Quantitative Distribution and Contamination Risk Assessment of Cu and Zn in Municipal Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Indices of Contamination Assessment
2.4. Statistical Analysis
3. Results and Discussion
3.1. Total Amounts of Metals
Cu | Zn | |||||
---|---|---|---|---|---|---|
1st | 2nd | 3rd | 1st | 2nd | 3rd | |
SS1 | 460.1 | 420.7 | 268.4 | 1277.4 | 1307.2 | 656.2 |
SS2 | 349.2 | 396.3 | 342.0 | 1098.1 | 1150.5 | 1035 |
SS3 | 344.3 | 373.5 | 324.4 | 700.3 | 596.1 | 476.8 |
SS4 | 331.5 | 379.4 | 261.4 | 673.1 | 592.5 | 484.9 |
LSD = 15.664 | LSD = 18.540 | |||||
Polish permissible level [19] | 1000 | 2500 | ||||
EU permissible level [17] | 1000–1750 | 2500–4000 | ||||
US EPA permissible level [33] | 1500 | 2800 |
3.2. Quantitative Distribution of Metals in Sewage Sludge
3.3. Risk Assessment of Metals in Sewage Sludge
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015; 468p. [Google Scholar] [CrossRef]
- Yakamercan, E.; Aygün, A. Ecological risk assessment of domestic sewage sludge: A case study. Sigma J. Eng. Nat. Sci. 2021, 39, 422–433. [Google Scholar]
- Witkowska, D.; Słowik, J.; Chilicka, K. Heavy Metals and Human Health: Possible Exposure Pathways and the Competition for Protein Binding Sites. Molecules 2021, 26, 6060. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chang, V.W.-C.H.; Li, Z.; Chen, Z.; Wang, Y. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals. J. Hazard. Mater. 2021, 412, 125200. [Google Scholar] [CrossRef] [PubMed]
- Kirchmann, H.; Börjesson, G.; Kätterer, T.; Cohen, Y. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook. Ambio 2017, 46, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziolko, D.; Martin, O.V.; Scrimshaw, M.D.; Lester, J.N. An Evaluation of Metal Removal during Wastewater Treatment: The Potential to Achieve More Stringent Final Effluent Standards. Crit. Rev. Environ. Sci. Technol. 2011, 41, 733–769. [Google Scholar] [CrossRef] [Green Version]
- Sylwan, I.; Thorin, E. Removal of heavy metals during primary treatment of municipal wastewater and possibilities of enhanced removal: A review. Water 2021, 13, 1121. [Google Scholar] [CrossRef]
- Genz, P.; Reemtsma, T. Polar micropollutants and metals in centrate from dewatered sewage sludge intended for reuse in soilless horticulture. ACS EST Water 2022, 2, 2548–2557. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat (accessed on 21 April 2023).
- Shaddel, S.; Bakhtiary-Davijany, H.; Kabbe, C.; Dadgar, F.; Østerhus, S.W. Sustainable sewage sludge management: From current practices to emerging nutrient recovery technologies. Sustainability 2019, 11, 3435. [Google Scholar] [CrossRef] [Green Version]
- You, M.; Hu, Y.; Van, Y.; Vao, J. Speciation characteristic and ecological risk assessment of heavy metals in municipal sludge of Huainan, China. Molecules 2021, 26, 6711. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Wang, D. Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review. Sustainability 2020, 9, 2017. [Google Scholar] [CrossRef] [Green Version]
- Górecki, T.; Jakubus, M.; Krzyśko, M.; Wołyński, W. Application of Distance Covariance in Selection of Nutrients During Dynamic Process of Sewage Sludge Conditioning with Bio-preparation. Waste Biomass. Valori. 2020, 11, 4157–4166. [Google Scholar] [CrossRef] [Green Version]
- Jakubus, M.; Graczyk, M. Microelement variability in plants as an effect of sewage sludge compost application assessed by different statistical methods. Agronomy 2020, 10, 642. [Google Scholar] [CrossRef]
- Jakubus, M.; Bakinowska, E. Visualization of long-time quantitative changes of microelements in soils amended with sewage sludge compost evaluated with two extraction solutions. Commun. Soil Sci. Plant 2018, 49, 1355–1369. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Directive 86/278/EEC on the Protection of the Environment, and in Particular of the Soil, when Sewage Sludge Is Used in Agriculture. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31986L0278 (accessed on 21 April 2023).
