Mint Plants (Mentha) as a Promising Source of Biologically Active Substances to Combat Hidden Hunger
Abstract
:1. Introduction
- Biological activity of plant metabolites
- Selecting Ukrainian raw plant material for food enhancement
- Value of mint as an aromatic and medicinal plant
- The research goal
- -
- To screen the local phyto-raw plants as a source of biologically active substances to be used in food recipes;
- -
- To analyze the content of biologically active substances in the samples of the mint of the most common species and its modification depending on the method of processing;
- -
- To justify the choice of the species of mint and the method of their processing to maximize the quality of the finished product.
2. Materials and Methods
2.1. Materials
2.2. Determination of Dry Matter and Total Sugar Content
2.3. Determination of the Mass Fraction of Titrated Acidity
2.4. Determination of Chlorophylls and Carotenoids
2.5. Determination of the Total Phenolic Content
2.6. Determination of Ascorbic Acid Content
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Priss, O.; Pugachov, M.; Pugachov, V.; Yaremko, I.; Shchabelska, V. The Development of the World Economy and the Impact of the Global Food Crisis 2022–2023. Econ. Aff. 2023, 68, 35–42. [Google Scholar] [CrossRef]
- Gödecke, T.; Stein, A.J.; Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Secur. 2018, 17, 21–29. [Google Scholar] [CrossRef]
- Pandey, A.K.; Dubey, R.K.; Singh, V.; Vida, E. Addressing the problem of micronutrient malnutrition in Neh region-underutilized vegetables as a source of food. Int. J. Food Nutr. Sci. 2014, 3, 77–83. [Google Scholar]
- Hsu, C.Y.; Chao, P.Y.; Hu, S.P.; Yang, C.M. The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food Nutr. Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Solymosi, K.; Mysliwa-Kurdziel, B. Chlorophylls and their derivatives used in food industry and medicine. Mini Rev. Med. Chem. 2017, 17, 1194–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.J.; Lowe, G.L. Carotenoids—Antioxidant properties. Antioxidants 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegel, H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef]
- Nadarajah, K.K. ROS homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci. 2020, 21, 5208. [Google Scholar] [CrossRef]
- Papalia, T.; Barreca, D.; Calderaro, A.; Panuccio, M.R. Phytonutrients: Structure-function relationship, health benefits, stability, and fate during processing. In Phytonutrients in Food; Woodhead Publishing: Cambridge, UK, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Koch, W. Dietary Polyphenols—Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef] [Green Version]
- Gupta, C.; Prakash, D. Phytonutrients as therapeutic agents. J. Complement. Integr. Med. 2014, 11, 151–169. [Google Scholar] [CrossRef]
- Rajendran, A.; Sudeshraj, R.; Sureshkumar, S. Phytonutrients: Stress and relaxation dietary health food supplements. Pharma Innov. J. 2019, 8, 799–802. [Google Scholar]
- Abuajah, C.I.; Ogbonna, A.C.; Osuji, C.M. Functional components and medicinal properties of food: A review. J. Food Sci. Technol. 2015, 52, 2522–2529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashidov, N.; Chowaniak, M.; Niemiec, M.; Mamurovich, G.S.; Gufronovich, M.J.; Gródek-Szostak, Z.; Szelag-Sikora, A.; Sikora, J.; Kubon, M.; Komorowska, M. Assessment of the Multiannual Impact of the Grape Training System on GHG Emissions in North Tajikistan. Energies 2021, 14, 6160. [Google Scholar] [CrossRef]
- Appiani, M.; Rabitti, N.S.; Proserpio, C.; Pagliarini, E.; Laureati, M. Tartary Buckwheat: A New Plant-Based Ingredient to Enrich Corn-Based Gluten-Free Formulations. Foods 2021, 10, 2613. [Google Scholar] [CrossRef]
