Prediction of Annual Daylighting Performance Using Inverse Models
Abstract
:1. Introduction
2. Literature Review
2.1. Climate-Based Daylight Modelling (CBDM)
2.2. Inverse Prediction Models
2.3. Issues Identified
3. Methodology
3.1. Preliminary Analysis of the Choice of Radiance Parameters
3.2. Method to Develop the MLR Models
- Custom presets (proposed preset) were tested and developed for different Radiance parameters to reduce the Radiance runtime, while maintaining a suitable accuracy;
- A series of sensitivity tests with different variables were then conducted, to collect data;
- The annual daylighting simulation results from both the proposed preset and maximum I preset were then compared to determine the correct prediction;
- Finally, 75% of the dataset was used to train MLR models to predict sDA and annual auxiliary lighting energy (LE), and 25% of the dataset was used to validate the MLR models.
3.3. Daylighting Simulation Settings
4. Multi-Linear Regression Models
- where Y = LE_maximum or sDA_maximum
- = Factor, Predictor; j = 1, 2…, p (p = number of factors)
- = Intercept,
- = Coefficients
Variables | Variable Value or Range | Interval | Number of Cases | |
---|---|---|---|---|
X1 | LE_proposed or | Continuous number | 1 | 482 |
sDA_proposed | 0–100% | 1 | 482 | |
X2 | Orientation | South | 221 | |
North | 113 | |||
East | 70 | |||
West | 77 | |||
X3 | Window position | Top | 114 | |
Centered | 240 | |||
Down | 68 | |||
Mixed | 60 | |||
X4 | Window to Floor Ratio (WFR) | 1–100% | 3% | 482 |
X5 | Glazing visible transmittance | 0.1–0.9 | 0.1 | 482 |
X6 | Floor Visible Reflectance (FVR) | 0.2–0.8 | 0.1 | 482 |
X7 | Roof Visible Reflectance (RVR) | 0.2–0.8 | 0.1 | 482 |
X8 | Wall Visible Reflectance (WVR) | 0.2–0.8 | 0.1 | 482 |
X9 | Room size—Width | 3–15 m | 1 | 482 |
X10 | Room size—Length | 3–15 m | 1 | |
X11 | Room size—Height | 2–10 m | 1 | |
X12 | Shade Types | No shades | 191 | |
Overhangs | 191 | |||
Fins | 68 | |||
Overhangs + Fins | 60 | |||
X13 | Shade Reflectance | 0.2–0.9 | 0.1 | 291 |
X14 | Weather Location—Latitude | Continues number | 482 | |
X15 | Weather Location—Longitude | Continues number | 482 | |
X16 | Lighting Power Density (W/m2) | 2–20 | 1 | 482 |
X17 | Lighting dimming setpoint (lux) | 100–1000 | 100 | 482 |
4.1. MLR Model to Predict the Annual Auxiliary Lighting Energy (LE)
4.2. MLR Model to Predict the sDA
R2 | 0.86 |
R2 Adj | 0.84 |
Root Mean Square Error (RMSE) | 8.02 |
CV (RMSE) | 14.38% |
Mean of Response | 55.78 |
4.3. Validation
5. Discussion
6. Conclusions
- (1)
- Conduct a fast-daylighting simulation (30 s) to obtain the annual daylighting performance results for LE_proposed and sDA_proposed;
- (2)
- Using the results of LE_proposed and the input variables, the MLR model in Equation (2) can be applied to predict LE_maximum.
