Decision-Making Approach in Sustainability Assessment in Steel Manufacturing Companies—Systematic Literature Review
Abstract
:1. Introduction
- What lines of research dominate the publications dealing with the sustainability assessment of steel-manufacturing enterprises?
- Are there any links between these research areas and how they are collaborating?
2. Literature Review
2.1. Steel Production
2.2. Manufacturing
2.3. Environmental Impact
3. Materials and Methods
4. Results
4.1. Identification of Publications Referring to the Scope of Research Analyzed in the Work
4.2. Results of the Analysis of the Co-Occurrence of Keywords in the Identified Publications
- Cluster 1: energy efficiency, impact, life cycle assessment (LCA), management, performance, selection, and steel industry.
- Cluster 2: design, optimization, prediction, steel, sustainable manufacturing, system(s),
- Cluster 3: AHP, decision-making, energy, environment, framework, model, TOPSIS,
- Cluster 4; Life cycle assessment (LCA), methodology, sustainability.
- Evaluate the sustainability performance of steel industries from 2003 until 2006 [52]. An integrated D-MARCOS method for supplier selection in the steel industry. Decision Making: Applications in Management and Engineering, 3(2), 49–69;
- Achieve a sustainable supplier selection [54]. Sustainable supplier selection in the retail industry: A TOPSIS-and ANFIS-based evaluating methodology. International journal of engineering business management, 12, 1847979019899542;
- Provide an analysis of the alternatives for smart and sustainable machining processes to provide visibility and clarity on the factors that can affect production performance [8]. Data-Driven, Multi-Criteria Decision-Making for Smart and Sustainable Machining. In ASME International Mechanical Engineering Congress and Exposition (Vol. 85567, p. V02BT02A064). American Society of Mechanical Engineers;
- Identify the criteria for selecting green building materials (GBMs) and assess their sustainability [55]. A decision-making model for supporting the selection of green building materials. International Journal of Construction Management, 1–12;
- Investigate the viable impacts of screw manufacturing and choose the suitable material and selected manufacturing process of the screw by considering environmental aspects [9]. Decision Making of Screw Manufacturing for the Best Environmental and Economic Combination by Using AHP. In Applied Mechanics and Materials (Vol. 465, pp. 1065–1069). Trans Tech Publications Ltd. (Stafa-Zurich, Switzerland);
- Help designers and manufacturers make the best choices regarding the material they use in production [56]. AHP-MARCOS, a hybrid model for selecting gears and cutting fluids. Materials Today: Proceedings, 52, 1397–1405.
4.3. The Results of Identifying Relationships Connecting Key Research Threads
5. Discussion
6. Conclusions
6.1. Limitation of Research
6.2. Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malek, J.; Desai, T.N. A systematic literature review to map literature focus of sustainable manufacturing. J. Clean. Prod. 2020, 256, 120345. [Google Scholar]
- Rieger, J.; Colla, V.; Matino, I.; Branca, T.; Stubbe, G.; Panizza, A.; Brondi, C.; Falsafi, M.; Hage, J.; Wang, X.; et al. Residue valorization in the iron and steel industries: Sustainable solutions for a cleaner and more competitive future Europe. Metals 2021, 11, 1202. [Google Scholar]
- Panasiyk, D.; Laratte, B.; Remy, S. Steel stock analysis in Europe from 1945 to 2013. Procedia CIRP 2016, 48, 348–351. [Google Scholar]
- Kitamura, Y.; Karkour, S.; Ichisugi, Y.; Itsubo, N. Evaluation of the Economic, Environmental, and Social Impacts of the COVID-19 Pandemic on the Japanese Tourism Industry. Sustainability 2020, 12, 10302. [Google Scholar]