- Jain, S.; Buttar, H.S.; Chintameneni, M.; Kaur, G. Prevention of cardiovascular diseases with anti-inflammatory and anti-oxidant nutraceuticals and herbal products: An overview of pre-clinical and clinical studies. Recent Pat. Inflamm. Allergy Drug Discov. 2018, 12, 145–157. [Google Scholar] [CrossRef]
- Chakrabartty, I.; Mohanta, Y.K.; Nongbet, A.; Mohanta, T.K.; Mahanta, S.; Das, N.; Saravanan, M.; Sharma, N. Exploration of Lamiaceae in Cardio Vascular Diseases and Functional Foods: Medicine as Food and Food as Medicine. Front. Pharmacol. 2022, 13, 894814. [Google Scholar] [CrossRef]
- Michel, J.; Abd Rani, N.Z.; Husain, K. A Review on the Potential Use of Medicinal Plants From Asteraceae and Lamiaceae Plant Family in Cardiovascular Diseases. Front. Pharmacol. 2020, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Korablova, O. Aromatic plants for food industry in the collections of National Botanical Garden of NAS of Ukraine. In Proceedings of the Fifth Conference on Medicinal and Aromatic Plants of Southeast European Countries, (5th CMAPSEEC), Brno, Czech Republic, 2–5 September 2008; Mendel University of Agriculture and Forestry in Brno: Brno, Czech Republic, 2008. [Google Scholar]
- Kotyuk, L.A. Biological and Ecological Foundations of Aromatic Plants Introduction from the Lamiaceae Lindl Family in Central Polissya of Ukraine. Ph.D. Thesis, Gryshko National Botanical Garden of the National Academy of Sciences of Ukraine, Kyiv, Ukraine, 2019. [Google Scholar]
- Lutsiak, V.; Hutsol, T.; Kovalenko, N.; Kwaśniewski, D.; Kowalczyk, Z.; Belei, S.; Marusei, T. Enterprise Activity Modeling in Walnut Sector in Ukraine. Sustainability 2021, 13, 13027. [Google Scholar] [CrossRef]
- Osokina, N.; Kostetska, K.; Gerasymchuk, O.; Voziian, V.; Telezhenko, L.; Priss, O.; Zhukova, V.; Verholantseva, V.; Palyanichka, N.; Stepanenko, D. Substantion of the use of spice plants for enrichment of wheat bread. East. Eur. J. Enterp. Technol. 2017, 4, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Venkateshappa, S.M.; Streenath, K.P. Potential medicinal plants of Lamiaceae. Am. Int. J. Res. Form. Appl. Nat. Sci. 2013, 3, 82–87. [Google Scholar]
- Dhanjal, D.S.; Bhardwaj, S.; Sharma, R.; Bhardwaj, K.; Kumar, D.; Chopra, C.; Nepovimova, E.; Singh, R.; Kuca, K. Plant Fortification of the Diet for Anti-Ageing Effects: A Review. Nutrients 2020, 12, 3008. [Google Scholar] [CrossRef] [PubMed]
- Vozhehova, R.A.; Lykhovyd, P.V.; Biliaieva, I.M.; Boitseniuk, K.I. Varietal composition of aromatic crops suitable for cultivation in the South of Ukraine. Agrar. Innov. 2021, 9, 57–60. [Google Scholar]
- Mykhailov, Y.; Zadosna, N.; Ihnatiev, Y.; Kutsenko, A.; Hutsol, T.; Grotkiewicz, K.; Firman, Y.; Horetska, I. Practical Potential of Grain Impurities in the Processing of Sunflower Oil Raw Materials in the Oil and Fat Industry. Agric. Eng. 2022, 26, 13–23. [Google Scholar] [CrossRef]
- Burdina, I.; Priss, O. Effect of the substrate composition on yield and quality of basil (Ocimum basilicum L.). J. Hortic. Res. 2016, 24, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Hematian Sourki, A.; Ghani, A.; Kiani, F.; Alipour, A. Phytochemical profiles of lemon verbena (Lippia citriodora HBK) and its potential application to cookie enrichment. Food Sci. Nutr. 2021, 9, 3100–3113. [Google Scholar] [CrossRef]
- Priss, O.; Korotka, I.; Simakhina, G.; Koliadenco, V.; Kolisnychenko, T. Effect of seed sowing period on antioxidant protection of basil (Ocimum basilicum L.) under greenhouse conditions. In Modern Development Paths of Agricultural Production; Nadykto, V., Ed.; Springer: Cham, Switzerland, 2019; Volume 1, pp. 769–775. [Google Scholar] [CrossRef]
