Rye Production under Acid Soils and Drought Conditions: An Alternative for the Sustainability of High Andean Livestock Farming in Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Genetic Material and Experimental Plots
2.3. Soil Characteristics and Fertilization
2.4. Sampling and Parameter Evaluation
2.5. Statistical Analysis
3. Results
3.1. Biomass and Hay Yield
3.2. Forage Chemical Composition
3.3. Crop Parameters Grain Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geiger, H.H.; Miedaner, T. Rye (Secale cereale L.) BT–Cereals; Springer: New York, NY, USA, 2009; pp. 157–181. [Google Scholar] [CrossRef]
- Galán, R.J.; Bernal-Vasquez, A.M.; Jebsen, C.; Piepho, H.P.; Thorwarth, P.; Steffan, P.; Gordillo, A.; Miedaner, T. Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material. Theor. Appl. Genet. 2021, 134, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- Hyeon Jeong, J.; Joo Jung, W.; Weon Seo, Y. Genome-wide identification and expression analysis of the annexin gene family in rye (Secale cereale L.). Gene 2022, 838, 146704. [Google Scholar] [CrossRef] [PubMed]
- Targonska-Karasek, M.; Boczkowska, M.; Podyma, W.; Pasnik, M.; Niedzielski, M.; Rucinska, A.; Nowak-Zyczynska, Z.; Rakoczy-Trojanowska, M. Multiplexed SSR and agronomic data used in an investigation of obsolete diversity of rye (Secale cereale L.). Data Brief 2022, 41, 107910. [Google Scholar] [CrossRef]
- Sun, Y.; Shen, E.; Hu, Y.; Wu, D.; Feng, Y.; Lao, S.; Dong, C.; Du, T.; Hua, W.; Ye, C.Y.; et al. Population genomic analysis reveals domestication of cultivated rye from weedy rye. Mol. Plant 2022, 15, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Bruckner, P.L.; Raymer, P.L.; Burton, G.W. Recurrent phenotypic selection for forage yield in rye. Euphytica 1991, 54, 11–17. [Google Scholar] [CrossRef]
- FAO. Crops and Livestock Products; FAO: Rome, Italy, 2022. [Google Scholar]
- [SENAMHI]—Servicio Nacional de Meteorología e Hidrología del Perú Monitoreo Agroclimático a Nivel Nacional. 2022. Available online: https://www.senamhi.gob.pe/?&p=estaciones (accessed on 21 December 2022).
- Korzun, V.; Ponomareva, M.L.; Sorrells, M.E. Economic and Academic Importance of Rye. In The Rye Genome; Rabanus-Wallace, M.T., Stein, N., Eds.; Springer: Cham, Switzerland, 2021; Chapter 1; pp. 1–12. [Google Scholar] [CrossRef]
- Németh, R.; Tömösközi, S. Rye: Current state and future trends in research and applications. Acta Aliment. 2021, 50, 620–640. [Google Scholar] [CrossRef]
- Kaur, P.; Singh Sandhu, K.; Singh Purewal, S.; Kaur, M.; Kumar Singh, S. Rye: A wonder crop with industrially important macromolecules and health benefits. Food Res. Int. 2021, 150, 110769. [Google Scholar] [CrossRef]
- Kim, K.S.; Anderson, J.D.; Webb, S.L.; Newell, M.A.; Butler, T.J. Variation in winter forage production of four small grain species—Oat, rye, triticale, and wheat. Pak. J. Bot. 2017, 49, 553–559. [Google Scholar]
- Ates, S.; Keles, G.; Demirci, U.; Dogan, S.; Ben Salem, H. Biomass yield and feeding value of rye, triticale, and wheat straw produced under a dual-purpose management system. J. Anim. Sci. 2017, 95, 4893. [Google Scholar] [CrossRef] [Green Version]
