [Green Version]
- Willett, M.A. Effect of Dissolution of the Florida Carbonate Platform on Isostatic Uplift and Relative Sea-Level Change. 2006. Available online: http://purl.flvc.org/fsu/fd/FSU_migr_etd-1000 (accessed on 25 December 2021).
- Tihansky, A.B. Sinkholes, West-Central Florida. In Land Subsidence in the United States: USGS Circular; Galloway, D., Jones, D.R., Ingebritsen, S.E., Eds.; USGS: Reston, VA, USA, 1999; Volume 1182, pp. 121–140. Available online: https://fl.water.usgs.gov/PDF_files/cir1182_tihansky.pdf (accessed on 25 August 2021).
- Borgesa, A.V.; Gypensb, N. Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnol. Oceanogr. 2010, 55, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Lapointe, B.E.; Matzie, W.R. Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries 1996, 19, 422–435. [Google Scholar] [CrossRef]
- Laurent, A.; Fennel, K.; Ko, D.S.; Lehrter, J. Climate change projected to exacerbate impacts of coastal eutrophication in the northern Gulf of Mexico. Geophys. Res. Oceans 2018, 123, 3408–3426. [Google Scholar] [CrossRef]
- Landsberg, J.H.; Kiryu, Y.; Peters, E.C.; Wilson, P.W.; Perry, N.; Waters, Y.; Maxwell, K.E.; Huebner, L.K.; Work, T.M. Stony coral tissue loss disease in Florida in associated with disruption of host–zooxanthellae physiology. Front. Mar. Sci. 2020, 16, 576013. [Google Scholar] [CrossRef]
- FDEP. Stony Coral Tissue Loss Disease Response. 2021. Available online: https://floridadep.gov/rcp/coral/content/stony-coral-tissue-loss-disease-response (accessed on 3 September 2021).
- Bruno, J.F.; Selig, E.R.; Casey, K.S.; Page, C.A.; Willis, B.L.; Harvell, C.D.; Sweatman, H.; Melendy, A.M. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 2007, 5, e124. [Google Scholar] [CrossRef] [PubMed]
- Kuffner, I.B.; Lidz, B.H.; Hudson, J.H.; Anderson, J.S. A century of ocean warming on Florida Keys coral reefs: Historic in situ observations. Estuar. Coasts 2015, 38, 1085–1096. [Google Scholar] [CrossRef] [Green Version]
- Manzello, D.P. Rapid recent warming of coral reefs in the Florida Keys. Sci. Rep. 2015, 5, 16762. [Google Scholar] [CrossRef] [Green Version]
- Morey, S.; Koch, M.; Liu, Y.; Lee, S.K. Florida’s oceans and marine habitats in a changing climate. In Florida’s Climate: Changes, Variations, & Impacts; Florida Climate Institute: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- VisitFlorida. 2022. Available online: https://www.visitflorida.com/about-us/ (accessed on 8 February 2022).
FWMDs | Jurisdiction | Main Climate-Change Issues | Planning for Climate-Change Adaptation |
---|---|---|---|
SFWMD | Broward, Collier, Dada, Glades, Hendry, Lee, Martin, Monroe, Palm Beach, and St. Lucie Counties, as well as portions of Charlotte, Highlands, Okeechobee, Orange, Osceola, and Polk Counties [111]. | Rising sea levels; changing rainfall, flooding, and tropical storms/hurricanes patterns; eutrophication and cyanobacterial bloom; and ocean acidification [110,118,119,120]. | The district’s resiliency efforts focus on assessing how sea level rise and extreme events occur under current and future climate conditions and their impact on water resources management, infrastructure adaptation, and restoration of ecosystems [49,110]. The district is also working to remove and reduce excess nutrient pollution from entering natural systems [118]. |
SWFWMD | Citrus, DeSoto, Hardee, Hernando, Hillsborough Manatee, Pasco, Pinellas, Sarasota, and Sumter Counties; and portions of Charlotte, Highlands, Lake, levy, Marion, and Polk Counties [111]. | Changing patterns in hurricanes, floods, and wildfires; and accelerated eutrophication and cyanobacterial bloom [112,121]. | The district has assumed a ‘monitor and adapt’ approach toward climate change. Future water-management decisions focus on meeting water demands through a combination of alternative water sources, fresh groundwater, and water-conservation measures across all use sectors [122,123]. |