- Boukhebti, H.; Nadjib Chaker, A.; Belhadj, H.; Sahli, F.; Ramdhani, M.; Laouer, H.; Harzallah, D. Chemical composition and antibacterial activity of Mentha pulegium L. and Mentha spicata L. essential oils. Der Pharm. Lett. 2011, 3, 267–275. [Google Scholar]
- Moldovan, R.I.; Oprean, R.; Benedec, D.; Hanganu, D.; Duma, M.; Oniga, I.; Vlase, L. LC-MS analysis, antioxidant and antimicrobial activities for five species of Mentha cultivated in Romania. Dig. J. Nanomater. Biostructures 2014, 9, 559–566. [Google Scholar]
- Ahmad, I.; Ahmad, M.S.A.; Ashraf, M.; Hussain, M.; Ashraf, M.Y. Seasonal variation in some medicinal and biochemical ingredients in Mentha longifolia (L.) Huds. Pak. J. Bot. 2011, 43, 69–77. [Google Scholar]
- Hadi, M.Y.; Hameed, I.H.; Ibraheam, I.A. Mentha pulegium: Medicinal uses, anti-hepatic, antibacterial, antioxidant effect and analysis of bioactive natural compounds: A review. Res. J. Pharm. Technol. 2017, 10, 3580–3584. [Google Scholar] [CrossRef]
- Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D. Chemical Composition and Biological Activities of Mentha Species. Aromat. Med. Plants—Back Nat. 2017, 10, 47–79. [Google Scholar] [CrossRef] [Green Version]
- Zubko, V.; Sirenko, V.; Kuzina, T.; Onychko, V.; Sokolik, S.; Roubik, H.; Koszel, M.; Shchur, T. Modelling Wheat Grain Flow During Sowing Based on the Model of Grain with Shifted Center of Gravity. Agric. Eng. 2022, 26, 25–37. [Google Scholar] [CrossRef]
- Trevisan, S.C.C.; Menezes, A.P.P.; Barbalho, S.M.; Guiguer, É.L. Properties of mentha piperita: A brief review. World J. Pharm. Med. Res. 2017, 3, 309–313. [Google Scholar]
- Shah, P.P.; Mello, P.M.D. A review of medicinal uses and pharmacological effects of Mentha piperita. Nat. Prod. Radiance 2004, 3, 214–221. [Google Scholar]
- Naidu, J.R.; Ismail, R.B.; Yeng, C.; Sasidharan, S.; Kumar, P. Chemical composition and antioxidant activity of the crude methanolic extracts of Mentha spicata. Phytology 2012, 4, 13–18. [Google Scholar]
- Al-Tawaha, A.; Al-Karaki, G.; Massadeh, A. Comparative response of essential oil composition, antioxidant activity and phenolic contents spearmint (Mentha spicata L.) under protected soilless vs. open field conditions. Adv. Environ. Biol. 2013, 7, 902–910. [Google Scholar]
- Fialová, S.; Tekeľová, D.; Mrlianová, M.; Grančai, D. The determination of phenolics compounds and antioxidant activity of Mints and Balms cultivated in Slovakia. Acta Fac. Pharm. Univ. Comen. 2008, 55, 96–102. [Google Scholar]
- Gökbulut, A.; Şarer, E. Simultaneous determination of phenolic compounds in Mentha spicata L. subsp. spicata by RP-HPLC. Turk. J. Pharm. Sci. 2010, 7, 249–254. [Google Scholar]
- Tahira, R.; Naeemullah, M.; Akbar, F.; Masood, M.S. Major phenolic acids of local and exotic mint germplasm grown in Islamabad. Pak. J. Bot. 2011, 43, 151–154. [Google Scholar]
- Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; van Griensven, L.J.L.D. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef] [Green Version]
- Ilboudo, O.; Bonzi, S.; Tapsoba, I.; Somda, I.; Bonzi-Coulibaly, Y.L. In vitro antifungal activity of flavonoid diglycosides of Mentha piperita and their oxime derivatives against two cereals fungi. Comptes Rendus Chim. 2016, 19, 857–862. [Google Scholar] [CrossRef]
