Spatio-Temporal Evolution of Ecological Sensitivity in the Desert of China from 1981 to 2022
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Selection of Indicator Factors
3.2. Data Sources and Processing
3.3. Research Methods
3.3.1. Single-Factor Ecological Sensitivity
3.3.2. Comprehensive Ecological Sensitivity
3.3.3. Local Spatial Autocorrelation
4. Results and Analysis
4.1. Changes in Land Use Types in Northern Desert Areas
4.2. Single-Factor Ecological Sensitivity Spatial Distribution Characteristics
4.3. Comprehensive Ecological Sensitivity of Space-Time Evolution Characteristics
4.3.1. Spatial Differentiation Characteristics
4.3.2. Time Series Evolution Characteristics
4.4. Correlation Analysis of Ecological Sensitivity
5. Discussion
5.1. Space-Time Evolution of Desert Ecological Sensitivity
5.2. Factors Influencing Desert Ecological Sensitivity
5.3. Desert Environmental Management and Restoration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, B.H.; Kasimu, A.; Reheman, R.; Zhao, Y.Y. Ecological carrying capacity evolution and ecological sensitivity analysis of urban agglomeration in the northern slope of Tianshan Mountains. Acta Ecol. Sin. 2023, 43, 1399–1411. [Google Scholar] [CrossRef]
- Albo-Puigserver, M.; Bueno-Pardo, J.; Pinto, M.; Monteiro, J.; Ovelheiro, A.; Teodósio, A.; Leitão, F. Ecological sensitivity and vulnerability of fishing fleet landings to climate change across regions. Sci. Rep. 2022, 12, 17360. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.T.; Eboy, O.V.; Xu, L.; Yu, D. Ecological Sensitivity of Urban Agglomeration in the Guanzhong Plain, China. Sustainability 2023, 15, 4804. [Google Scholar] [CrossRef]
- Wu, X.W.; Chen, Y.B. Ecological sensitivity assessment based on Natural Resource Data. Ecol. Env. Sci. 2021, 30, 976–983. [Google Scholar] [CrossRef]
- Wu, D.; Chen, D.K.; Tang, L.N.; Shao, G.F. A comprehensive assessment of ecological sensitivity for a coal-fired power plant in Xilingol, Inner Mongolia. Int. J. Sust. Dev. World 2017, 24, 420–426. [Google Scholar] [CrossRef]
- Rong, Y.J.; Guo, X.Y.; Du, S.X.; Li, X.; Ning, T.; Zhang, M.Y. Study of ecological carying capacity using PSR Model based on ecosystem services and ecological sensitivity. Res. Soil Water Conserv. 2019, 26, 323–329. [Google Scholar] [CrossRef]
- Wei, W.; Zhou, T.; Guo, Z.C.; Li, Z.Y.; Zhang, X.Y. Spatiotemporal evolution of land ecological sensitivity in arid inland river basin based on remote sensing index: A case of Wuwei City in Shiyang River Basin. Chin. J. Ecol. 2020, 39, 3068–3079. [Google Scholar] [CrossRef]
- Wei, C.J.; Meng, J.J. Ecological sensitivity assessment and spatial pattern analysis of land resources in China. Acta Sci. Nat. Univ. Pekin. 2022, 58, 157–168. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Li, T.; Li, M.; Li, S.; Rong, Y.J.; Bao, R.; Fu, X.; Tang, F.M.; Wu, G. Integrating ecosystem service importance and ecological sensitivity to identify priority areas for ecological conservation and restoration in Miyun Reservoir Basin. Int. J. Sust. Dev. World 2023, 30, 1–13. [Google Scholar] [CrossRef]
- Kong, L.Q.; Tian, G.J.; Ma, B.R.; Liu, X.J. Embedding ecological sensitivity analysis and new satellite town construction in an agent-based model to simulate urban expansion in the Beijing metropolitan region, China. Ecol. Indic. 2017, 82, 233–249. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, T.; Zhou, X.; Li, J.J.; Yi, G.H.; Bie, X.J.; Hu, J.; Wen, B. Ecological sensitivity and its driving factors in the area along the Sichuan–Tibet Railway. Environ. Dev. Sustain 2023, 25, 1–20. [Google Scholar] [CrossRef]
- Ramli, M.F.; Leman, N.; Khirotdin, R.P.K. GIS-based integrated evaluation of environmentally sensitive areas (ESAs) for land use planning in Langkawi, Malaysia. Ecol. Indic. 2016, 61, 293–308. [Google Scholar] [CrossRef]