- (3)
- Using the results of sDA_proposed and the input variables, the MLR model in Equation (3) can be applied to predict sDA_maximum.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | Value | |
---|---|---|
Length (m) | 3.0 | |
Width (m) | 4.6 | |
Height (m) | 2.6 | |
Window area (m2) | 2.76 | |
Reference point height above floor (m) | 0.76 | |
Lighting dimming setpoint (lux) | 538 | |
Lighting Power Density (W/m2) | 11.95 | |
Visual Transmittance | 0.41 | |
Floor Visible Reflectance | Dark | 0.2 |
Bright | 0.8 | |
Wall Visible Reflectance | 0.7 | |
Roof Visible Reflectance | 0.7 | |
Shading Visible Reflectance | No Shades | NA |
Bright Shades | 0.9 |
Location | Latitude | Longitude | Location | Latitude | Longitude |
---|---|---|---|---|---|
Atlanta, GA | 33.63 | −84.43 | Kansas, MO | 39.12 | −94.60 |
Anchorage, AK | 61.18 | −150 | Las Vegas, NV | 36.08 | −115.15 |
Ann Arbor, MI | 42.22 | −83.75 | Los Angeles, CA | 33.93 | −118.4 |
Baltimore, MD | 39.17 | −76.68 | Louisville, KY | 38.18 | −85.73 |
Bangor, ME | 44.80 | −68.82 | Madison, WI | 43.13 | −89.33 |
Boston, MA | 42.37 | −71.02 | Manchester, NH | 42.93 | −71.43 |
Burlington, VT | 44.47 | −73.15 | Medford-Rogue, OR | 42.19 | −122.70 |
Charleston, SC | 32.90 | −80.03 | Memphis, TN | 35.07 | −89.98 |
Charleston, WV | 38.38 | −81.58 | Miami, FL | 25.82 | −80.3 |
Charlotte-Douglas, NC | 35.22 | −80.95 | Minneapolis, MN | 44.88 | −93.23 |
Cheyenne, WY | 41.15 | −104.80 | New Orleans, LA | 30.00 | −90.25 |
Chicago, IL | 41.98 | −87.92 | New York, NY | 40.78 | −73.88 |
Cleveland, OH | 41.40 | −81.85 | Newark, NJ | 40.72 | −74.18 |
Denver, CO | 39.83 | −104.65 | Oklahoma City, OK | 35.38 | −97.60 |
Des Moines, IA | 41.53 | −93.67 | Omaha-Eppley, NE | 41.32 | −95.90 |
Fargo-Hector, ND | 46.93 | −96.82 | Philadelphia, PA | 39.87 | −75.23 |
Fort Smith, AR | 35.33 | −94.37 | Phoenix, AZ | 33.45 | −111.98 |
Fort Wayne, IN | 41.00 | −85.20 | Providence, RI | 41.72 | −71.43 |
Glasgow, MT | 48.22 | −106.62 | Salt Lake City, UT | 40.77 | −111.97 |
Hartford Bradley, CT | 41.93 | −72.68 | Seattle, WA | 47.47 | −122.32 |
Honolulu, HI | 21.32 | −157.93 | Sioux Falls, SD | 43.58 | −96.75 |
Houston, TX | 30.00 | −95.37 | Sterling-Washington, VA | 38.98 | −77.47 |
Huntsville, AL | 34.65 | −86.78 | Topeka, KS | 39.07 | −95.63 |
Idaho, ID | 43.52 | −112.07 | Wilmington, DE | 39.67 | −75.60 |
Jackson, MS | 32.32 | −90.08 |
Room Number | Length | Width | Height |
---|---|---|---|
1 | 3 | 4.6 | 2.6 |
2 | 3 | 7 | 4 |
3 | 3 | 9 | 5 |
4 | 4 | 12 | 6 |
5 | 4 | 4 | 3 |
6 | 6 | 4 | 5 |
7 | 7 | 3 | 6 |
8 | 8 | 4 | 3 |
9 | 9 | 4 | 5 |
10 | 10 | 10 | 6 |
11 | 11 | 4 | 3 |
12 | 13 | 5 | 5 |
13 | 14 | 7 | 7 |
14 | 15 | 15 | 10 |
15 | 15 | 3 | 8 |
16 | 15 | 6 | 3 |
References
- Bryan, H.J.; Clear, R.D. A procedure for calculating interior daylight illumination with a programmable hand calculator. In Proceedings of the Illuminating Engineering Society Annual Technical Conference, Dallas, TX, USA, 24—28 August 1980. [Google Scholar]
- Hopkinson, R.G.; Longmore, J.; Petherbridge, P. An empirical formula for the computation of the indirect component of daylight factor. Lighting Res. Technol. 1954, 19, 201–219. [Google Scholar] [CrossRef]
- Oh, S.; Haberl, J.S. Origins of analysis methods used to design high-performance commercial buildings: Daylighting simulation. Sci. Technol. Built Environ. 2016, 22, 107–117. [Google Scholar] [CrossRef]
- Goral, C.M.; Torrance, K.E.; Greenberg, D.P.; Battaile, B. Modeling the interaction of light between diffuse surfaces. ACM SIGGRAPH Comput. Graph. 1984, 18, 213–222. [Google Scholar] [CrossRef]
- O’brien, P.F. Interreflections in Rooms by a Network Method. J. Opt. Soc. Am. 1955, 45, 419–424. [Google Scholar] [CrossRef]