- Sandasi, M.; Leonard, C.; Van Vuuren, S.; Viljoen, A. Peppermint (Mentha piperita) inhibits microbial biofilms in vitro. S. Afr. J. Bot. 2011, 77, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Bayoub, K.; Baibai, T.; Mountassif, D.; Retmane, A.; Soukri, A. Antibacterial activities of the crude ethanol extracts of medicinal plants against listeria monocytogenes and some other pathogenic strains. Afr. J. Biotechnol. 2010, 9, 4251–4258. [Google Scholar]
- de Sousa Barros, A.; de Morais, S.M.; Ferreira, P.A.T.; Vieira, Í.G.P.; Craveiro, A.A.; dos Santos Fontenelle, R.O.; Alencar de Menezes, J.E.S.; Ferreira da Silva, F.W.; de Sousa, H.A. Chemical composition and functional properties of essential oils from Mentha species. Ind. Crops Prod. 2015, 76, 557–564. [Google Scholar] [CrossRef]
- Mimica-Dukić, N.; Božin, B.; Soković, M.; Mihajlović, B.; Matavulj, M. Antimicrobial and Antioxidant Activities of ThreeMenthaSpecies Essential Oils. Planta Medica 2003, 69, 413–419. [Google Scholar] [CrossRef]
- Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 2021, 26, 1118. [Google Scholar] [CrossRef] [PubMed]
- Kovanda, L.; Zhang, W.; Wei, X.; Luo, J.; Wu, X.; Atwill, E.R.; Vaessen, S.; Li, X.; Liu, Y. In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria. Molecules 2019, 24, 3770. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Singla, N.; Singh, A. Effect of Vacuum Drying on Nutrient Retention of Some Commonly Consumed Herbs. Stud. Ethno Med. 2019, 13, 62–70. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Jadczak, D. Estimation of biological value and suitability for freezing of some species of spice herbs. J. Elem. 2008, 13, 211–220. [Google Scholar]
- Wilson, M.D.; Wang, B.; Huynh, N.K. Shelf-life extension of fresh basil, coriander, mint and parsley. Acta Hortic. 2019, 1245, 139–143. [Google Scholar] [CrossRef]
- Ayanoglu, F.; Arslan, M.; Hatay, A. Effects of harvesting stages, harvesting hours and drying methods on essential oil. Int. J. Bot. 2005, 1, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Kaya, D.A.; Arslan, M.; Rusu, L.C. Effects of harvesting hour on essential oil content and composition of Thymus vulgaris. Farmacia 2013, 61, 1194–1203. [Google Scholar]
- Serdyuk, M.E.; Priss, O.P.; Gaprindashvili, N.A.; Zdorovtseva, L.M.; Sukharenko, O.I.; Ivanova, I.E. Research workshop. Part 1. In Research Methods of Fruit and Berry Products; Lux Publishing and Printing Center: Melitopol, Ukraine, 2020; 370p. [Google Scholar]
- Naichenko, V.M. Practicum on Technology of Storage and Processing of Fruits and Vegetables; FADA Ltd.: Kyiv, Ukraine, 2001; 211p. [Google Scholar]
- Musiyenko, M.M.; Parshykova, T.V.; Slavnyi, P.S. Spectrophotometric Methods in Physiology, Bio-Chemistry and Ecology of Plants; Fitosociocenter: Kyiv, Ukraine, 2001; 200p. [Google Scholar]
- Tomsone, L.; Kruma, Z.; Lepse, L. Influence of genotype and harvest time on the phenolic content of horseradish (Armoracia rusticana L.) roots. In Research for Rural Development 2012: Annual 18th International Scientific Conference Proceedings; Latvia University of Agriculture: Jelgava, Latvia, 2012; pp. 124–130. [Google Scholar]
- Biondi, F.; Balducci, F.; Capocasa, F.; Visciglio, M.; Mei, E.; Vagnoni, M.; Mezzetti, B.; Mazzoni, L. Environmental conditions and agronomical factors influencing the levels of phytochemicals in Brassica vegetables responsible for nutritional and sensorial properties. Appl. Sci. 2021, 11, 1927. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Eldin, S.M.; Ali, B.; Bawazeer, S.; Usman, M.; Iqbal, R.; Neupane, D.; Ullah, A.; Khan, A.; et al. Biochar-Soil-Plant interactions: A cross talk for sustainable agriculture under changing climate. Front. Environ. Sci. 2023, 11, 1059449. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Usman, M.; Tariq, W.; Ullah, Z.; Shareef, M.; Iqbal, H.; Waqas, M.; Tariq, A.; Wu, Y.; et al. Biochar induced modifications in soil properties and its impacts on crop growth and production. J. Plant Nutr. 2021, 44, 1677–1691. [Google Scholar] [CrossRef]
