Manure Valorization Using Black Soldier Fly Larvae: A Review of Current Systems, Production Characteristics, Utilized Feed Substrates, and Bioconversion and Nitrogen Conversion Efficiencies
Abstract
:1. Introduction
- RQ1: What are the production characteristics of current manure-valorizing BSFL production systems regarding different production steps, the production scale, the utilized BSFL strain, the geographical context, and optimal rearing parameters?
- RQ2: Which feed substrates (i.e., manure or mixtures of different types of manure or with other waste products or co-products) are currently utilized in BSFL production, what is their nutritional composition, and how are those feed substrates prepared before rearing?
- RQ3: Which efficiencies do those systems exhibit in terms of various reported performance parameters regarding nitrogen converstion and bioconversion, depending on the utilized feed substrate?
2. Materials and Methods
2.1. Search Strategy
2.2. Screening Criteria
2.3. Extraction and Synthesis of Data
3. Results and Discussion
3.1. Production Characteristics of BSFL Production Systems
3.1.1. General System Description
3.1.2. Egg Production System
3.1.3. Larvae Nursing System
3.1.4. Larvae Rearing System
3.1.5. Larvae Harvesting and Processing
3.2. Utilized Feed Substrates
3.2.1. Nutritional Composition
3.2.2. Preparation Steps
3.3. Bioconversion Indicators
3.3.1. Dry Matter Reduction
3.3.2. Waste Reduction Index
3.3.3. Feed Conversion Efficiency
3.3.4. Bioconversion Rate
3.4. Nitrogen Reduction
4. Conclusions
- Establishing an adult BSF colony from a strain that suits the intended type of fed manure. The adults should be restocked and adequately housed at a temperature of ~27 °C and a relative humidity between 50 and 70% to produce a sustained supply of eggs.
- After hatching, the neonates should be subjected to a separate larvae nursing step with a high-quality feed substrate (e.g., standard poultry feed). This step requires a slightly higher temperature and humidity (i.e., ~28 °C and 60–80%, respectively) and should be concluded after around six days.
- Larvae rearing can occur under the same climate characteristics and should utilize a homogenized feed substrate with adequate water content. The rearing step should be concluded with the emergence of the first sixth instar-stage larvae.
- After harvesting, the BSFL should be further processed according to their desired use. In case of subsequent use as livestock feed, an additional purging period after harvesting (between 24 and 48 h) is highly recommended to reduce the risk of biological hazards.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN. World Population Prospects: The 2017 Revision—Key Findings and Advance Tables; United Nations Organization: New York, NY, USA, 2017. [Google Scholar]
- FAO. Nitrogen Inputs to Agricultural Soils from Livestock Manure New Statistics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018. [Google Scholar]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow. Environmental Issues and Options; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Liu, T.; Klammsteiner, T.; Dregulo, A.M.; Kumar, V.; Zhou, Y.; Zhang, Z.; Awasthi, M.K. Black Soldier Fly Larvae for Organic Manure Recycling and Its Potential for a Circular Bioeconomy: A Review. Sci. Total Environ. 2022, 833, 155122. [Google Scholar] [CrossRef]
- Åkerman, M.; Humalisto, N.; Pitzen, S. Material Politics in the Circular Economy: The Complicated Journey from Manure Surplus to Resource. Geoforum 2020, 116, 73–80. [Google Scholar] [CrossRef]
- Parodi, A.; Yao, Q.; Gerrits, W.J.J.; Mishyna, M.; Lakemond, C.M.M.; Oonincx, D.G.A.B.; Van Loon, J.J.A. Upgrading Ammonia-Nitrogen from Manure into Body Proteins in Black Soldier Fly Larvae. Resour. Conserv. Recycl. 2022, 182, 106343. [Google Scholar] [CrossRef]