- Eggermont, H.; Verschuren, D.; Audenaert, L.; Lens, L.; Russell, J.; Klaassen, G.; Heiri, O. Limnological and ecological sensitivity of Rwenzori Mountain lakes to climate warming. Hydrobiologia 2010, 648, 123–142. [Google Scholar] [CrossRef]
- Tsou, J.Y.; Gao, Y.F.; Zhang, Y.Z.; Sun, G.Y.; Ren, J.C.; Li, Y. Evaluating urban land carrying capacity based on the ecological sensitivity analysis: A case study in Hangzhou, China. Remote Sens. 2017, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Suo, M.M.; Chai, J.J.; Gao, S.Q. Temporal and spatial evolution of ecological sensitivity at coal mining cities in a karst region during 2000–2020. Bull. Soil Water Conserv. 2022, 42, 338–346. [Google Scholar] [CrossRef]
- Wu, K.; Peng, H.X.; Li, J.F.; Chen, W.H. Land ecological sensitivity analysis of Lingbao city based on the coefficient of variation method. Hubei Agric. Sci. 2018, 57, 32–37. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Wang, J.L.; Yang, B.F. Eco-sensitivity assessment of land in Yunnan province. Acta Ecol. Sin. 2008, 28, 2253–2260. [Google Scholar] [CrossRef]
- Liu, C.X.; Li, Y.C.; Yang, H.; Min, J.; Wang, C.J.; Zhang, H. RS and GIS-based assessment for eco-environmental sensitivity of the three Gorges Reservoir area of Chongqing. Acta Geogr. Sin. 2011, 66, 631–642. [Google Scholar] [CrossRef]
- Hong, W.Y.; Guo, R.Z.; Su, M.; Tang, H.; Chen, L.X.; Hu, W. Sensitivity evaluation and land-use control of urban ecological corridors: A case study of Shenzhen, China. Land Use Policy 2017, 62, 316–325. [Google Scholar] [CrossRef]
- You, N.S.; Meng, J.J. Ecological functions regionalization and ecosystem management based on the ecological sensitivity and ecosystem service in the middle reaches of the Heihe River. J. Desert Res. 2017, 37, 186–197. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Wang, Z.T. Desertification sensitivity assessment in the middle and lower reaches of the Shule River Basin. J. Desert Res. 2022, 42, 163–171. [Google Scholar] [CrossRef]
- Hua, T.; Wang, X.M.; Ci, Z.; Zhang, C.X.; Lang, L.L. Responses of desertification to climate change in arid and semiarid regions of China over the past millennium. J. Desert Res. 2012, 32, 618–624. [Google Scholar]
- Zhao, W.C.; Liu, L.; Chen, J.; Ji, J. Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source. Sci. China Earth Sci. 2019, 49, 1425–1438. [Google Scholar] [CrossRef]
- Guo, Z.C.; Wei, W.; Shi, P.J.; Zhou, L.; Wang, X.F.; Li, Z.Y.; Pang, S.F.; Xu, B.B. Spatiotemporal changes of land desertification sensitivity in the arid region of Northwest China. Acta Geogr. Sin. 2020, 75, 1948–1965. [Google Scholar] [CrossRef]
- Liu, J.Q.; Gao, J.X.; Ma, S.; Wang, W.J.; Zou, C.X. Evaluation of Ecological Sensitivity in China. J. Nat. Resour. 2015, 30, 1607–1616. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wei, W.; Zhou, L.; Liu, C.F.; Guo, Z.C.; Pang, S.F.; Zhang, J. Spatio-temporal evolution characteristics of terrestrial ecological sensitivity in China. Acta Geogr. Sin. 2022, 77, 150–163. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhao, X.Y.; Liu, X.M.; Chang, Y.P.; Wang, H.; Yang, J.H.; Yang, X.G.; Wei, Y. The multi-dimensional perspective of ecological security evaluation and drive mechanism for Baishuijiang National Nature Reserve, China. Ecol. Indic. 2021, 132, 108295. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Yang, Y.F.; Yuan, W.Y.; Gao, J.Q. Analysis and Evaluation on Ecological Sensitivity of Xiaoqinghe River Basin in Jinan Based on GIS. J. Northwest For. Univ. 2016, 31, 50–56. [Google Scholar] [CrossRef]
- Yang, Y.X.; Zhang, Y.F. Temporal-spatial evolutionary characteristics of ecological sensitivity in Yanhe River basin based on spatial distance index. Remote Sens. Nat. Resour. 2021, 33, 229–237. [Google Scholar] [CrossRef]