- Ward, G. The RADIANCE 3.0 Synthetic Imaging System; Lighting Systems Research Group, Lawrence Berkeley Laboratory: Berkeley, CA, USA, 1996. [Google Scholar]
- Reinhart, C.F.; Herkel, S. The simulation of annual daylight illuminance distributions—A state-of-the-art comparison of six RADIANCE-based methods. Energy Build. 2000, 32, 167–187. [Google Scholar] [CrossRef]
- Baker, M.S.; Salem, O. Modeling complex daylighting with DOE 2.1-C. DOE-2 User News 1990, 11, 1–15. [Google Scholar]
- Winkelmann, F.C.; Selkowitz, S. Daylighting simulation in the DOE-2 building energy analysis program. Energy Build. 1985, 8, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Haberl, J. Research on Guidelines for Window Design Strategies in High Performance Office Buildings. In Proceedings of the 2020 Building Performance Analysis Conference and SimBuild, Chicago, IL, USA, 29 September–1 October 2020; pp. 447–454. [Google Scholar]
- Li, Q. Analysis of Optimal Facade System Design in High Performance Buildings. Ph.D. Thesis, Texas A&M University: College Station, TX, USA, 2020. [Google Scholar]
- Geebelen, B.; van der Voorden, M.; Neuckermans, H. Fast and accurate simulation of long-term daylight availability using the radiosity method. Light. Res. Technol. 2005, 37, 295–310. [Google Scholar] [CrossRef]
- Gibson, T.; Krarti, M. Comparative analysis of prediction accuracy from daylighting simulation tools. LEUKOS 2015, 11, 49–60. [Google Scholar] [CrossRef]
- Ward, G.J.; Rubinstein, F.M. A new technique for computer simulation of illuminated spaces. J. Illum. Eng. Soc. 1988, 17, 80–91. [Google Scholar] [CrossRef]
- LBL. Setting Rendering Options. 2023. Available online: https://floyd.lbl.gov/radiance/refer/Notes/rpict_options.html (accessed on 10 July 2023).
- Ward, G.J. The RADIANCE lighting simulation and rendering system. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA, 24–29 July 1994; pp. 459–472. [Google Scholar]
- Mardaljevic, J. Simulation of annual daylighting profiles for internal illuminance. Int. J. Light. Res. Technol. 2000, 32, 111–118. [Google Scholar] [CrossRef]
- Mardaljevic, J. Examples of climate-based daylight modelling. In Proceedings of the 2006 CIBSE National Conference, London, UK, 21–22 March 2006; pp. 1–11. [Google Scholar]
- Ayoub, M. A review on light transport algorithms and simulation tools to model daylighting inside buildings. Sol. Energy 2020, 198, 623–642. [Google Scholar] [CrossRef]
- Mardaljevic, J. Daylight Simulation: Validation, Sky Models and Daylight Coefficients. Ph.D. Thesis, De Montfort University: Leicester, UK, 1999. [Google Scholar]
- Reinhart, C.F.; Walkenhorst, O. Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy Build. 2001, 33, 683–697. [Google Scholar] [CrossRef]
- Tregenza, P.; Waters, I. Daylight coefficients. Light. Res. Technol. 1983, 15, 65–71. [Google Scholar] [CrossRef]
- McNeil, A.; Lee, E.S. A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems. J. Build. Perform. Simul. 2013, 6, 24–37. [Google Scholar] [CrossRef]
- Geisler-Moroder, D.; Lee, E.S.; Ward, G.J. Validation of the Five-Phase Method for Simulating Complex Fenestration Systems with Radiance against Field Measurements; Lawrence Berkeley National Lab (LBNL): Berkeley, CA, USA, 2016. [Google Scholar]
- Wang, T.; Ward, G.; Lee, E.S. Efficient modeling of optically-complex, non-coplanar exterior shading: Validation of matrix algebraic methods. Energy Build. 2018, 174, 464–483. [Google Scholar] [CrossRef] [Green Version]
- Jakubiec, J.A.; Reinhart, C. Diva 2.0: Integrating daylight and energy simulation. In Proceedings of the 12th Conference of International Building Performance Simulation Association, Sydney, Australia, 14–16 November 2011. [Google Scholar]
- Solemma, L. Climate Studio. Available online: https://www.solemma.com/climatestudio (accessed on 7 September 2021).
