Spatial Differences and Drivers of Tourism Ecological Security in China’s Border Areas
Abstract
:1. Introduction
2. Review of the Literature
3. Data Sources and Research Methods
3.1. Overview of the Study Area
3.2. Construction of an Evaluation System Based on the DPSIR Model
3.3. Data Sources
3.4. Research Methodology
3.4.1. SBM-DEA Evaluation Model
3.4.2. Pearson’s Correlation Coefficient
3.4.3. Center of Gravity Model
3.4.4. Geodetectors
4. Analysis of the Empirical Results
4.1. The Spatial Evolution of Tourism Ecological Security in Nine Border Provinces
4.2. The Spatial Evolution of Tourism Ecological Security in the Three Large Border Areas
4.3. Ecological Security of Tourism in China’s Border Areas Drive
4.3.1. Drivers of Tourism Ecological Security in Border Areas
4.3.2. Drivers of Tourism Ecological Security in China’s Border Areas
5. Discussion and Implications
5.1. Conclusions
5.2. Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, J.F.; Hou, K. Research on the progress of regional ecological security evaluation and optimization of its common limitations. Ecol. Indic. 2021, 127, 107797. [Google Scholar]
- He, D.; Hou, K.; Wen, J.F.; Wu, S.Q.; Wu, Z.P. A coupled study of ecological security and land use change based on GIS and entropy method-a typical region in Northwest China, Lanzhou. Environ. Sci. Pollut. Res. 2022, 29, 6347–6359. [Google Scholar]
- Wang, J.; Zhang, Q.Y. The Belt and Road. Initiative Impact on China’s Border Tourism Economic Space. Resour. Dev. Mark. 2021, 37, 761–768. [Google Scholar]
- Rainer, G. Producing nature for tourism: A political ecology angle. Ann. Tour. Res. 2018, 71, 62–63. [Google Scholar] [CrossRef]
- Ruan, W.Q.; Li, Y.Q.; Zhang, S.N.; Liu, C.H. Evaluation and drive mechanism of tourism ecological security based on the DPSIR-DEA model. Tour. Manag. 2019, 75, 609–625. [Google Scholar] [CrossRef]
- Li, Y.M.; Zhao, J.Z.; Yuan, J.; Ji, P.K.; Deng, X.L.; Yang, Y.M. Constructing the Ecological Security Pattern of Nujiang Prefecture Based on the Framework of “Importance-Sensitivity-Connectivity”. Int. J. Environ. Res. Public Health 2022, 19, 10869. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.H.; Du, Q.Q.; Guan, Q.Y.; Tan, Z.; Sun, Y.F.; Wang, Q.Z. Ecological security assessment and pattern construction in arid and semi-arid areas: A case study of the Hexi Region, NW China. Ecol. Indic. 2022, 138, 108797. [Google Scholar] [CrossRef]
- Yang, X.P.; Jia, Y.T.; Wang, Q.H.; Li, C.M.; Zhang, S.X. Space-time evolution of the ecological security of regional urban tourism: The case of Hubei Province, China. Environ. Monit. Assess. 2021, 193, 566. [Google Scholar]
- Cao, J.S.; Yang, Y.Q.; Deng, Z.Y.; Hu, Y.D. Spatial and temporal evolution of ecological vulnerability based on vulnerability scoring diagram model in Shennongjia, China. Sci. Rep. 2022, 12, 5168. [Google Scholar]
- He, S.S.; Wang, H.P.; Wang, L.; Yang, H.; Zhang, H.B. Eco-Environmental Vulnerability Assessment in Sichuan Province Based on Bayesian Network Security. Fresenius Environ. Bull. 2022, 31, 7299–7307. [Google Scholar]
- Hong, W.Y.; Jiang, R.R.; Yang, C.Y.; Zhang, F.F.; Su, M.; Liao, Q. Establishing an ecological vulnerability assessment indicator system for spatial recognition and management of ecologically vulnerable areas in highly urbanized regions: A case study of Shenzhen, China. Ecol. Indic. 2016, 69, 540–547. [Google Scholar] [CrossRef]