- Hao, S.N.; Su, L.B.; Guo, Y.G. Effects of land use changes on ecological sensitivity of Nnyang River basin in Tibet. Bull. Soil Water Conserv. 2023, 43, 303–309. [Google Scholar] [CrossRef]
- Tang, F.; Zhang, P.T.; Zhang, G.J.; Zhao, L.; Zheng, Y.; Wei, M.H.; Jian, Q. Construction of ecological corridors in Changli County based on ecological sensitivity and ecosystem service values. Chin. J. Appl. Ecol. 2018, 29, 2675–2684. [Google Scholar] [CrossRef]
- Liu, R.; Xia, Z.H.; Xue, C.B.; Xu, Y. Ecological sensitivity evaluation and explanatory power analysis of the Giant Panda National Park in China. Ecol. Indic. 2022, 146, 109792. [Google Scholar] [CrossRef]
- Tian, L.; Qiu, S.J.; Peng, J.; Hu, Y.N.; Jia, J.L.; Mao, Q. Desertification sensitivity evaluation in Inner Mongolia Autonomous Region based on PSR framework. Prog. Geogr. 2018, 37, 1682–1692. [Google Scholar] [CrossRef]
- Liu, J.H.; Hu, G.J.; Qi, X.H.; Xu, C.Y.; Zhang, A.; Chen, W.H.; Shuai, C.; Liang, C.Y. Ecological environmental vulnerability and its driving forces in urban agglomeration in the Fujian Delta region. Acta Ecol. Sin. 2018, 38, 4155–4166. [Google Scholar] [CrossRef]
- Shi, Y.H.; Li, J.Q.; Xie, M.Q. Evaluation of the ecological sensitivity and security of tidal flats in Shanghai. Ecol. Indic. 2018, 85, 729–741. [Google Scholar] [CrossRef]
- Su, X.P.; Zhou, Y.; Li, Q. Designing Ecological Security Patterns Based on the Framework of Ecological Quality and Ecological Sensitivity: A Case Study of Jianghan Plain, China. Int. J. Environ. Res. Public Health 2021, 18, 8383. [Google Scholar] [CrossRef]
- Jiang, X.H.; Han, L.; Bai, Z.F.; Liu, H.Q. Analysis of the temporal and spatial evolution pattern and trend of desertification sensitivity in the Inner Mongolia Autonomous Region. Acta Ecol. Sin. 2023, 43, 364–378. [Google Scholar] [CrossRef]
- Xu, L.L.; Yan, H.; Qian, S. Spatio-temporal change of land desertification sensitivity in Northern China from 2000 to 2018 based on MODIS-NDVI. J Nat. Resour. 2020, 35, 925–936. [Google Scholar] [CrossRef]
- Yilmaz, F.C.; Zengin, M.; Cure, C.T. Determination of ecologically sensitive areas in Denizli province using geographic information systems (GIS) and analytical hierarchy process (AHP). Environ. Monit. Assess. 2020, 192, 589. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, L.B.; Guo, Y.; He, P.; Liu, W.L.; Du, J.Q.; Wang, L.X. Analysis of spatiotemporal pattern and tendency of land desertification sensitivity in six provinces of China. Res. Soil Water Conserv. 2014, 21, 132–143. [Google Scholar] [CrossRef]
- Lu, Z.; Lei, G.P.; Wang, J.W.; Guo, J.P.; Ma, X.P.; Yang, H. Spatial-temporal variation characteristics of soil and water loss sensitivity in typical black soil regions in Northeast China in the past 30 years. J. Nat. Disasters 2019, 28, 186–195. [Google Scholar] [CrossRef]
- Shi, S.E.; Wei, W.; Yang, D.; Hu, X.; Zhou, J.J.; Zhang, Q. Spatial and temporal evolution of eco-environmental quality in the oasis of Shiyang River Basin based on RSEDI. Chin. J. Ecol. 2018, 37, 1152–1163. [Google Scholar] [CrossRef]
- Qiao, Z.; Xu, X.L. Assessment of Soil Erosion Sensitivity and Key Factors Identification in the Wood-Grass Ecotone of Northeast China. J. Nat. Resour. 2012, 27, 1349–1361. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, S.Y.; Li, Y.J.; Cao, P.J.; Xia, L. Study on land use change and ecological sensitivity in 30 years based on Landsat TM and OLI data--A case study of Qinling Mountains of Huyi District in Xi’an. Quat. Sci. 2022, 42, 1655–1672. [Google Scholar] [CrossRef]