- Daly, E.J.; Hernandez-Ramirez, G.; Puurveen, D.; Ducholke, C.; Kim, K.; Oatway, L. Perennial rye as a grain crop in Alberta, Canada: Prospects and challenges. Agron. J. 2022, 114, 471–489. [Google Scholar] [CrossRef]
- Sukhoveeva, O.E. Analyzing the impact of agrometeorological factors on winter rye yield in the Central Non-Black Soil zone. Russ. Meteorol. Hydrol. 2014, 39, 762–767. [Google Scholar] [CrossRef]
- Márton, L. Precipitation and fertilization level impacts on winter rye (Secale cereale L.) yield. Cereal Res. Commun. 2007, 35, 1509–1517. [Google Scholar] [CrossRef]
- Han, O.K.; Hwang, J.J.; Park, H.H.; Park, T.I.; Ku, J.H.; Kwon, Y.U.; Kwoen, S.J.; Park, K.G. Forage rye cultivars for animal feed in Korea. In Proceedings of the The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection), New Delhi, India, 20–24 November 2015; p. 2. [Google Scholar]
- Vaughn, K.; Adeyemi, O.; Zandvakili, O.; Hunter, D.; Nair, J.; Still, S.; Sadeghpour, A. Winter rye cover crop biomass, nutrient uptake, and quality in response to fall and spring N fertilization. Cogent Food Agric. 2022, 8, 2132843. [Google Scholar] [CrossRef]
- Stepień, A.; Wojtkowiak, K.; Pietrusewicz, M.; Skłodowski, M.; Pietrzak-Fiećko, R. The yield and grain quality of winter rye (Secale cereale L.) under the conditions of foliar fertilization with micronutrients (Cu, Zn and Mn). Pol. J. Nat. Sci. 2016, 31, 33–46. [Google Scholar]
- Klikocka, H.; Podleśna, A.; Klikocka, H.; Skwaryło-Bednarz, B.; Narolski, B. The response of spring rye (Secale cereale L.) to NPK and S fertilizers. The content and uptake of macroelements and the value of ionic ratios. J. Elem. 2022, 27, 249–263. [Google Scholar] [CrossRef]
- Wyzińska, M.; Grabiński, J. Economic efficiency of different winter rye production technologies. Ann. Pol. Assoc. Agric. Agribus. Econ. 2021, XXIII, 201–208. [Google Scholar] [CrossRef]
- Galán, R.J.; Bernal-Vasquez, A.M.; Jebsen, C.; Piepho, H.P.; Thorwarth, P.; Steffan, P.; Gordillo, A.; Miedaner, T. Hyperspectral Reflectance Data and Agronomic Traits Can Predict Biomass Yield in Winter Rye Hybrids. Bioenergy Res. 2020, 13, 168–182. [Google Scholar] [CrossRef]
- Ning, J.; Lou, S.; Guo, Y.; Chang, S.; Zhang, C.; Zhu, W.; Hou, F. Appropriate N fertilizer addition mitigates N2O emissions from forage crop fields. Sci. Total. Environ. 2022, 829, 154628. [Google Scholar] [CrossRef]
- Moitzi, G.; Neugschwandtner, R.W.; Kaul, H.P.; Wagentristl, H. Energy Efficiency of Continuous Rye, Rotational Rye and Barley in Different Fertilization Systems in a Long-Term Field Experiment. Agron. J. 2021, 11, 229. [Google Scholar] [CrossRef]
- Drăghici, R.; Drăghici, I.; Croitoru, M.; Diaconu, A.; Dima, M.; Badi, O.C. Improving the productivity and quality of rye production, by applying foliar fertilizers with a high content of microelements, in sandy soil conditions. Sci. Pap. Ser. Agron. 2022, LXV, 304–311. [Google Scholar]
- Pantoja, J.L.; Woli, K.P.; Sawyer, J.E.; Barker, D.W. Corn Nitrogen Fertilization Requirement and Corn-Soybean Productivity with a Rye Cover Crop. Soil Sci. Soc. Am. J. 2015, 79, 1482–1495. [Google Scholar] [CrossRef] [Green Version]
- Binder, J. Cereal Rye and Manure Management to Increase Nutrient Utilization in Pennsylvania Dairy Farms. Master’s Thesis, The Pennsylvania State University, Pennsylvania, PA, USA, 2019. [Google Scholar]