- Dambrauskienė, E.; Viškelis, P.; Karklelienė, R. Productivity and biochemical composition of Mentha piperita L. of different origin. Biologija 2008, 54, 105–107. [Google Scholar] [CrossRef]
- Xalxo, R.; Yadu, B.; Chandra, J.; Chandrakar, V.; Keshavkant, S. Alteration in carbohydrate metabolism modulates thermotolerance of plant under heat stress. In Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives; Wani, S.H., Kumar, V., Eds.; Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 77–115. [Google Scholar] [CrossRef]
- Al-Ghezi SS, H.; Obaid, F.I. Effect of adding humic acid and seaweed extract on some vegetative and chemical traits of the peppermint plant (Mentha Pipreta L.). Nat. Volatiles Essent. Oils 2021, 8, 2375–2383. [Google Scholar]
- Grzeszczuk, M.; Jadczak, D. Estimation of biological value of some species of mint (Mentha L.). Herba Pol. 2009, 55, 194–199. [Google Scholar]
- Pott, D.M.; Durán-Soria, S.; Allwood, J.W.; Pont, S.; Gordon, S.L.; Jennings, N.; Austin, C.; Stewart, D.; Brennan, R.M.; Masny, A.; et al. Dissecting the impact of environment, season and genotype on blackcurrant fruit quality traits. Food Chem. 2023, 402, 134360. [Google Scholar] [CrossRef]
- Pop, A.; Muste, S.; Păucean, A.; Chiș, M.S.; Man, S.; Salanță, L.; Romina Marc, G.M.A. Review of the Drying and Storage Effect on Some Aromatic and Medicinal Plants. Hop Med. Plants 2020, 28, 142–149. [Google Scholar]
- Antal, T.; Figiel, A.; Kerekes, B.; Sikolya, L. Effect of drying methods on the quality of the essential oil of spearmint leaves (Mentha spicata L.). Dry. Technol. 2011, 29, 1836–1844. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Cabezudo, M.D. Effect of different drying methods on the volatile components of parsley (Petroselinum crispum L.). Eur. Food Res. Technol. 2002, 215, 227–230. [Google Scholar]
- Orphanides, A.; Goulas, V.; Gekas, V. Drying technologies: Vehicle to high-quality herbs. Food Eng. Rev. 2016, 8, 164–180. [Google Scholar] [CrossRef]
- Diaz-Maroto, M.C.; Perez-Coello, M.S.; Cabezudo, M.D. Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.). J. Agric. Food Chem. 2002, 50, 4520–4534. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Kripanand, S.; Guruguntla, S. Effect of various drying methods on quality and flavor characteristics of mint leaves (Mentha spicata L.). J. Food Pharm. Sci. 2015, 3, 38–45. [Google Scholar]
- Consuelo Diaz-Maroto, M.; Soledad Perez Coello, M.; Gonzalez Vinas, M.A.; Dolores Cabezodo, M. Influence of Drying on the Flavour quality of Spearmint (Mentha spicata L.). J. Agric. Food Chem. 2003, 51, 1265–1269. [Google Scholar] [CrossRef]
- Park, C.H.; Yeo, H.J.; Park, C.; Chung, Y.S.; Park, S.U. The Effect of Different Drying Methods on Primary and Secondary Metabolites in Korean Mint Flower. Agronomy 2021, 11, 698. [Google Scholar] [CrossRef]
- Pellegrini, N.; Chiavavo, E.; Gardana, C.; Mazzeo, T.; Contino, D. Effects of different cooking methods on colour, phytochemical concentration and antioxidant capacity of raw frozen brassica vegetables. J. Agric. Food Chem. 2010, 58, 4310–4321. [Google Scholar] [CrossRef]
- Heozor-Ejiofor, P.A. MMA. Effects of Domestic Freezing Temperature (−20 °C) and Blanching on the Functional Properties and Constituents of Three Common Culinary Herbs of Lamiaceae Family. Ph.D. Thesis, University of Lincoln, Masai, Malaysia, 2020. Available online: https://eprints.lincoln.ac.uk/id/eprint/46815/ (accessed on 30 May 2023).