- Guglielmetti, R.; Macumber, D.; Long, N. OpenStudio: An open source integrated analysis platform. In Proceedings of the 12th Conference of International Building Performance Simulation Association, Sydney, Australia, 14–16 November 2011. [Google Scholar]
- Jones, N.L.; Reinhart, C.F. Validation of GPU lighting simulation in naturally and artificially lit spaces. In Proceedings of the IBPSA Building Simulation Conference, Bolzano, Italy, 4–6 February 2015. [Google Scholar]
- Krarti, M.; Erickson, P.M.; Hillman, T.C. A simplified method to estimate energy savings of artificial lighting use from daylighting. Build. Environ. 2005, 40, 747–754. [Google Scholar] [CrossRef]
- Ihm, P.; Nemri, A.; Krarti, M. Estimation of lighting energy savings from daylighting. Build. Environ. 2009, 44, 509–514. [Google Scholar] [CrossRef]
- Moret, S.; Noro, M.; Papamichael, K. Daylight harvesting: A multivariate regression linear model for predicting the impact on lighting, cooling and heating. In Proceedings of the 1st IBPSA Italy Conference, Bolzano, Italy, 30 January–1 February 2013. [Google Scholar]
- Kurian, C.P.; Aithal, R.S.; Bhat, J.; George, V. Robust control and optimisation of energy consumption in daylight—Artificial light integrated schemes. Light. Res. Technol. 2008, 40, 7–24. [Google Scholar] [CrossRef]
- Inanici, M. Dynamic daylighting simulations from static high dynamic range imagery using extrapolation and daylight coefficient methodologies. In Proceedings of the International Building Performance Simulation Association (IBPSA) Conference, Chambery, France, 25–28 August 2013. [Google Scholar]
- Verso, V.R.L.; Mihaylov, G.; Pellegrino, A.; Pellerey, F. Estimation of the daylight amount and the energy demand for lighting for the early design stages: Definition of a set of mathematical models. Energy Build. 2017, 155, 151–165. [Google Scholar] [CrossRef]
- Ayoub, M. A multivariate regression to predict daylighting and energy consumption of residential buildings within hybrid settlements in hot-desert climates. Indoor Built Environ. 2019, 28, 848–866. [Google Scholar] [CrossRef]
- Fonseca, R.W.d.; Didoné, E.L.; Pereira, F.O.R. Using artificial neural networks to predict the impact of daylighting on building final electric energy requirements. Energy Build. 2013, 61, 31–38. [Google Scholar] [CrossRef]
- Nault, E.; Moonen, P.; Rey, E.; Andersen, M. Predictive models for assessing the passive solar and daylight potential of neighborhood designs: A comparative proof-of-concept study. Build. Environ. 2017, 116, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kent, M.; Kral, K.; Dogan, T. Seemo: A new tool for early design window view satisfaction evaluation in residential buildings. Build. Environ. 2022, 214, 108909. [Google Scholar] [CrossRef]
- Illuminating Engineering Society. ANSI/IES LM-83-23 IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE); IESNA Lighting Measurement: New York, NY, USA, 2023. [Google Scholar]
- Kharvari, F. An empirical validation of daylighting tools: Assessing radiance parameters and simulation settings in Ladybug and Honeybee against field measurements. Sol. Energy 2020, 207, 1021–1036. [Google Scholar] [CrossRef]
- Roudsari, M.S. Ladybug 0.0.68 and Honeybee 0.0.65. 2023. Available online: https://discourse.ladybug.tools/t/ladybug-0-0-68-and-honeybee-0-0-65-release/7995 (accessed on 1 July 2023).
- ASHRAE 2016. ASHRAE Standard 90.1; Energy Standard for Buildings Except Low-Rise Residential. ASHRAE: Atlanta, GA, USA, 2016.
- U.S. Green Building Council. Leed v4.1 Building Design and Construction. US Green Building Council, 2023. Available online: https://www.usgbc.org/leed/v41 (accessed on 7 July 2023).