- Neef, C.; Hirzel, S.; Arens, M. Industry 4.0 in the European Iron and Steel Industry: Towards an Overview of Implementations and Perspectives; Fraunhofer Institute for Systems and Innovation Research ISI: Karlsruhe, Germany, 2018. [Google Scholar]
- Arens, M. Policy support for and R&D activities on digitising the European steel industry. Resour. Conserv. Recycl. 2019, 143, 244–250. [Google Scholar]
- Gu, W.; Wang, C.; Dai, S.; Wei, L.; Chiang, I.R. Optimal strategies for reverse logistics network construction: A multi-criteria decision method for Chinese iron and steel industry. Res. Policy 2021, 74, 101353. [Google Scholar]
- Bhatia, P.; Liu, Y.; Nagaraj, S.; Achanta, V.; Pulaparthi, B.; Diaz-Elsayed, N. Data-Driven Multi-Criteria Decision-Making for Smart and Sustainable Machining. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual, 1–5 November 2021; American Society of Mechanical Engineers: New York, NY, USA; Volume 85567, p. V02BT02A064. [Google Scholar]
- Azlan, M.A.; Buja, A.A.; Kiong, S.C.; Nor, N.H.M.; Azlis-Sani, J. Decision Making of Screw Manufacturing for the Best Environmental and Economic Combination by Using AHP. Appl. Mech. Mater. 2013, 465–466, 1065–1069. [Google Scholar] [CrossRef] [Green Version]
- Mohammadreza, A.; Daroonparvar, M.; Meysam, K.; Daroonparvar, D. Assessment of Performance Sustainability in Iron and Steel Industries based on Using Fuzzy Hierarchical Decision Making. In Proceedings of the International Conference on Management (Icm 2011), Penang, Malaysia, 13–14 June 2011. [Google Scholar]
- Cardoso, G.F.; Souza, G.S.; Carvalho, L.F.; de Sousa Ribeiro, K.C. Stochastic analysis of a steel firm. Rev. Cienc. Adm. 2018, 24. [Google Scholar]
- Choi, Y.; Yu, Y.; Lee, H.S. A study on the sustainable performance of the steel industry in Korea based on SBM-DEA. Sustainability 2018, 10, 173. [Google Scholar]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. Development of composite sustainability performance index for steel industry. Ecol. Indic. 2007, 7, 565–588. [Google Scholar]
- Sutherland, J.W.; Haapala, K.R. Optimization of steel production to improve lifecycle environmental performance. Cirp Ann.-Manuf. Technol. 2007, 56, 5–8. [Google Scholar] [CrossRef]
- Zhang, H.; Haapala, K.R. Integrating sustainable manufacturing assessment into decision making for a production work cell. J. Clean. Prod. 2015, 105, 52–63. [Google Scholar] [CrossRef]
- Cuadrado, J.; Blanco, J.M.; Orbe, A.; Larrauri, M.; García, H.; Marcos, I. Learning to Make Sustainable Decisions in Construction Engineering; Index of Environmental Sensitivity in the Design of Structures. In Proceedings of the 7th International Conference on Education and New Learning Technologies, Barcelona, Spain, 6–8 July 2015; pp. 3485–3493. [Google Scholar]
- Ivanov, V.; Botko, F.; Kolos, V.; Pavlenko, I.; Hatala, M.; Antosz, K.; Trojanowska, J. Locating Chart Choice Based on the Decision-Making Approach. Materials 2022, 15, 3557. [Google Scholar] [CrossRef]
- Liu, Y.N.; Wu, H.H. An Inner Dependence Analysis Dynamic Decision-Making Framework. Sustainability 2022, 14, 5968. [Google Scholar] [CrossRef]
- Lenzi, F.; Campana, G.; Lopatriello, A.; Mele, M.; Zanotti, A. About the Use of mineral and vegetable Oils to improve the Sustainability of Steel Quenching. Procedia Manuf. 2019, 33, 701–708. [Google Scholar] [CrossRef]
- Vafadarnikjoo, A.; Scherz, M. A hybrid neutrosophic-grey analytic hierarchy process method: Decision-making modelling in uncertain environments. Math. Probl. Eng. 2021, 2021, 1239505. [Google Scholar] [CrossRef]
- Lenort, R.; Staš, D.; Wicher, P.; Holman, D.; Ignatowicz, K. Comparative study of sustainable key performance indicators in metallurgical industry. Rocz. Ochr. Sr. 2017, 19, 36–51. [Google Scholar]
- Kianian, B.; Daly, E.; Andersson, C. Towards guidelines for selection of production performance indicators to measure sustainability performance. Procedia Manuf. 2018, 25, 570–577. [Google Scholar] [CrossRef]