- Cammack, J.A.; Miranda, C.D.; Jordan, H.R.; Tomberlin, J.K. Upcycling of Manure with Insects: Current and Future Prospects. J. Insects Food Feed. 2021, 7, 605–619. [Google Scholar] [CrossRef]
- Turner, I.; Heidari, D.; Pelletier, N. Life Cycle Assessment of Contemporary Canadian Egg Production Systems during the Transition from Conventional Cage to Alternative Housing Systems: Update and Analysis of Trends and Conditions. Resour. Conserv. Recycl. 2022, 176, 105907. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Iten, L.; Gaillard, G. Environmental Assessment of Austrian Organic Dairy Farms with Closed Regional Production Cycles in a Less Favorable Production Area. Front. Sustain. Food Syst. 2022, 6, 817671. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Nemecek, T.; Guggenberger, T.; Fritz, C.; Steinwidder, A.; Zollitsch, W. Eco-Efficiency of Farms Considering Multiple Functions of Agriculture: Concept and Results from Austrian Farms. J. Clean. Prod. 2021, 297, 126662. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, X.; Reis, S.; Ren, C.; Xu, J.; Gu, B. A 12% Switch from Monogastric to Ruminant Livestock Production Can Reduce Emissions and Boost Crop Production for 525 Million People. Nat. Food 2022, 3, 1040–1051. [Google Scholar] [CrossRef]
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Review: Ammonia Emissions from Dairy Farms and Beef Feedlots. Can. J. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R.; et al. Invited Review: Nitrogen in Ruminant Nutrition: A Review of Measurement Techniques. J. Dairy Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef] [Green Version]
- Huhtanen, P.; Hristov, A.N. A Meta-Analysis of the Effects of Dietary Protein Concentration and Degradability on Milk Protein Yield and Milk n Efficiency in Dairy Cows. J. Dairy Sci. 2009, 92, 3222–3232. [Google Scholar] [CrossRef]
- Millet, S.; Aluwé, M.; Van Den Broeke, A.; Leen, F.; De Boever, J.; De Campeneere, S. Review: Pork Production with Maximal Nitrogen Efficiency. Animal 2018, 12, 1060–1067. [Google Scholar] [CrossRef] [Green Version]
- Musigwa, S.; Morgan, N.; Swick, R.A.; Cozannet, P.; Wu, S.B. Energy Dynamics, Nitrogen Balance, and Performance in Broilers Fed High- and Reduced-CP Diets. J. Appl. Poult. Res. 2020, 29, 830–841. [Google Scholar] [CrossRef]
- Uwizeye, A.; Tempio, G.; Gerber, P.J.; Scholte, R.P.O. A Framework to Assess Life Cycle Nitrogen Use Efficiency along Livestock Supply Chains. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector, San Francisco, CA, USA, 8–10 October 2014; p. 10. [Google Scholar]
- Phuong, H.N.; Friggens, N.C.; de Boer, I.J.M.; Schmidely, P. Factors Affecting Energy and Nitrogen Efficiency of Dairy Cows: A Meta-Analysis. J. Dairy Sci. 2013, 96, 7245–7259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravindra, V. Nutrition of meat animals|Poultry. In Encyclopedia of Meat Sciences; Jensen, W.K., Ed.; Elsevier Ltd.: Roskilde, Denmark, 2004; pp. 925–933. [Google Scholar]
- Khoshnevisan, B.; Duan, N.; Tsapekos, P.; Awasthi, M.K.; Liu, Z.; Mohammadi, A.; Angelidaki, I.; Tsang, D.C.W.; Zhang, Z.; Pan, J.; et al. A Critical Review on Livestock Manure Biorefinery Technologies: Sustainability, Challenges, and Future Perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110033. [Google Scholar] [CrossRef]
- Kanani, F.; Heidari, M.D.; Gilroyed, B.H.; Pelletier, N. Waste Valorization Technology Options for the Egg and Broiler Industries: A Review and Recommendations. J. Clean. Prod. 2020, 262, 121129. [Google Scholar] [CrossRef]
- Bosch, G.; van Zanten, H.H.E.; Zamprogna, A.; Veenenbos, M.; Meijer, N.P.; van der Fels-Klerx, H.J.; van Loon, J.J.A. Conversion of Organic Resources by Black Soldier Fly Larvae: Legislation, Efficiency and Environmental Impact. J. Clean. Prod. 2019, 222, 355–363. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental Impact of Food Waste Bioconversion by Insects: Application of Life Cycle Assessment to Process Using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects - Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Volume 171. [Google Scholar]