- Cao, C.X.; Yang, B.; Xu, M.; Li, X.W.; Singh, R.P.; Zhao, X.J.; Chen, W. Evaluation and analysis of post-seismic restoration of ecological security in Wenchuan using remote sensing and GIS. Geomat. Nat. Hazards Risk 2016, 7, 1919–1936. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.; DuBois, B.; Tidball, K.G. Refuges of local resilience: Community gardens in post-Sandy New York City. Urban For. Urban Green. 2015, 14, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, H.; Ma, Y.H.; Liu, D.; Liang, X.Y.; Chen, W.T. Identification of priority areas for ecological restoration based on ecological security and landscape elements. Environ. Sci. Pollut. Res. 2023, 30, 35307–35325. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, X.J.; Wu, D.F.; Yang, H. Construction of ecological security pattern adapting to future land use change in Pearl River Delta, China. Appl. Geogr. 2023, 154, 102946. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, D.Y.; Li, H.; Li, W.B.; Wu, W.J.; Zhu, Y.L. The Ecological Security Pattern and Its Constraint on Urban Expansion of a Black Soil Farming Area in Northeast China. ISPRS Int. J. Geo-Inf. 2017, 6, 263. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.L.; He, Y.F.; Choi, Y.; Chen, Q.R.; Cheng, H. Warning of negative effects of land-use changes on ecological security based on GIS. Sci. Total Environ. 2020, 704, 135427. [Google Scholar] [CrossRef]
- Zhang, M.X.; Bao, Y.B.; Xu, J.; Han, A.R.; Liu, X.P.; Zhang, J.Q.; Tong, Z.J. Ecological security evaluation and ecological regulation approach of East-Liao River basin based on ecological function area. Ecol. Indic. 2021, 132, 108255. [Google Scholar] [CrossRef]
- Jin, X.X.; Wei, L.Y.; Wang, Y.; Lu, Y.Q. Construction of ecological security pattern based on the importance of ecosystem service functions and ecological sensitivity assessment: A case study in Fengxian County of Jiangsu Province, China. Environ. Dev. Sustain. 2021, 23, 563–590. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Wang, J.Y.; Wang, H.Y.; Fu, B.; Chen, J.J.; He, W. Impacts of land use change on ecosystem service value in Lijiang River Basin, China. Environ. Sci. Pollut. Res. 2021, 28, 46100–46115. [Google Scholar] [CrossRef]
- Han, B.L.; Liu, H.X.; Wang, R.S. Urban ecological security assessment for cities in the Beijing-Tianjin-Hebei metropolitan region based on fuzzy and entropy methods. Ecol. Model. 2015, 318, 217–225. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, C.; Wang, H.; Chang, Y.P.; Yang, X.G.; Zang, F.; Liu, X.M.; Zhao, C.Y. An integrated ecological security early-warning framework in the national nature reserve based on the gray model. J. Nat. Conserv. 2023, 73, 126394. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.L. Ecological security early-warning in central Yunnan Province, China, based on the gray model. Ecol. Indic. 2020, 111, 106000. [Google Scholar] [CrossRef]
- Liu, D.D.; Yin, Z.Y. Spatial-temporal pattern evolution and mechanism model of tourism ecological security in China. Ecol. Indic. 2022, 139, 108933. [Google Scholar] [CrossRef]