- Bordin, F.M.; Linke, B.S.; Fredel, M.C.; Weingaertner, W.L. Grinding sustainability analysis using a fatigue failure-related product life indicator. CIRP J. Manuf. Sci. Technol. 2022, 38, 1–15. [Google Scholar] [CrossRef]
- Goyal, S.; Routroy, S.; Singhal, A. Analyzing environment sustainability enablers using fuzzy DEMATEL for an Indian steel manufacturing company. J. Eng. Des. Technol. 2019, 17, 300–329. [Google Scholar] [CrossRef]
- Xu, F.; Cui, F.; Xiang, N. Roadmap of green transformation for a steel-manufacturing intensive city in China driven by air pollution control. J. Clean. Prod. 2021, 283, 124643. [Google Scholar] [CrossRef]
- Quader, M.A.; Ahmed, S.; Dawal, S.Z.; Nukman, Y. Present needs, recent progress, and future trends of energy-efficient Ultra-Low Carbon Dioxide (CO2) Steelmaking (ULCOS) program. Renew. Sustain. Energy Rev. 2016, 55, 537–549. [Google Scholar] [CrossRef]
- Godlewska-Majkowska, H.; Komor, A. Regionalne grupy strategiczne jako instrument analizy lokalizacji przedsiębiorstw na przykładzie przemysłu motoryzacyjnego. Eur. Reg. 2014, 20, 127–147. [Google Scholar]
- Ozesmi, U.; Tan, C.O. Cognitive maps of complex systems show hierarchical structure and scale-free properties. arXiv 2006, arXiv:q-bio/0612030. [Google Scholar]
- Bueno, S.; Salmeron, J.L. Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst. Appl. 2009, 36, 5221–5229. [Google Scholar] [CrossRef]
- Papageorgiou, L.G. Supply chain optimisation for the process industries: Advances and opportunities. Comput. Chem. Eng. 2009, 33, 1931–1938. [Google Scholar] [CrossRef]
- Taber, R. Knowledge processing with fuzzy cognitive maps. Expert Syst. Appl. 1991, 2, 83–87. [Google Scholar] [CrossRef]
- Wei, W.; Ma, G.H.; Hu, G.; Yu, D.; Mcleish, T.; Su, Z.G.; Shen, Z.Y. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J. Am. Chem. Soc. 2008, 130, 15808–15810. [Google Scholar] [CrossRef]
- Andreou, A.S.; Mateou, N.H.; Zombanakis, G.A. Evolutionary fuzzy cognitive maps: A hybrid system for crisis management and political decision making. In Proceedings of the Conference Proceedings on Computational Intelligence for Modelling Control and Automation, Vienna, Austria, 14 February 2003. [Google Scholar]
- Isaac, M.; Van Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- Song, C.; Qu, Z.; Blumm, N.; Barabási, A.L. Limits of predictability in human mobility. Science 2010, 327, 1018–1021. [Google Scholar] [CrossRef] [Green Version]
- Furfaro, R.; Kargel, J.S.; Lunine, J.I.; Fink, W.; Bishop, M.P. Identification of cryovolcanism on Titan using fuzzy cognitive maps. Planet. Space Sci. 2010, 58, 761–779. [Google Scholar] [CrossRef]
- Kannappan, A.; Tamilarasi, A.; Papageorgiou, E.I. Analyzing the performance of fuzzy cognitive maps with non-linear hebbian learning algorithm in predicting autistic disorder. Expert Syst. Appl. 2011, 38, 1282–1292. [Google Scholar] [CrossRef]
- Ziolo, M.; Filipiak, B.Z.; Bąk, I.; Cheba, K. How to design more sustainable financial systems: The roles of environmental, social, and governance factors in the decision-making process. Sustainability 2019, 11, 5604. [Google Scholar] [CrossRef] [Green Version]
- Özesmi, U.; Özesmi, S.L. Ecological models based on people’s knowledge: A multi-step fuzzy cognitive mapping approach. Ecol. Model. 2004, 176, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Hage, P.; Harary, F. Arapesh sexual symbolism, primitive thought, and Boolean groups. L’Homme 1983, 23, 57–77. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Koh, S.C.L.; Reaney, I.M.; Acquaye, A.; Schileo, G.; Mustapha, K.B.; Greenough, R. Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sustain. Energy Rev. 2017, 80, 1321–1344. [Google Scholar] [CrossRef]