- Thapa, R.; Poffenbarger, H.; Tully, K.L.; Ackroyd, V.J.; Kramer, M.; Mirsky, S.B. Biomass Production and Nitrogen Accumulation by Hairy Vetch–Cereal Rye Mixtures: A Meta-Analysis. Agron. J. 2018, 110, 1197–1208. [Google Scholar] [CrossRef] [Green Version]
- Malone, R.W.; O’Brien, P.L.; Herbstritt, S.; Emmett, B.D.; Karlen, D.L.; Kaspar, T.C.; Kohler, K.; Radke, A.; Lence, S.H.; Wu, H.; et al. Rye-soybean double-crop: Planting method and N fertilization effects in the North Central US. Renew. Agric. Food Syst. 2022, 37, 445–456. [Google Scholar] [CrossRef]
- Pantoja, J.L.; Woli, K.P.; Sawyer, J.E.; Barker, D.W. Winter rye cover crop biomass production, degradation, and nitrogen recycling. Agron. J. 2016, 108, 841–853. [Google Scholar] [CrossRef] [Green Version]
- EPA. SW-846 Test Method 9045D: Soil and Waste pH; EPA: Washington, DC, USA, 2004. [Google Scholar]
- SEMARNAT. Norma Oficial Mexicana NOM-021-RECNAT-2000, Que Establece las Especificaciones de Fertilidad, Salinidad y Clasificación de Suelos. Estudios, Muestreo y Análisis; Technical Report; Secretaría de Medio Ambiente y Recursos Naturales: Ciudad de México, Mexico, 2002. [Google Scholar]
- Olego, M.Á.; Quiroga, M.J.; Mendaña-Cuervo, C.; Cara-Jiménez, J.; López, R.; Garzón-Jimeno, E. Long-Term Effects of Calcium-Based Liming Materials on Soil Fertility Sustainability and Rye Production as Soil Quality Indicators on a Typic Palexerult. Processes 2021, 9, 1181. [Google Scholar] [CrossRef]
- Blecharczyk, A.; Sawinska, Z.; Małecka, I.; Sparks, T.H.; Tryjanowski, P. The phenology of winter rye in Poland: An analysis of long-term experimental data. Int. J. Biometeorol. 2016, 60, 1341–1346. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Moisture in Animal Feed, Method 930.15. In Official Methods of Analysis of AOAC International, 16th ed.; AOAC: Rockville, MD, USA, 1996; Chapter Moisture i. [Google Scholar]
- AOAC. Método 928.08—“Kjeldahl method”. In Official Methods of Analysis of AOAC International, 19th ed.; Latimer, G.W., Ed.; AOAC: Rockville, MD, USA, 2012; Chapter 39; p. 5. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official methods of analysis Neutral Detergent Fiber (NDF) Calculation: NDF = cellulose + lignin + hemicellulose − item 90. In Association of Analytical Communities, 17th ed.; AOAC: Rockville, MD, USA, 2006. [Google Scholar]
- AOAC. Official methods of analysis Acid Detergent Fiber (ADF) Calculation: ADF = cellulose plus lignin − item 89. In Association of Analytical Communities, 17th ed.; AOAC: Rockville, MD, USA, 2006. [Google Scholar]
- AOAC. AOAC Official Method 920.39. Fat (Crude) or Ether Extract in Animal Feed. In Official Methods of Analysis of AOAC International, 15th ed.; AOAC: Rockville, MD, USA, 1990; p. 79. [Google Scholar]
- AOAC. Official methods of analysis Available Carbohydrates Calculation: 100 percent minus percent (CP + Ash + Crude Fat + M + Crude Fiber)–item 86. In Association of Analytical Communities, 17th ed.; AOAC: Rockville, MD, USA, 2006. [Google Scholar]
- AOAC. Ash of Animal Feed. AOAC Official Methods 942.05. J. AOAC Int. 2000, 857, 2000. [Google Scholar]
- Thiex, N.; Novotny, L.; Crawford, A. Determination of ash in animal feed: AOAC official method 942.05 revisited. J. AOAC Int. 2012, 95, 1392–1397. [Google Scholar] [CrossRef]