- Liu, H.L.; Wang, W.Q.; Wang, Y.F.; Ding, Y.N.; Tian, Q.C. Comprehensive evaluation of ecological sensitivity and the characteristics of spatiotemporal variations in Fenhe River Basin. Acta Ecol. Sin. 2021, 41, 3952–3964. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wei, W.; Zhou, L.; Guo, Z.C.; Xie, B.B.; Zhou, J.J. Temporal and spatial evolution of ecological sensitivity in arid inland river basins of northwest China based on spatial distance index: A case study of Shiyang River Basin. Acta Ecol. Sin. 2019, 39, 7463–7475. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, Z.W.; Gao, J.H.; Xie, Z.L.; Zhao, M.W.; Wang, E.K. Evaluating landscape ecological sensitivity of an estuarine island based on landscape pattern across temporal and spatial scales. Ecol. Indic. 2019, 101, 221–237. [Google Scholar] [CrossRef]
- Wang, T. The practice on prevention and control of aeolian desertification and the development of desert science in China for 70 years: Pioneering part (1). J. Desert Res. 2023, 43, 1–8. [Google Scholar] [CrossRef]
- Shen, Y.N.; Qiu, M.M.; Yue, Y.J. Sandy desertification hazard assessment in north China. Arid Zone Res. 2017, 34, 174–184. [Google Scholar] [CrossRef]
- Dang, X.T.; Li, X.L.; Liu, J.; Meng, Z.J.; Bai, S.H.; Zhai, B.; Liu, B. Current situation and prospects of development and utilization of desert tourism resources in China. J. Arid Land Resour. Environ. 2022, 36, 194–201. [Google Scholar] [CrossRef]
- Ying, B.; Liu, T.; Ke, L.; Xiong, K.N.; Li, S.S.; Sun, R.N.; Zhu, F.H. Identifying the landscape security pattern in Karst Rocky desertification area based on ecosystem services and ecological sensitivity: A case study of Guanling County, Guizhou Province. Forests 2023, 14, 613. [Google Scholar] [CrossRef]
- Zou, T.H.; Chang, Y.X.; Chen, P.; Liu, J.F. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018. Ecol. Indic. 2021, 133, 108429. [Google Scholar] [CrossRef]
Primary Indicators | Secondary Indicators | Data Sources | Model and Methods |
---|---|---|---|
Terrain factors | Elevation | Geospatial Data Cloud (http://www.gscloud.cn/ accessed on 19 January 2023) | Digital elevation model [7] |
Aspect | |||
Slope | |||
Climate factors | Average annual temperature | China Meteorological Data Network (http://data.cma.cn/ accessed on 15 January 2023) | Kriging interpolation method [8] |
Average annual wind speed | |||
Average annual precipitation | |||
Average annual evaporation | |||
Hydrological factors | River | National Geomatics Center of China (http://www.ngcc.cn/ accessed on 19 January 2023) | Spatial distance model [24] |
Lake | Geospatial Data Cloud (http://www.gscloud.cn/ accessed on 25 January 2023) | ||
Soil factors | Soil erosion intensity | World Soil Database (http://www.fao.org/ accessed on 31 January 2023) | Vector data to raster data [24] |
Soil type | Resource and Environmental Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/ accessed on 10 February 2023) | ||
Soil texture | |||
Vegetation factors | Net primary productivity of vegetation | NASA website (https://www.nasa.gov/ accessed on 24 February 2023) | CASA model [26] |
Vegeration coverage | Dimidiate pixel model [13] | ||
Land use factors | 7 types of land use | Resource and Environmental Science Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/ accessed on 26 March 2023) | Reclassification [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.; Teni, G.; Du, H. Spatio-Temporal Evolution of Ecological Sensitivity in the Desert of China from 1981 to 2022. Sustainability 2023, 15, 12102. https://doi.org/10.3390/su151612102
Song C, Teni G, Du H. Spatio-Temporal Evolution of Ecological Sensitivity in the Desert of China from 1981 to 2022. Sustainability. 2023; 15(16):12102. https://doi.org/10.3390/su151612102
Chicago/Turabian StyleSong, Chunwei, Geer Teni, and Huishi Du. 2023. "Spatio-Temporal Evolution of Ecological Sensitivity in the Desert of China from 1981 to 2022" Sustainability 15, no. 16: 12102. https://doi.org/10.3390/su151612102
APA StyleSong, C., Teni, G., & Du, H. (2023). Spatio-Temporal Evolution of Ecological Sensitivity in the Desert of China from 1981 to 2022. Sustainability, 15(16), 12102. https://doi.org/10.3390/su151612102