Species of Mint | Sugars, g × 100 g−1 | Titratable Acidity, mg × 100 g−1 | Ascorbic Acid, mg × 100 g−1 | Carotenoids, mg × 100 g−1 | Chlorophyll (a + b), mg × 100 g−1 | Total Phenolic Content, mg × 100 g−1 | Dry Matter, % |
---|---|---|---|---|---|---|---|
Fresh mint | |||||||
Peppermint | 2.26 ± 0.10 | 0.54 ± 0.010 | 7.63 ± 0.42 | 21.15 ± 0.32 | 120.72 ± 0.78 | 135.03 ± 1.23 | 18.25 ± 0.65 |
Horsemint | 2.02 ± 0.09 | 0.39 ± 0.017 | 11.15 ± 0.55 | 19.68 ± 0.24 | 100.62 ± 0.85 | 122.71 ± 0.86 | 17.20 ± 0.56 |
Silver-leaved horsemint | 1.88 ± 0.12 | 0.45 ± 0.015 | 10.56 ± 0.27 | 16.29 ± 0.26 | 82.10 ± 0.84 | 138.76 ± 1.15 | 16.62 ± 0.43 |
Spearmint | 2.59 ± 0.16 | 0.61 ± 0.011 | 9.39 ± 0.67 | 23.32 ± 0.38 | 148.11 ± 1.01 | 135.04 ± 1.12 | 18.50 ± 0.64 |
LCD05 | 0.27 | 0.03 | 1.12 | 0.06 | 1.56 | 1.53 | 1.02 |
Dried mint | |||||||
Peppermint | 11.07 ± 0.14 | 1.85 ± 0.058 | 11.10 ± 0.56 | 97.30 ± 1.21 | 450.15 ± 1.73 | 227.80 ± 1.54 | 92.32 ± 0.36 |
Horsemint | 10.32 ± 0.08 | 1.64 ± 0.065 | 17.16 ± 0.36 | 89.08 ± 1.17 | 385.60 ± 1.86 | 160.20 ± 1.34 | 91.16 ± 0.54 |
Silver-leaved horsemint | 9.80 ± 0.14 | 1.77 ± 0.069 | 16.82 ± 0.48 | 78.03 ± 1.27 | 280.16 ± 2.01 | 221.92 ± 1.24 | 90.84 ± 0.31 |
Spearmint | 12.69 ± 0.23 | 2.15 ± 0.012 | 13.88 ± 0.45 | 107.6 ± 1.36 | 583.70 ± 2.45 | 202.18 ± 1.36 | 92.98 ± 0.64 |
LCD05 | 0.36 | 0.12 | 0.84 | 2.36 | 4.23 | 2.79 | 1.05 |
Frozen mint | |||||||
Peppermint | 2.13 ± 0.15 | 0.50 ± 0.012 | 7.39 ± 0.21 | 20.71 ± 0.41 | 118.08 ± 1.26 | 123.69 ± 0.94 | 18.24 ± 0.37 |
Horsemint | 1.83 ± 0.12 | 0.32 ± 0.021 | 10.77 ± 0.34 | 19.27 ± 0.32 | 98.06 ± 0.87 | 116.51 ± 1.05 | 17.20 ± 0.51 |
Silver-leaved horsemint | 1.72 ± 0.17 | 0.38 ± 0.010 | 10.12 ± 0.61 | 15.84 ± 0.38 | 79.83 ± 0.56 | 131.69 ± 1.23 | 16.63 ± 0.41 |
Spearmint | 2.34 ± 0.24 | 0.55 ± 0.013 | 8.93 ± 0.43 | 22.76 ± 0.17 | 143.51 ± 0.74 | 126.92 ± 1.17 | 18.50 ± 0.54 |
LCD05 | 0.15 | 0.03 | 0.86 | 0.61 | 0.86 | 1.27 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hutsol, T.; Priss, O.; Kiurcheva, L.; Serdiuk, M.; Panasiewicz, K.; Jakubus, M.; Barabasz, W.; Furyk-Grabowska, K.; Kukharets, M. Mint Plants (Mentha) as a Promising Source of Biologically Active Substances to Combat Hidden Hunger. Sustainability 2023, 15, 11648. https://doi.org/10.3390/su151511648
Hutsol T, Priss O, Kiurcheva L, Serdiuk M, Panasiewicz K, Jakubus M, Barabasz W, Furyk-Grabowska K, Kukharets M. Mint Plants (Mentha) as a Promising Source of Biologically Active Substances to Combat Hidden Hunger. Sustainability. 2023; 15(15):11648. https://doi.org/10.3390/su151511648
Chicago/Turabian StyleHutsol, Taras, Olesia Priss, Liudmyla Kiurcheva, Maryna Serdiuk, Katarzyna Panasiewicz, Monika Jakubus, Wieslaw Barabasz, Karolina Furyk-Grabowska, and Mykola Kukharets. 2023. "Mint Plants (Mentha) as a Promising Source of Biologically Active Substances to Combat Hidden Hunger" Sustainability 15, no. 15: 11648. https://doi.org/10.3390/su151511648
APA StyleHutsol, T., Priss, O., Kiurcheva, L., Serdiuk, M., Panasiewicz, K., Jakubus, M., Barabasz, W., Furyk-Grabowska, K., & Kukharets, M. (2023). Mint Plants (Mentha) as a Promising Source of Biologically Active Substances to Combat Hidden Hunger. Sustainability, 15(15), 11648. https://doi.org/10.3390/su151511648