- Killerby, M.A.; Reyes, D.C.; White, R.; Romero, J.J. Meta-analysis of the effects of chemical and microbial preservatives on hay spoilage during storage. J. Anim. Sci. 2022, 100, skac023. [Google Scholar] [CrossRef]
- Tottman, D.R.; Makepeace, R.J.; Broad, H. An explanation of the decimal code for the growth stages of cereals, with illustrations. Ann. Appl. Biol. 1979, 93, 221–234. [Google Scholar] [CrossRef]
- Ku, J.H.; Han, O.K.; Oh, Y.J.; Park, T.I.; Kim, D.W.; Kim, B.J.; Park, M.R.; Ra, K.Y. An Early-Maturing and High-Biomass Tetraploid Rye (Secale cereale L.) Variety ’Daegokgreen’ for Forage Use. J. Korean Soc. Grassl. Forage Sci. 2020, 40, 209–215. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Wei, S.N.; Liu, C.; Kim, H.J.; Kim, J.G. Effect of harvest dates on β-carotene content and forage quality of rye (Secale cereale L.) silage and hay. J. Anim. Sci. Technol. 2021, 63, 354–366. [Google Scholar] [CrossRef]
- Wang, L.; Skreiberg, Ø.; Becidan, M.; Li, H. Investigation of rye straw ash sintering characteristics and the effect of additives. Appl. Energy 2016, 162, 1195–1204. [Google Scholar] [CrossRef]
- Young, T.A. Macronutrient Content of Winter Annual Cereal Grains with Phosphorus Fertilization. Master’s Thesis, Missouri State University, Springfield, MO, USA, 2019. [Google Scholar]
- NRC—National Research Council. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Vallejos-Fernández, L.A.; Alvarez, W.Y.; Paredes-Arana, M.E.; Pinares-Patiño, C.; Bustíos-Valdivia, J.C.; Vásquez, H.; García-Ticllacuri, R. Productive behavior and nutritional value of 22 genotypes of ryegrass (Lolium spp.) on three high Andean floors of northern Peru. Sci. Agropecu. 2020, 11, 537–545. [Google Scholar] [CrossRef]
- Rajtar, P.; Sady, M.; Górka Pawełand Kehoe, S.; Micek, P. Effect of Replacing Maize Grain by Hybrid Rye Grain in the TMR on Performance of Mid-Lactating Dairy Cows. Ann. Anim. Sci. 2022, 22, 237–254. [Google Scholar] [CrossRef]
Ecotype | Germination (%) | Purity (%) | Sowing Density (kg ha−1) |
---|---|---|---|
CBI-001 | 98.7 | 95 | 60 |
CSM-001 | 96.3 | 96 | 60 |
CJS-001 | 98.0 | 95 | 60 |
CCE-001 | 98.7 | 97 | 60 |
Soil Values | EXP-01 | EXP-02 |
---|---|---|
pH | 4.2 | 6.2 |
Aluminum (mEq/100 g) | 0.1 | 0 |
Organic Matter (%) | 12.71 | 1.23 |
Phosphorus (ppm) | 47.7 | 15.63 |
Potassium (ppm) | 190 | 290 |
Recommended dose | ||
Nitrogen (kg ha−1) | 50 | 60 |
P2O5 (kg ha−1) | 20 | 70 |
K2O (kg ha−1) | 35 | 35 |
CaO (t ha−1) | 0.1 | 0.0 |
Ecotype | Density 1 (Plants per m2) | Tillers # per Plant | Plant Height (cm) | Green Forage (t ha−1) | DM $ (%) | Biomass (t DM ha−1) | Hay (t ha−1) |
---|---|---|---|---|---|---|---|
CBI-001 | 174 | 13 | 99.70 | 53.62 | 16.17 | 8.56 | 9.64 |
CCE-001 | 190 | 12 | 95.33 | 48.79 | 17.55 | 8.93 | 10.36 |
CJS-001 | 186 | 10.5 | 81.70 | 32.35 | 18.60 | 6.05 | 7.0 |
CSM-001 | 166 | 10 | 84.90 | 34.30 | 18.83 | 6.51 | 7.54 |
SE | 9.82 | 0.625 | 3.67 | 3.40 | 0.52 | 0.48 | 0.55 |
p value | 0.7550 | 0.5439 | 0.5220 | 0.2694 | 0.8405 | 0.1495 | 0.1557 |
Ecotype | Crude Protein (%) | NDF (%) | ADF (%) | Ether Extract (%) | Nifex (%) | Ash (%) |
---|---|---|---|---|---|---|
Green forage | ||||||