- Zhao, R.D.; Fang, C.L.; Liu, H.M.; Liu, X.X. Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, R.H.; Ren, Z.Y.; Li, J.; Zhang, H.Z. Regional ecological security assessment based on long periods of ecological footprint analysis. Resour. Conserv. Recycl. 2007, 51, 24–41. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.R.; He, Q.S.; Liu, Y.L. Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach-A Case Study for the City of Wuhan in China. Int. J. Environ. Res. Public Health 2017, 14, 643. [Google Scholar] [CrossRef] [Green Version]
- Weng, G.M.; Pan, Y.; Li, L.Y. The Eco-security Grading and Spatial-temporal Evolution of Tourism Based on Improved DPSIR-DS Model: A Case Study of the Five Northwestern Provinces along the Silk Road. Tour. Sci. 2018, 32, 17–32. [Google Scholar]
- Xiao, Z.F.; Li, R.; Duan, S.; Peng, X.W. Study on temporal and spatial pattern evolution of tourism ecological security in Chengdu-Chongqing urban agglomeration. World Reg. Stud. 2022, 6, 1–12. [Google Scholar]
- Cheng, Y.F.; Zhu, K.; Zhou, Q.; El Archi, Y.; Kabil, M.; Remenyik, B.; David, L.D. Tourism Ecological Efficiency and Sustainable Development in the Hanjiang River Basin: A Super-Efficiency Slacks-Based Measure Model Study. Sustainability 2023, 15, 6159. [Google Scholar] [CrossRef]
- Ma, X.B.; Sun, B.; Hou, G.L.; Zhong, X.; Li, L. Evaluation and spatial effects of tourism ecological security in the Yangtze River Delta. Ecol. Indic. 2021, 131, 108190. [Google Scholar]
- Ehara, M.; Hyakumura, K.; Sato, R.; Kurosawa, K.; Araya, K.; Sokh, H.; Kohsaka, R. Addressing Maladaptive Coping Strategies of Local Communities to Changes in Ecosystem Service Provisions Using the DPSIR Framework. Ecol. Econ. 2018, 149, 226–238. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, L.; Deng, M.; Zhang, G.; Zhang, Y.Q. Selection of optimal regulation scheme by simulating spatial network of ecological-economic-social compound system: A case study of Hunan province, China. Environ. Dev. Sustain. 2023, 25, 2831–2856. [Google Scholar] [CrossRef]
- Malekmohammadi, B.; Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 2017, 82, 293–303. [Google Scholar] [CrossRef]
- Peng, H.S.; Zhang, J.H.; Lu, L.; Tang, G.R.; Yan, B.J.; Xiao, X.; Han, Y. Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Su, L.; Ji, X.R. Spatial-temporal differences and evolution of eco-efficiency in China’s forest park. Urban For. Urban Green. 2021, 57, 126894. [Google Scholar] [CrossRef]
- Yao, I.D.; Xu, P.P.; Wang, H.Y.; Huang, Z.J. Impact of urbanization on ecological efficiency in China: An empirical analysis based on provincial panel data. Ecol. Indic. 2021, 129, 107827. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA: A slacks-based measure approach. Omega-Int. J. Manag. Sci. 2010, 38, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Blyth, S. Pearson, Karl and the Correlation Curve. Int. Stat. Rev. 1994, 62, 393–403. [Google Scholar] [CrossRef]
- Ling, M.H.; Guo, X.M.; Shi, X.L.; Han, H.B. Temporal and spatial evolution of drought in Haihe River Basin from 1960 to 2020. Ecol. Indic. 2022, 138, 108809. [Google Scholar] [CrossRef]
- Pan, Y.; An, Z.L.; Li, J.P.; Weng, G.M.; Li, L.Y. Spatiotemporal Characteristics and Determinants of Tourism Cooperation Network in Beijing-Tianjin-Hebei Region. Sustainability 2023, 15, 4355. [Google Scholar] [CrossRef]