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Miino, M.C.; Padovani, S. Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability 2019, 11, 6015. [Google Scholar] [CrossRef] [Green Version]
- Ordinance of Ministry of Environment on Sewage Sludge. Journal of Laws of 2015, Item 257. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20230000023/O/D20230023.pdf (accessed on 21 April 2023).
- Central Statistical Office. Available online: https://stat.gov.pl (accessed on 21 April 2023).
- Nkinahamira, F.; Suanon, F.; Chi, Q.; Li, Y.; Feng, M.; Huang, X.; Yu, C.-P.; Sun, Q. Occurrence, geochemical fractionation and environmental risk assessement of major and trace elements in sewage sludge. J. Environ. Manag. 2019, 249, 109427. [Google Scholar] [CrossRef] [PubMed]
- Jakubus, M. Changes in lead and chromium contents in sewage sludge evaluated using both single extractants and sequential method. Environ. Pollut. Bioavail. 2020, 32, 87–99. [Google Scholar] [CrossRef]
- Jakubus, M. Distribution of oxyphilic elements in sewage sludge fractions based on manganese and nickel. Ecol. Eng. J. 2021, 22, 72–82. [Google Scholar] [CrossRef]
- ISO 11466: 1995; Soil quality—Extraction of Trace Elements Soluble in Aqua Regia. International Organization for Standardization: Genève, Switzerland, 1995.
- Mossop, K.F.; Davidson, C.M. Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal. Chim. Acta 2003, 478, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Yuan, X.; Leng, L.; Jiang, L.; Chen, X.; Zhibin, W.; Xin, P.; Jiachao, Z.; Zeng, G. Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge. Environ. Sci. Pollut. Res. 2016, 23, 3934–3942. [Google Scholar] [CrossRef]
- Czarnowska, K. Total content of heavy metals in parent rocks as reference background levels of soils. Soil Sci. Ann. 1996, XLVII, 43–50. [Google Scholar]
- Yang, T.; Huang, H.; Lai, F. Pollution hazards of heavy metals in sewage sludge from four wastewater treatment plants in Nanchang, China. Trans. Nonferrous Met. Soc. China 2017, 27, 2249–2259. [Google Scholar] [CrossRef]
- Braga, A.F.M.; Zaiat, M.; Silva, G.H.R.; Fermoso, F.G. Metal fractionation in sludge from sewage UASB treatment. J. Environ. Manag. 2017, 193, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.M.; Shams, M.S.; Ibrahim, S.M.; Elbehiry, F.A.; Antoniadis, V.; Hooda, P.S. Stabilization of sewage sludge by using various by-products: Effects on soil properties, biomass production, and bioavailability of copper and zinc. Water Air Soil Pollut. 2014, 225, 2014. [Google Scholar] [CrossRef]
- Karwowska, B.; Dąbrowska, L. Bioavailability of heavy metals in the municipal sewage sludge. Ecol. Chem. Eng. A 2017, 24, 75–86. [Google Scholar]
- Zhang, J.; Tian, Y.; Zhang, J.; Li, N.; Kong, L.; Yu, M.; Zuo, W. Distribution and risk assessment of heavy metals in sewage sludge after ozonation. Environ. Sci. Pollut. Res. 2017, 24, 5118–5125. [Google Scholar] [CrossRef]
- USEPA. A Guide to the Biosolids Risk Assessment for EPA Part 503 Rule, EU Environmental Office of Wastewater Management, United STATES, 1995, EPA 832-B-93-005. Available online: https://www.epa.gov/biosolids/guide-biosolids-risk-assessments-epa-part-503-rule (accessed on 21 April 2023).
- Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk assessemnt of soil contamination with heavy metals from municipal sewage sludge. Appl. Sci. 2021, 11, 548. [Google Scholar] [CrossRef]
- Tytła, M. Assessment of Heavy Metal Pollution and Potential Ecological Risk in Sewage Sludge from Municipal Wastewater Treatment Plant Located in the Most Industrialized Region in Poland—Case Study. Int. J. Environ. Res. Public Health 2019, 16, 2430. [Google Scholar] [CrossRef] [Green Version]
- Contin, M.; Malev, O.; Izosimova, A.; De Nobili, M. Flocculation of sewage sludge with FeCl3 modifies the bioavailability of potentially toxic elements when added to different soils. Ecol. Eng. 2015, 81, 278–288. [Google Scholar] [CrossRef]
- Jakubus, M.; Bakinowska, E.; Tobiasova, E. Valorisation of sewage sludge humic compounds in the aspect of its application in natural environment. Environ. Prot. Eng. 2021, 47, 67–83. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, H.; Xu, B.; Xiang, B.; Chen, Z.; Li, C.; Zeng, G. Influence of sewage sludge–based activated carbon and temperature on the liquid-fraction of sewage sludge: Yield and composition of bio-oil, immobilization and risk assessment of heavy metals. Bioresour. Technol. 2014, 159, 72–79. [Google Scholar] [CrossRef] [PubMed]
Sewage Sludge | ENI | Average Capacity—Q (m3/d) | Approximate Mass of Generated Sewage Sludge (t/Year) |
---|---|---|---|
SS1 | 1,200,000 | 200,000 | 17,000 |
SS2 | 350,000 | 6000 | 3500 |
SS3 | 51,500 | 6000 | 730 |
SS4 | 28,500 | 6000 | 550 |
Indices | Equation | Value Ranges with a Description |
---|---|---|
geoaccumulation index (Igeo) [26] | Igeo = log2 () Cn-amount of metal in SS Bn-geochemiocal background value in soil: for Cu = 7.1 mg·kg−1; for Zn = 30 mg·kg−1 [27] | Igeo < 0—no pollution 0 < Igeo < 1—no to moderate pollution 1 < Igeo < 2—moderate pollution 2 < Igeo < 3—moderate to high pollution 3 < Igeo < 4—high pollution 4 < Igeo < 5—high to very high pollution Igeo > 5—very high pollution |
individual contamination factor (ICF) [23] | ICF = | ICF < 1—low contamination (LC) 1 < ICF < 3—moderate contamination (MC) 3 < ICF < 6—considerable contamination (CC) ICF > 6—very high contamination (VHC) |
risk assessment code (RAC) [28] | RAC = ·100% | RAC < 1%—no risk (safe to the environment) RAC 1–10%—low risk (relatively safe to the environment) RAC 11–30%—medium risk (relatively dangerous to the environment) RAC 31–50%—high risk (dangerous to the environment) |
Fraction | SS1 | SS2 | SS3 | SS4 | Mean for Fraction |
---|---|---|---|---|---|
I | 6.4 | 8.3 | 9.6 | 8.8 | 8.2 d * |
II | 172.4 | 149.4 | 170.5 | 166.4 | 164.7 b |
III | 183.0 | 172.6 | 169.7 | 160.9 | 171.5 a |
IV | 27.7 | 28.3 | 23.6 | 23.7 | 25.8 c |
LSD for BxC = 3.359 | |||||
Mean for SS | 97.4 a * | 89.7 c | 93.3 b | 89.9 c |
Years of Study | Fractions (Mean for SS) | |||
---|---|---|---|---|
I | II | III | IV | |
1st | 6.1 | 165.9 | 183.3 | 35.1 |
2nd | 7.4 | 184.4 | 192.0 | 25.5 |
3rd | 11.2 | 143.7 | 139.3 | 16.8 |
Sewage sludge (mean for fractions) | ||||
SS1 | SS2 | SS3 | SS4 | |
1st | 108.6 | 91.8 | 93.5 | 96.7 |