- SAS. JMP Statistical Discovery from SAS Institute Inc. 2019. Available online: https://www.jmp.com/en_us/home.html (accessed on 26 November 2019).
- Aho, K.; Derryberry, D.; Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 2014, 95, 631–636. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1998; pp. 199–213. [Google Scholar]
Author | Prediction Model | Input Variables | Output | Location | Shading Systems | Data Source | Model Accuracy | |
---|---|---|---|---|---|---|---|---|
Krarti et al. (2005) [30] | Single variable Regression based on DOE-2 simulation data |
| Annual lighting energy | 4 cities (Atlanta, Chicago, Phoenix, and Denver) | Interior shade factor | DOE-2 simulation | Error <3% | |
Ihm et al. (2009) [31] | 43 cities in US | Field measurements in Boulder, Colorado | Error <3.6% | |||||
Moret et al. (2013) [32] | Multiple Linear Regression based on EnergyPlus simulation data |
| Lighting, cooling, and heating | Phoenix, AZ; Baltimore, MD; Minneapolis, MN | Switchable glazing, operable louvers | EnergyPlus simulation of DOE validation building models | R2 = 0.96 | |
Inanici (2013) [34] | Least Squares Multiple Regression based on Radiance-based simulation data |
| Luminance | Seattle, Washington, US | NA | Radiance-based simulation | R2 = 0.89 (rtcontrib) R2 = 0.78 (rpict) | |
Verso et al. (2017) [35] | Multivariate regression model based on DAYSIM simulation data |
| DAcon DA, sDA, Energy Demand (ED) | Turin, Catania and Berlin in Germany | Indoor venetian blinds, outdoor overhangs | DAYSIM simulation | sDA RMSE [7.1,13.9]; DA RMSE [3.9, 6.6]; DAcon RMSE [4.4, 2.8]; ED RMSE [0.9, 2.4]; | |
Ayoub (2019) [36] | Multiple Linear Regression based on DIVA simulation data |
| sDA, ASE, Lighting Energy | Alexandria, Egypt | NA | DIVA-for-Rhino simulation | sDA R2 = 0.90, RMSE = 8.13; ASE R2 = 0.87, RMSE = 5.28; LE R2 = 0.88, RMSE = 5.59 | |
Kurian et al. (2008) [33] | Auto Regression model and ANN models based on the simulation data from ECOTECT |
| Illuminance | Manipal, India, | blinds | Simulated form ECOTECT | Error < 0.16 RMSE < 1.12 | |
Fonseca et al. (2013) [37] | Multiple Linear Regression and ANN models based on DAYSIM (daylight) + EnergyPlus (thermal) simulation data |
| Lighting + equipment + HVAC energy | Florianópolis, Brazil, | horizontal and vertical shading coefficients | DAYSIM + EnergyPlus simulation | ANN: MSE < 0.05, R2 = 0.99; MLR: R2 < 0.8 | |
Nault et al. (2017) [38] | Gaussian Processes (GP) regression model and MLR based on DIVA simulation data |
| sDA | Geneva, Switzerland; | NO | Simulated form DIVA-for-Rhino | RMSE: MLR < 7.14; GP < 21.09 | |
Kim et al. (2022) [39] | Tree-regression model based on survey |
| View satisfaction ratings | Survey | RMSE = 0.65 |
Min Preset | Fast Preset | Accur Preset | Maximum I Preset | Proposed Preset | ||
---|---|---|---|---|---|---|
-aa | ambient accuracy | 0.5 | 0.2 | 0.15 | 0.1 | 0.2 |
-ab | ambient bounces | 0 | 0 | 2 | 8 | 2 |
-ad | ambient divisions | 0 | 32 | 512 | 4096 | 512 |
-ar | ambient resolution | 8 | 32 | 128 | 0 | 128 |