- Smetana, S.; Schmitt, E.; Mathys, A. Sustainable Use of Hermetia illucens Insect Biomass for Feed and Food: Attributional and Consequential Life Cycle Assessment. Resour. Conserv. Recycl. 2019, 144, 285–296. [Google Scholar] [CrossRef]
- Smetana, S.; Palanisamy, M.; Mathys, A.; Heinz, V. Sustainability of Insect Use for Feed and Food: Life Cycle Assessment Perspective. J. Clean. Prod. 2016, 137, 741–751. [Google Scholar] [CrossRef]
- Sanchez Matos, J.; Barberino, A.T.M.S.; de Araujo, L.P.; Lôbo, I.P.; de Almeida Neto, J.A. Potentials and Limitations of the Bioconversion of Animal Manure Using Fly Larvae. Waste Biomass Valorization 2021, 12, 3497–3520. [Google Scholar] [CrossRef]
- Yildirim-Aksoy, M.; Eljack, R.; Beck, B.H. Nutritional Value of Frass from Black Soldier Fly Larvae, Hermetia illucens, in a Channel Catfish, Ictalurus punctatus, Diet. Aquac. Nutr. 2020, 26, 812–819. [Google Scholar] [CrossRef]
- Grassauer, F.; Herndl, M.; Nemecek, T.; Fritz, C.; Guggenberger, T.; Steinwidder, A.; Zollitsch, W. Assessing and Improving Eco-Efficiency of Multifunctional Dairy Farming: The Need to Address Farms’ Diversity. J. Clean. Prod. 2022, 338, 130627. [Google Scholar] [CrossRef]
- Sheppard, D.C.; Larry Newton, G.; Thompson, S.A.; Savage, S. A value added manure management system using the black soldier fly*. Bioresour. Technol. 1994, 50, 275–279. [Google Scholar] [CrossRef]
- McCallan, E. Hermetia illucens (L.) (Diptera, Stratiomyidae), a Cosmopolitan American Species Long Established in Australia and New Zealand. Entomol. Mon. Mag. 1974, 109, 232–234. [Google Scholar]
- Booth, D.C.; Sheppard, C. Oviposition of the Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae): Eggs, Masses, Timing, and Site Characteristics. Environ. Entomol. 1984, 13, 421–423. [Google Scholar] [CrossRef]
- Cammack, J.A.; Tomberlin, J.K. The Impact of Diet Protein and Carbohydrate on Select Life-History Traits of the Black Soldier Fly Hermetia illucens (L.) (Diptera: Stratiomyidae). Insects 2017, 8, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomberlin, J.K.; Sheppard, D.C.; Joyce, J.A. Selected Life-History Traits of Black Soldier Flies (Diptera: Stratiomyidae) Reared on Three Artificial Diets. Ann. Entomol. Soc. Am. 2002, 95, 379–386. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the Use of Insects in the Diet of Farmed Fish: Past and Future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-Art on Use of Insects as Animal Feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Huis, A.; van Loon, J.J.A. Nutrient Utilisation by Black Soldier Flies Fed with Chicken, Pig, or Cow Manure. J. Insects Food Feed. 2015, 1, 131–139. [Google Scholar] [CrossRef]
- Newton, L.; Sheppard, C.; Watson, D.; Burtle, G.; Dove, R. Using the Black Soldier Fly, Hermetia illucens, as a Value-Added Tool for the Management of Swine Manure; North Carolina State University: Raleigh, NC, USA, 2005. [Google Scholar]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of Organic Material by Black Soldier Fly Larvae: Establishing Optimal Feeding Rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Miranda, C.D.; Cammack, J.A.; Tomberlin, J.K. Life-History Traits of the Black Soldier Fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), Reared on Three Manure Types. Animals 2019, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Tomberlin, J.K.; Zheng, L.; Yu, Z.; Zhang, J. Developmental and Waste Reduction Plasticity of Three Black Soldier Fly Strains (Diptera: Stratiomyidae) Raised on Different Livestock Manures. J. Med. Entomol. 2013, 50, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.A.B.; van Broekhoven, S.; van Huis, A.; van Loon, J.J.A. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food by-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [Green Version]