SJRWMD | Brevard, Clay, Duval, Flagler, Indian River Nassau, Seminole, St. Johns, and Volusia Counties; and portions of Alachua Baker, Bradford, Lake, Marion, Okeechobee Orange, Osceola, and Putnam Counties [111]. | Sea level rise, increased severity of tropical storm events, shifting rainfall pattern, and eutrophication and cyanobacterial bloom [124,125,126]. | Resiliency efforts include assisting communities and utilities to become more resilient in preparing for and adapting to climate changes. In partnership with many local governments, the district plans to complete ‘shovel ready’ stormwater and flood defense projects to mitigate flooding and enhance water quality [125,126]. The district is responsible for designing and building tailor-made projects to restore degraded waterbodies and reduce eutrophication in Florida’s Indian River Lagoon [127]. |
SRWMD | Columbia Dixie, Gilchrist, Hamilton, Lafayette, Madison, Suwannee, and Taylor Union Counties; and portions of Alachua, Baker, Bradford, and Jefferson [111]. | Sea level rise, changes in rainfall pattern, increase in temperatures, and eutrophication and cyanobacterial bloom [128,129,130]. | The district aims to (i) conduct vulnerability and risk-assessment studies in coastal communities to assess freshwater accessibility threatened by sea level rise; (ii) incorporate impacts of sea level rise in Water Supply Plans and coastal minimum flow levels; and (iii) initiate interdistrict coordination regarding rules and regulations to address sea level rise [131]. |
NWFWMD | Bay, Calhoun, Escambia, Franklin, Gadsden, Gulf, Holmes, Jackson, western portion of Jefferson, Leon, Liberty, Okaloosa, Santa Rosa, Wakulla, Walton, and Washington counties [111]. | Sea level rise, increasing severity of hurricanes, storm surge and heavy flooding events, and eutrophication [132,133,134,135]. | The district aims to focus on water supply, water quality, flood protection, and natural resource protection [136]. However, climate-change-adaptation strategies are not explicitly included in the text of the District’s Strategic Water Management Plan for the fiscal years 2020–2024 [136]. The City of Pensacola, a port city located in the county of Escambia, susceptible to sea level rise, established a Climate Mitigation and Adaptation Task Force to study the impacts of climate change on the city in 2017 [137]. The task force’s final report suggested developing permeable surfaces throughout the city, creating inland flooding-adaptation action areas, and reducing development in hazardous coastal areas [138]. |
FWMD | Freshwater | Saline Water | Total | ||||
---|---|---|---|---|---|---|---|
Groundwater | Surface Water | Total | Groundwater | Surface Water | Total | All Water | |
ML·day−1 | |||||||
NWFWMD | 914 | 1114 | 2028 | 0 | 644 | 644 | 2672 |
SJRWMD | 3285 | 597 | 3882 | 85 | 4430 | 4515 | 8396 |
SFWMD | 5675 | 4895 | 10,570 | 612 | 11,122 | 11,735 | 22,305 |
SWFWMD | 2926 | 896 | 3822 | 51 | 19,389 | 19,440 | 23,262 |
SRWMD | 842 | 512 | 1354 | 0 | 0 | 0 | 1354 |
State totals | 13,642 | 8013 | 21,656 | 748 | 35,585 | 36,333 | 57,989 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haque, S.E. The Effects of Climate Variability on Florida’s Major Water Resources. Sustainability 2023, 15, 11364. https://doi.org/10.3390/su151411364
Haque SE. The Effects of Climate Variability on Florida’s Major Water Resources. Sustainability. 2023; 15(14):11364. https://doi.org/10.3390/su151411364
Chicago/Turabian StyleHaque, Shama E. 2023. "The Effects of Climate Variability on Florida’s Major Water Resources" Sustainability 15, no. 14: 11364. https://doi.org/10.3390/su151411364
APA StyleHaque, S. E. (2023). The Effects of Climate Variability on Florida’s Major Water Resources. Sustainability, 15(14), 11364. https://doi.org/10.3390/su151411364