-as | ambient super-samples | 0 | 32 | 512 | 1024 | 128 |
-dj | direct jittering | 0 | 0 | 0.7 | 1 | 1 |
-ds | source substructuring | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
-dt | direct thresholding | 0 | 0 | 0 | 0 | 0 |
-dc | direct certainty | 1 | 1 | 1 | 1 | 1 |
-dr | direct relays | 6 | 6 | 6 | 6 | 6 |
-dp | direct pretest density | 0 | 0 | 0 | 0 | 0 |
-lr | limit reflection | 0 | 4 | 8 | 16 | 4 |
-lw | limit weight of each ray | 0.05 | 0.01 | 0.002 | 0 | 0.01 |
-ss | specular sampling | 0 | 0.3 | 0.7 | 1 | 0.7 |
-st | specular threshold | 1 | 0.85 | 0.15 | 0 | 0.85 |
Condition | Preset Setting | Runtime | sDA | Lighting Energy (kWh) |
---|---|---|---|---|
No shades + bright floor | Maximum | 60 min | 100 | 78.8 |
Accur | 9 min | 100 | 84.1 | |
Proposed | 0.5 min | 100 | 89.5 | |
Fast | 0.18 min | 80 | 130.2 | |
Min | 0.08 min | 46.7 | 245.8 | |
No shades + dark floor | Maximum | 60 min | 100 | 86.6 |
Accur | 9 min | 100 | 94.3 | |
Proposed | 0.5 min | 100 | 106.4 | |
Fast | 0.18 min | 66.7 | 140.1 | |
Min | 0.08 min | 46.7 | 251.4 | |
Shades + bright floor | Maximum | 60 min | 100 | 102.4 |
Accur | 10 min | 80 | 136.9 | |
Proposed | 0.5 min | 73.3 | 143.8 | |
Fast | 0.18 min | 6.7 | 290.4 | |
Min | 0.08 min | 0 | 458.5 | |
Shades + dark floor | Maximum | 60 min | 100 | 106.1 |
Accur | 10 min | 66.7 | 139.8 | |
Proposed | 0.5 min | 60 | 164.2 | |
Fast | 0.18 min | 6.7 | 292.4 | |
Min | 0.08 min | 0 | 453 |
Parameters | Range | Interval | Number of Cases | Number of Changes | |||
---|---|---|---|---|---|---|---|
Room Geometry | Room Length (L) | 3–15 m | 1 | 482 | 16 room sizes | ||
Room Width (W) | 3–15 m | 1 | |||||
Room Height (H) | 2–10 m | 0.5 | |||||
Window to Floor Ratio | 1–100% | 3% | 482 | 33 | |||
Reference Point Height above Floor (m) | 0.762 | 482 | 1 | ||||
Lighting Dimming Setpoint (lux) | 100–1000 | 100 | 482 | 10 | |||
Lighting Power Density (W/m2) | 2–20 | 1 | 482 | 19 | |||
Ground Visible Reflectance | 0.2 | 482 | 1 | ||||
Glazing Visible Transmittance | 0.1 to 0.9 | 0.1 | 482 | 9 | |||
Wall Visible Reflectance (WVR) | 0.2–0.8 | 0.1 | 482 | 7 | |||
Roof Visible Reflectance (RVR) | 0.2–0.8 | 0.1 | 482 | 7 | |||
Floor Visible Reflectance (FVR) | 0.2–0.8 | 0.1 | 482 | 7 | |||
Orientation | N | 113 | 4 | ||||
S | 221 | ||||||
E | 70 | ||||||
W | 77 | ||||||
Window Position | Centered | 240 | 4 | ||||
Top | 114 | ||||||
Down | 68 | ||||||
Mixed | 60 | ||||||
Shading Visible Reflectance | No shades | 0 | 191 | ||||
Overhangs | 0.2–0.9 | 0.1 | 191 | 8 | |||
Fins | 50 | 8 | |||||
Overhang + Fin | 50 | 8 | |||||
Weather Locations | 50 cities in USA | 482 | 50 | ||||
Radiance Parameter Preset | Maximum I | 482 | 1 | ||||
Proposed | 482 | 1 |
Term | Estimate | Std. Error | t Ratio | Prob. > |t| |
---|---|---|---|---|
Intercept | 796.67183 | 77.29099 | 10.31 | <0.0001 |
Length | −57.02912 | 4.707136 | −12.12 | <0.0001 |
Width | −33.37372 | 6.296278 | −5.30 | <0.0001 |
Height | 48.823022 | 16.02964 | 3.05 | 0.0027 |
WFR | 25.551495 | 159.4338 | 0.16 | 0.8729 |
Glazing Visible Transmittance | −137.3583 | 53.53022 | −2.57 | 0.0111 |