- Wang, S.; Sun, C.Z.; Li, X.; Zou, W. Sustainable Development in China’s Coastal Area: Based on the Driver-Pressure-State-Welfare-Response Framework and the Data Envelopment Analysis Model. Sustainability 2016, 8, 958. [Google Scholar] [CrossRef] [Green Version]
Dimensional Layer | System Layer | Evaluation Index | Measuring Unit |
---|---|---|---|
Driver (D) (input) | D1 Economic driver (in.) | X1 GDP per capita | CNY |
D2 Social driver (in.) | X2 Urbanization rate | % | |
X3 population | 10,000 people | ||
X4 Total number of visitors | 10,000 people | ||
D3 Environmental driver (in.) | X5 Graded highway mileage | km | |
X6 Urban Park green space | hectare | ||
X7 Number of ports | a | ||
X8 Number of 5A scenic spots | a | ||
pressure (P) (output) | P1 Economic pressure (ex.) | X9 Water consumption per CNY 10,000 of the GDP | m3/CNY 10,000 of GDP |
P2 Social pressure (ex.) | X10 Tourist density | / | |
X11 Population density | person/km2 | ||
P3 Environmental pressure (N-ex.) | X12 Tourism space density | person/km2 | |
State(S) (output) | S1 Economic state (ex.) | X13 Gross tourism income | CNY 100 million |
X14 The proportion of the tertiary industry in GDP | % | ||
S2 Social state (ex.) | X15 Tourist traffic reception capacity | km/10,000 people | |
X16 Number of star hotels | a | ||
X17 Number of travel agencies | a | ||
S3 Environmental state (N-ex.) | X18 Solid waste production per unit area | t/km2 | |
X19 Sulfur dioxide emissions per unit area | t/km2 | ||
X20 Discharge of wastewater per unit area | t/km2 | ||
Impact(I) (output) | I1 Economic impact (ex.) | X21 Per capita tourism income | CNY/person |
X22 Economic density of tourism | CNY/km2 | ||
X23 Contribution of tourism to the GDP | % | ||
I2 Social impact (ex.) | X24 Social product realization depth coefficient | / | |
I3 Environmental impact (ex.) | X25 Green coverage of built-up areas | % | |
X26 Nature reserve area | 10,000 hectares | ||
Response(R) (input) | R1 Economic response (in.) | X27 Educational expenditure | CNY 100 million |
X28 Budget support for energy conservation and environmental protection | CNY 100 million | ||
R2 Social response (in.) | X29 The proportion of tertiary industry employees in employment | % | |
X30 Number of college graduates | 10,000 people | ||
R3 Environmental response (in.) | X31 Rate of centralized sewage treatment | % | |
X32 Harmless treatment rate for household garbage | % |
Year | Heilongjiang | Jilin | Liaoning | Neimenggu | Guangxi | Yunnan | Tibet | Xinjiang | Gansu |
---|---|---|---|---|---|---|---|---|---|
2009 | 1.121 | 1.236 | 1.254 | 1.452 | 1.183 | 1.443 | 1.599 | 1.236 | 1.143 |
2010 | 1.054 | 1.103 | 1.199 | 1.288 | 1.185 | 1.415 | 1.756 | 1.184 | 1.096 |
2011 | 1.081 | 1.302 | 1.174 | 1.233 | 1.176 | 1.359 | 3.074 | 1.121 | 1.047 |
2012 | 1.067 | 1.051 | 1.125 | 1.237 | 1.197 | 1.265 | 2.422 | 1.302 | 1.065 |
2013 | 1.043 | 1.134 | 1.185 | 1.248 | 1.172 | 1.350 | 3.321 | 1.144 | 1.045 |
2014 | 1.056 | 1.142 | 1.257 | 1.253 | 1.184 | 1.341 | 3.125 | 1.179 | 1.020 |
2015 | 1.042 | 1.165 | 1.184 | 1.253 | 1.164 | 1.311 | 3.350 | 1.088 | 1.020 |
2016 | 1.059 | 1.170 | 1.125 | 1.234 | 1.105 | 1.260 | 2.479 | 1.214 | 1.028 |