CBI-001 | 10.15 a | 7.58 a | 48.83 a | 5.23 c | 48.20 c | 6.75 b |
CSM-001 | 9.02 b | 64.76 c | 40.51 b | 5.80 a | 50.83 a | 6.50 b |
CJS-001 | 9.80 a | 63.17 d | 38.51 c | 5.20 c | 49.84 b | 7.50 a |
CCE-001 | 9.89 a | 66.21 b | 41.24 b | 5.54 b | 48.15 c | 6.75 b |
SE | 0.09 | 0.16 | 0.21 | 0.05 | 0.17 | 0.14 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.005 |
Forage in hay | ||||||
CBI-001 | 10.46 b | 68.49 a | 43.66 a | 4.00 | 42.59 b | 7.00 b |
CSM-001 | 10.37 b | 66.97 a | 40.26 d | 4.22 | 44.96 a | 7.00 b |
CJS-001 | 13.56 a | 64.31 b | 41.13 c | 4.03 | 43.03 b | 7.75 a |
CCE-001 | 9.45 c | 68.09 a | 42.23 b | 3.66 | 44.91 a | 7.50 ab |
SE | 0.12 | 0.40 | 0.16 | 0.15 | 0.24 | 0.13 |
p value | <0.001 | 0.0002 | <0.001 | 0.1168 | 0.0001 | 0.0057 |
Ecotype | Number of Stems per Plant | Flowering Stems per Plant | Length of Stems (m) | Length of Spikes (cm) | Grains per Spike |
---|---|---|---|---|---|
CBI-001 | 4.56 | 4.06 | 1.18 | 10.80 ab | 45.63 |
CSM-001 | 4.94 | 4.25 | 1.15 | 11.34 a | 47.19 |
CJS-001 | 4.25 | 4.00 | 1.15 | 11.32 a | 47.75 |
CCE-001 | 4.38 | 4.06 | 1.18 | 10.17 b | 43.44 |
p value | 0.440 | 0.913 | 0.525 | 0.001 | 0.087 |
Fertilizer levels | |||||
T1 | 4.13 | 3.94 | 1.12 b | 11.36 | 47.75 |
T2 | 4.56 | 3.94 | 1.14 b | 10.71 | 44.63 |
T3 | 4.56 | 4.13 | 1.17 ab | 10.93 | 45.19 |
T4 | 4.88 | 4.38 | 1.22 a | 10.63 | 46.44 |
p value | 0.414 | 0.592 | 0.005 | 0.100 | 0.317 |
Ecotype | Total Weight Kg ha−1 | Grain Kg ha−1 | Straw Weight Kg ha−1 |
---|---|---|---|
CBI-001 | 7325.00 a | 1868.4 a | 5456.63 a |
CSM-001 | 6625.75 ab | 1751.1 a | 4874.63 ab |
CJS-001 | 5787.50 b | 1365 b | 4422.50 b |
CCE-001 | 6948.50 a | 1797.8 a | 5150.75 ab |
p value | 0.0072 | 0.00119 | 0.0263 |
Fertilizer levels | |||
T1 | 5875.9 b | 1565.9 b | 4310.00 c |
T2 | 6231.6 b | 1576.1 b | 4655.50 bc |
T3 | 6957.6 ab | 1720.4 ab | 5237.25 ab |
T4 | 7621.6 a | 1919.9 a | 5701.75 a |
p value | 0.0010 | 0.0259 | 0.0008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco-Chilón, W.L.; Alvarez-García, W.Y.; Cervantes Peralta, M.E.; Quilcate, C.; Vásquez, H.V. Rye Production under Acid Soils and Drought Conditions: An Alternative for the Sustainability of High Andean Livestock Farming in Peru. Sustainability 2023, 15, 11431. https://doi.org/10.3390/su151411431
Carrasco-Chilón WL, Alvarez-García WY, Cervantes Peralta ME, Quilcate C, Vásquez HV. Rye Production under Acid Soils and Drought Conditions: An Alternative for the Sustainability of High Andean Livestock Farming in Peru. Sustainability. 2023; 15(14):11431. https://doi.org/10.3390/su151411431
Chicago/Turabian StyleCarrasco-Chilón, William Leoncio, Wuesley Yusmein Alvarez-García, Marieta E. Cervantes Peralta, Carlos Quilcate, and Hector V. Vásquez. 2023. "Rye Production under Acid Soils and Drought Conditions: An Alternative for the Sustainability of High Andean Livestock Farming in Peru" Sustainability 15, no. 14: 11431. https://doi.org/10.3390/su151411431
APA StyleCarrasco-Chilón, W. L., Alvarez-García, W. Y., Cervantes Peralta, M. E., Quilcate, C., & Vásquez, H. V. (2023). Rye Production under Acid Soils and Drought Conditions: An Alternative for the Sustainability of High Andean Livestock Farming in Peru. Sustainability, 15(14), 11431. https://doi.org/10.3390/su151411431