Wall Visible Reflectance | −475.4641 | 52.03353 | −9.14 | <0.0001 |
Lighting Power Density (W/m2) | −14.4767 | 3.066264 | −4.72 | <0.0001 |
Lighting Dimming Setpoint (lux) | −0.022589 | 0.064885 | −0.35 | 0.7282 |
Floor Visible Reflectance | −150.4627 | 44.77568 | −3.36 | 0.0010 |
LE_proposed | 0.6106068 | 0.017132 | 35.64 | <0.0001 |
WFR × Height | −144.4815 | 52.80161 | −2.74 | 0.0069 |
WFR × WFR | 928.47189 | 318.9507 | 2.91 | 0.0041 |
R2 | 0.99 |
R2 Adj | 0.98 |
Root Mean Square Error (RMSE) | 58.91 |
CV (RMSE) | 15.19% |
Mean of Response | 387.8 |
Term | Estimate | Std Error | t Ratio | Prob > |t| |
---|---|---|---|---|
Intercept | 1.120608 | 29.20131 | 0.04 | 0.9694 |
sDA_proposed | −0.281909 | 0.453798 | −0.62 | 0.5355 |
(Room) Length | 2.0051692 | 0.61101 | 3.28 | 0.0013 |
(Room) Width | −4.209144 | 1.247138 | −3.38 | 0.0010 |
WFR | −214.932 | 111.3362 | −1.93 | 0.0556 |
Glazing visible transmittance | −82.75078 | 38.24644 | −2.16 | 0.0322 |
FVR | −94.90968 | 51.55686 | −1.84 | 0.0678 |
WVR | 42.190196 | 23.89045 | 1.77 | 0.0796 |
Shading type (Fins) | −1.091208 | 6.711314 | −0.16 | 0.8711 |
Shading type (NO) | 3.4272667 | 2.975727 | 1.15 | 0.2514 |
Shading type (Overhang + fin) | −8.154601 | 2.965519 | −2.75 | 0.0068 |
Orientation (E) | 0.0722852 | 1.479427 | 0.05 | 0.9611 |
Orientation (N) | −13.80994 | 1.959216 | −7.05 | <0.0001 |
Orientation (S) | 10.279483 | 1.679657 | 6.12 | <0.0001 |
Position (Centered) | −2.860371 | 1.302068 | −2.20 | 0.0297 |
Position (Down) | −9.722868 | 1.968187 | −4.94 | <0.0001 |
Position (Mix) | 4.6962141 | 1.524803 | 3.08 | 0.0025 |
Length × WFR | −4.585675 | 3.235156 | −1.42 | 0.1586 |
Width × WFR | 17.709521 | 5.326667 | 3.32 | 0.0011 |
WFR × Glazing visible transmittance | 946.35935 | 199.1677 | 4.75 | <0.0001 |
FVR × WVR | 182.51127 | 78.0294 | 2.34 | 0.0208 |
WFR × sDA_proposed | 6.3691657 | 2.08662 | 3.05 | 0.0027 |
Glazing visible transmittance × sDA_proposed | 3.9982993 | 0.948308 | 4.22 | <0.0001 |
WFR × Glazing visible transmittance × sDA_proposed | −23.52474 | 4.417013 | −5.33 | <0.0001 |
MLR model | Source | Data size | R2 | RASE |
---|---|---|---|---|
LE prediction MLR model | Training Set | 374 | 0.99 | 56.82 |
Validation Set | 108 | 0.96 | 121.89 | |
sDA prediction MLR model | Training Set | 374 | 0.86 | 7.10 |
Validation Set | 108 | 0.85 | 8.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Haberl, J. Prediction of Annual Daylighting Performance Using Inverse Models. Sustainability 2023, 15, 11938. https://doi.org/10.3390/su151511938
Li Q, Haberl J. Prediction of Annual Daylighting Performance Using Inverse Models. Sustainability. 2023; 15(15):11938. https://doi.org/10.3390/su151511938
Chicago/Turabian StyleLi, Qinbo, and Jeff Haberl. 2023. "Prediction of Annual Daylighting Performance Using Inverse Models" Sustainability 15, no. 15: 11938. https://doi.org/10.3390/su151511938
APA StyleLi, Q., & Haberl, J. (2023). Prediction of Annual Daylighting Performance Using Inverse Models. Sustainability, 15(15), 11938. https://doi.org/10.3390/su151511938