2nd | 102.4 | 98.9 | 102.7 | 105.3 |
3rd | 81.2 | 78.3 | 83.8 | 67.7 |
LSD = 2.643 |
Metal/Sewage Sludge | Y | X | β0 | β1 |
---|---|---|---|---|
Cu/SS1 | Fr. II | Cutot | 73.81 | 0.29 |
Fr. II | TOC | 227.08 | −0.17 | |
Fr. III | TOC | 199.75 | −0.15 | |
Fr. III | Cutot | 94.79 | 0.21 | |
Cu/SS2 | Cutot | TOC | 446.71 | −0.32 |
Fr. II | TOC | 531.69 | −1.15 | |
Fr. II | Cutot | 48.80 | 0.28 | |
Fr. III | TOC | 499.49 | −0.98 | |
Fr. III | Cutot | 101.57 | 0.76 | |
Fr. IV | TOC | 208.45 | −0.54 | |
Cu/SS3 | Cutot | TOC | 576.69 | −0.45 |
Fr. II | TOC | 964.17 | −1.89 | |
Fr. II | Cutot | 36.71 | 0.59 | |
Fr. III | TOC | 80.34 | −0.60 | |
Fr. III | Cutot | 143.42 | 0.91 | |
Fr. IV | TOC | 249.62 | −0.53 | |
Cu/SS4 | Fr. II | TOC | 795.59 | −1.55 |
Fr. II | Cutot | 30.17 | 0.59 | |
Fr. III | TOC | 919.48 | −1.84 | |
Fr. III | Cutot | 47.78 | 0.66 | |
Fr. IV | TOC | 253.0 | −0.56 | |
Zn/SS1 | Fr. II | Zntot | 53.26 | 0.75 |
Fr. II | TOC | 1109.1 | −1.11 | |
Fr. III | TOC | 190.28 | −0.60 | |
Zn/SS2 | Fr. I | TOC | 9.29 | −0.38 |
Fr. II | TOC | 1299.6 | −1.67 | |
Fr. II | Zntot | 21.12 | 0.66 | |
Fr. III | TOC | 662.53 | −1.50 | |
Fr. III | Zntot | 463.66 | 0.57 | |
Fr. IV | TOC | 352.24 | −0.94 | |
Zn/SS3 | Fr. II | TOC | 1609.6 | −2.94 |
Fr. II | Zntot | 138.84 | 0.40 | |
Fr. III | TOC | 903.57 | −1.86 | |
Fr. III | Zntot | 93.90 | 0.36 | |
Fr. IV | TOC | 274.31 | −0.60 | |
Zn/SS4 | Fr. II | TOC | 2003.8 | −3.99 |
Fr. II | Zntot | 47.13 | 0.72 | |
Fr. III | TOC | 282.26 | −0.44 | |
Fr. IV | TOC | 193.07 | −0.42 |
Fraction | SS1 | SS2 | SS3 | SS4 | Mean for Fraction |
---|---|---|---|---|---|
I | 137.0 | 136.3 | 76.9 | 90.5 | 110.2 c * |
II | 754.6 | 741.5 | 375.5 | 370.9 | 560.6 a |
III | 171.9 | 163.0 | 121.0 | 104.9 | 140.2 b |
IV | 52.4 | 39.9 | 24.1 | 23.3 | 34.9 d |
LSD for BxC = 7.310 | |||||
Mean for SS | 279.0 a * | 270.2 b | 149.4 c | 147.4 c |
Years of Study | Fractions (Mean for SS) | |||
---|---|---|---|---|
I | II | III | IV | |
1st | 119.4 | 622.8 | 159.8 | 46.6 |
2nd | 93.7 | 624.1 | 159.4 | 39.3 |
3rd | 117.5 | 435.0 | 101.4 | 19.0 |
Sewage sludge (mean for fractions) | ||||
SS1 | SS2 | SS3 | SS4 | |
1st | 333.93 | 270.19 | 175.9 | 168.6 |
2nd | 330.57 | 288.1 | 148.9 | 148.9 |
3rd | 172.37 | 252.28 | 123.4 | 124.9 |
LSD = 5.752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubus, M. Quantitative Distribution and Contamination Risk Assessment of Cu and Zn in Municipal Sewage Sludge. Sustainability 2023, 15, 12087. https://doi.org/10.3390/su151512087
Jakubus M. Quantitative Distribution and Contamination Risk Assessment of Cu and Zn in Municipal Sewage Sludge. Sustainability. 2023; 15(15):12087. https://doi.org/10.3390/su151512087
Chicago/Turabian StyleJakubus, Monika. 2023. "Quantitative Distribution and Contamination Risk Assessment of Cu and Zn in Municipal Sewage Sludge" Sustainability 15, no. 15: 12087. https://doi.org/10.3390/su151512087
APA StyleJakubus, M. (2023). Quantitative Distribution and Contamination Risk Assessment of Cu and Zn in Municipal Sewage Sludge. Sustainability, 15(15), 12087. https://doi.org/10.3390/su151512087