- Chaabane, A.; Ramudhin, A.; Paquet, M. Designing supply chains with sustainability considerations. Prod. Plan. Control 2011, 22, 727–741. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, W.; Chen, X.; Zeng, H. MFCA extension from a circular economy perspective: Model modifications and case study. J. Clean. Prod. 2017, 149, 110–125. [Google Scholar] [CrossRef]
- Dubreuil, A.; Young, S.B.; Atherton, J.; Gloria, T.P. Metals recycling maps and allocation procedures in life cycle assessment. Int. J. Life Cycle Assess. 2010, 15, 621–634. [Google Scholar] [CrossRef]
- Khan, A.M.; Jamil, M.; Salonitis, K.; Sarfraz, S.; Zhao, W.; He, N.; Mia, M.; Zhao, G. Multi-objective optimization of energy consumption and surface quality in nanofluid SQCL assisted face milling. Energies 2019, 12, 710. [Google Scholar] [CrossRef] [Green Version]
- Lake, A.; Acquaye, A.; Genovese, A.; Kumar, N.; Koh, S.C.L. An application of hybrid life cycle assessment as a decision support framework for green supply chains. Int. J. Prod. Res. 2015, 53, 6495–6521. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Karoumi, R. Life cycle assessment of a railway bridge: Comparison of two superstructure designs. Struct. Infrastruct. Eng. 2013, 9, 1149–1160. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. LCA for assessing environmental benefit of eco-design strategies and forest wood short supply chain: A furniture case study. Int. J. Life Cycle Assess. 2014, 19, 1536–1550. [Google Scholar] [CrossRef]
- Jia, R.; Liu, Y.; Bai, X. Sustainable supplier selection and order allocation: Distributionally robust goal programming model and tractable approximation. Comput. Ind. Eng. 2020, 140, 106267. [Google Scholar] [CrossRef]
- de FSM Russo, R.; Camanho, R. Criteria in AHP: A systematic review of literature. Procedia Comput. Sci. 2015, 55, 1123–1132. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.J.; Liu, T.Y.; Hwang, C.L. Topsis for MODM. Eur. J. Oper. Res. 1994, 76, 486–500. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chattopadhyay, R.; Chakraborty, S. An integrated D-MARCOS method for supplier selection in an iron and steel industry. Decis. Mak. Appl. Manag. Eng. 2020, 3, 49–69. [Google Scholar]
- Wang, C.N.; Nguyen, T.L.; Dang, T.T. Two-Stage Fuzzy MCDM for Green Supplier Selection in Steel Industry. Intell. Autom. Soft Comput. 2022, 33, 1245–1260. [Google Scholar] [CrossRef]
- Okwu, M.O.; Tartibu, L.K. Sustainable supplier selection in the retail industry: A TOPSIS-and ANFIS-based evaluating methodology. Int. J. Eng. Bus. Manag. 2020, 12, 1847979019899542. [Google Scholar] [CrossRef]
- Al-Atesh, E.A.; Rahmawati, Y.; Zawawi, N.A.W.A.; Utomo, C. A decision-making model for supporting selection of green building materials. Int. J. Constr. Manag. 2021, 23, 922–933. [Google Scholar] [CrossRef]
- Varghese, B.; Karande, P. AHP-MARCOS, a hybrid model for selecting gears and cutting fluids. Mater. Today Proc. 2022, 52, 1397–1405. [Google Scholar] [CrossRef]
- Malaga, A.K.; Agrawal, R.; Wankhede, V.A. Material selection for metal additive manufacturing process. Mater. Today Proc. 2022, 66, 1744–1749. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mitra, A. A hybrid multi-criteria decision-making model for optimal coal blending. J. Model. Manag. 2019, 14, 339–359. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, J. Planning the competitive city-region: The emergence of strategic development plan in China. Urban Aff. Rev. 2007, 42, 714–740. [Google Scholar]
- Mohammed, A.; Yazdani, M.; Oukil, A.; Santibanez Gonzalez, E.D.R. A Hybrid MCDM Approach towards Resilient Sourcing. Sustainability 2021, 13, 2695. [Google Scholar] [CrossRef]
- Pourmehdi, M.; Paydar, M.M.; Asadi-Gangraj, E. Reaching sustainability through collection center selection considering risk: Using the integration of Fuzzy ANP-TOPSIS and FMEA. Soft Comput. 2021, 25, 10885–10899. [Google Scholar] [CrossRef]