2017 | 1.081 | 1.180 | 1.137 | 1.335 | 1.153 | 1.276 | 3.013 | 1.068 | 1.041 |
2018 | 1.163 | 1.289 | 1.149 | 1.315 | 1.162 | 1.200 | 1.737 | 1.182 | 1.077 |
2019 | 1.151 | 1.446 | 1.119 | 1.300 | 1.163 | 1.108 | 1.851 | 1.188 | 1.039 |
2020 | 1.117 | 1.322 | 1.115 | 1.661 | 1.386 | 1.129 | 1.975 | 1.215 | 1.040 |
Rank Trends | Percentage (%) | Province | Evolutionary Process | Pearson |
---|---|---|---|---|
High—High—High | 11.11% | Tibet | ∩-type decline | Similarity |
Medium-Medium-Medium | 22.22% | Jilin | \-type decline | Similarity |
Neimenggu | U-shaped rise | Similarity | ||
Medium—Medium—Low | 44.44% | Liaoning | ∩-type decline | Similarity |
Xinjiang, Guangxi | U-shaped rise | Similarity | ||
Yunnan | \-type decline | Similarity | ||
Low-low-low | 22.22% | Gansu | U-shaped decline | Similarity |
Heilongjiang | U-shaped rise | Similarity |
Dimension | Index | Prophase P | Rank | Late P | Rank | Average Value | Rank |
---|---|---|---|---|---|---|---|
Driver | X1 | 0.073 | 25 | 0.010 | 31 | 0.041 | 32 |
X2 | 0.751 | 3 | 0.781 | 2 | 0.766 | 2 | |
X3 | 0.758 | 2 | 0.738 | 3 | 0.748 | 3 | |
X4 | 0.035 | 27 | 0.145 | 17 | 0.090 | 25 | |
X5 | 0.650 | 6 | 0.518 | 8 | 0.584 | 5 | |
X6 | 0.152 | 19 | 0.052 | 27 | 0.102 | 21 | |
X7 | 0.264 | 17 | 0.243 | 12 | 0.253 | 14 | |
X8 | 0.108 | 23 | 0.236 | 13 | 0.172 | 19 | |
Press | X9 | 0.437 | 10 | 0.547 | 7 | 0.492 | 10 |
X10 | 0.008 | 32 | 0.079 | 24 | 0.044 | 30 | |
X11 | 0.114 | 22 | 0.117 | 19 | 0.116 | 20 | |
X12 | 0.019 | 31 | 0.090 | 23 | 0.055 | 28 | |
State | X13 | 0.021 | 30 | 0.158 | 16 | 0.090 | 26 |
X14 | 0.750 | 4 | 0.041 | 30 | 0.395 | 12 | |
X15 | 0.530 | 9 | 0.622 | 5 | 0.576 | 6 | |
X16 | 0.761 | 1 | 0.289 | 11 | 0.525 | 7 | |
X17 | 0.404 | 11 | 0.602 | 6 | 0.503 | 8 | |
X18 | 0.033 | 28 | 0.050 | 28 | 0.042 | 31 | |
X19 | 0.124 | 20 | 0.068 | 25 | 0.096 | 23 | |
X20 | 0.121 | 21 | 0.048 | 29 | 0.084 | 27 | |
Impact | X21 | 0.068 | 26 | 0.130 | 18 | 0.099 | 22 |
X22 | 0.032 | 29 | 0.066 | 26 | 0.049 | 29 | |
X23 | 0.247 | 18 | 0.098 | 21 | 0.172 | 18 | |
X24 | 0.328 | 15 | 0.111 | 20 | 0.219 | 16 | |
X25 | 0.362 | 13 | 0.009 | 32 | 0.185 | 17 | |
X26 | 0.749 | 5 | 0.732 | 4 | 0.741 | 4 | |
Response | X27 | 0.639 | 7 | 0.900 | 1 | 0.769 | 1 |
X28 | 0.638 | 8 | 0.364 | 10 | 0.501 | 9 | |
X29 | 0.096 | 24 | 0.092 | 22 | 0.094 | 24 | |
X30 | 0.266 | 16 | 0.222 | 14 | 0.244 | 15 | |
X31 | 0.357 | 14 | 0.189 | 15 | 0.273 | 13 | |
X32 | 0.396 | 12 | 0.429 | 9 | 0.412 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chen, X.; Zhang, Z. Spatial Differences and Drivers of Tourism Ecological Security in China’s Border Areas. Sustainability 2023, 15, 11811. https://doi.org/10.3390/su151511811
Wang J, Chen X, Zhang Z. Spatial Differences and Drivers of Tourism Ecological Security in China’s Border Areas. Sustainability. 2023; 15(15):11811. https://doi.org/10.3390/su151511811
Chicago/Turabian StyleWang, Jie, Xi Chen, and Zhaohui Zhang. 2023. "Spatial Differences and Drivers of Tourism Ecological Security in China’s Border Areas" Sustainability 15, no. 15: 11811. https://doi.org/10.3390/su151511811
APA StyleWang, J., Chen, X., & Zhang, Z. (2023). Spatial Differences and Drivers of Tourism Ecological Security in China’s Border Areas. Sustainability, 15(15), 11811. https://doi.org/10.3390/su151511811