- Ghosh, S.; Mandal, M.C.; Ray, A. Green supply chain management framework for supplier selection: An integrated multi-criteria decision-making approach. Int. J. Manag. Sci. Eng. Manag. 2021, 17, 205–219. [Google Scholar] [CrossRef]
- Nguyen, T.-L.; Nguyen, P.-H.; Pham, H.-A.; Nguyen, T.-G.; Nguyen, D.-T.; Tran, T.-H.; Le, H.-C.; Phung, H.-T. A Novel Integrating Data Envelopment Analysis and Spherical Fuzzy MCDM Approach for Sustainable Supplier Selection in Steel Industry. Mathematics 2022, 10, 1897. [Google Scholar] [CrossRef]
- Bianchi, P.F.; Yepes, V.; Vitorio, P.C.; Kripka, M. Study of Alternatives for the Design of Sustainable Low-Income Housing in Brazil. Sustainability 2021, 13, 4757. [Google Scholar] [CrossRef]
- Jelodari, E.; Medini, K.; Delorme, X. Sustainable Multi-period Production with Core and Adjacent Product Portfolio. In Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action. APMS 2022. IFIP Advances in Information and Communication Technology; Kim, D.Y., von Cieminski, G., Romero, D., Eds.; Springer: Cham, Switzerland, 2022; Volume 664. [Google Scholar] [CrossRef]
- Pellegrini, M.; Roda, M.; Lupardi, E.; Di Geronimo, N.; Giannaccare, G.; Schiavi, C. The impact of COVID-19 pandemic on ophthalmological emergency department visits. Acta Ophthalmol. 2020, 98, e1058. [Google Scholar] [CrossRef]
- Shah, K.; Khurshid, H.; Haq, I.; Shah, S.; Ali, Z. Forecasting Machine Failure Using DMG and Weibull Analysis in an Automotive Industry: A Case Study. Mehran Univ. Res. J. Eng. Technol. 2021, 40, 435–442. [Google Scholar] [CrossRef]
- De Miranda Lammoglia, J.A.; Brandalise, N.; Hernandez, C.T. Analytical hierarchy process-boor applied for the best lean project selection for production lines. Indep. J. Manag. Prod. 2020, 11, 054–064. [Google Scholar] [CrossRef]
- Arslankaya, S.; Çelik, M.T. Green supplier selection in steel door industry using fuzzy AHP and fuzzy Moora methods. Emerg. Mater. Res. 2021, 10, 357–369. [Google Scholar] [CrossRef]
- Prado-Galinanes, H.J.; Domingo, R. Quantifying the impact of production globalization through application of the Life Cycle Inventory methodology and its influence on decision making in industry. Processes 2021, 9, 1271. [Google Scholar] [CrossRef]
Searching Method | Keyword | Number of Publications |
---|---|---|
1 | (steel AND (companie* OR firm* OR manufact*) AND sustainab* AND model*) | 774 |
2 | (steel AND (companie* OR firm* OR manufact*) AND sustainab* AND decision*) | 193 |
3 | (steel AND (companie* OR firm* OR manufact*) AND sustainab* AND decision* AND model*) | 92 |
4 | (steel AND (companie* OR firm* OR manufact*) AND (MCDA OR multicriteria)) | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Depczyński, R.; Secka, J.; Cheba, K.; D’Alessandro, C.; Szopik-Depczyńska, K. Decision-Making Approach in Sustainability Assessment in Steel Manufacturing Companies—Systematic Literature Review. Sustainability 2023, 15, 11614. https://doi.org/10.3390/su151511614
Depczyński R, Secka J, Cheba K, D’Alessandro C, Szopik-Depczyńska K. Decision-Making Approach in Sustainability Assessment in Steel Manufacturing Companies—Systematic Literature Review. Sustainability. 2023; 15(15):11614. https://doi.org/10.3390/su151511614
Chicago/Turabian StyleDepczyński, Radosław, Jim Secka, Katarzyna Cheba, Carlotta D’Alessandro, and Katarzyna Szopik-Depczyńska. 2023. "Decision-Making Approach in Sustainability Assessment in Steel Manufacturing Companies—Systematic Literature Review" Sustainability 15, no. 15: 11614. https://doi.org/10.3390/su151511614
APA StyleDepczyński, R., Secka, J., Cheba, K., D’Alessandro, C., & Szopik-Depczyńska, K. (2023). Decision-Making Approach in Sustainability Assessment in Steel Manufacturing Companies—Systematic Literature Review. Sustainability, 15(15), 11614. https://doi.org/10.3390/su151511614