- Ites, S.; Smetana, S.; Toepfl, S.; Heinz, V. Modularity of Insect Production and Processing as a Path to Efficient and Sustainable Food Waste Treatment. J. Clean. Prod. 2020, 248, 119248. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Cammack, J.A. Black Soldier Fly: Biology and Mass Production. In Insects as Food and Feed: From Production to Consumption; van Huis, A., Tomberlin, J.K., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2017; pp. 230–246. [Google Scholar]
- Moore, J.C.; Berlow, E.L.; Coleman, D.C.; De Suiter, P.C.; Dong, Q.; Hastings, A.; Johnson, N.C.; McCann, K.S.; Melville, K.; Morin, P.J.; et al. Detritus, Trophic Dynamics and Biodiversity. Ecol. Lett. 2004, 7, 584–600. [Google Scholar] [CrossRef]
- Roffeis, M.; Almeida, J.; Wakefield, M.E.; Valada, T.R.A.; Devic, E.; Koné, N.; Kenis, M.; Nacambo, S.; Fitches, E.C.; Koko, G.K.D.; et al. Life Cycle Inventory Analysis of Prospective Insect Based Feed Production in West Africa. Sustainability 2017, 9, 1697. [Google Scholar] [CrossRef] [Green Version]
- Grassauer, F.; Arulnathan, V.; Pelletier, N. Towards a Net-Zero Greenhouse Gas Emission Egg Industry: A Review of Relevant Mitigation Technologies and Strategies, Current Emission Reduction Potential, and Future Research Needs. Renew. Sustain. Energy Rev. 2023, 181, 113322. [Google Scholar] [CrossRef]
- Bosch, G.; Oonincx, D.G.A.B.; Jordan, H.R.; Zhang, J.; van Loon, J.J.A.; van Huis, A.; Tomberlin, J.K. Standardisation of Quantitative Resource Conversion Studies with Black Soldier Fly Larvae. J. Insects Food Feed. 2020, 6, 95–109. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Miranda, C.D.; Cammack, J.A.; Tomberlin, J.K. Mass Production of the Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae) Reared on Three Manure Types. Animals 2020, 10, 1243. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, N.; Cai, R.; Geng, W.; Xu, X. Changes in Speciation, Mobility and Bioavailability of Cd, Cr and As during the Transformation Process of Pig Manure by Black Soldier Fly Larvae (Hermetia illucens). J. Integr. Agric. 2021, 20, 1157–1166. [Google Scholar] [CrossRef]
- Xiao, X.; Mazza, L.; Yu, Y.; Cai, M.; Zheng, L.; Tomberlin, J.K.; Yu, J.; van Huis, A.; Yu, Z.; Fasulo, S.; et al. Efficient Co-Conversion Process of Chicken Manure into Protein Feed and Organic Fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) Larvae and Functional Bacteria. J. Environ. Manag. 2018, 217, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Bortolini, S.; Macavei, L.I.; Hadj Saadoun, J.; Foca, G.; Ulrici, A.; Bernini, F.; Malferrari, D.; Setti, L.; Ronga, D.; Maistrello, L. Hermetia illucens (L.) Larvae as Chicken Manure Management Tool for Circular Economy. J. Clean. Prod. 2020, 262, 121289. [Google Scholar] [CrossRef]
- Sheppard, D.C.; Tomberlin, J.K.; Joyce, J.A.; Kiser, B.C.; Sumner, S.M. Rearing Methods for the Black Soldier Fly (Diptera: Stratiomyidae). J. Med. Entomol. 2002, 39, 695–698. [Google Scholar] [CrossRef] [Green Version]
- Sandrock, C.; Leupi, S.; Wohlfahrt, J.; Kaya, C.; Heuel, M.; Terranova, M.; Blanckenhorn, W.U.; Windisch, W.; Kreuzer, M.; Leiber, F. Genotype-by-Diet Interactions for Larval Performance and Body Composition Traits in the Black Soldier Fly, Hermetia illucens. Insects 2022, 13, 424. [Google Scholar] [CrossRef]
- Kaya, C.; Generalovic, T.N.; Ståhls, G.; Hauser, M.; Samayoa, A.C.; Nunes-Silva, C.G.; Roxburgh, H.; Wohlfahrt, J.; Ewusie, E.A.; Kenis, M.; et al. Global Population Genetic Structure and Demographic Trajectories of the Black Soldier Fly, Hermetia illucens. BMC Biol. 2021, 19, 94. [Google Scholar] [CrossRef]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The Use of Fly Larvae for Organic Waste Treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef]
- Law, Y.; Wein, L. Reversing the Nutrient Drain through Urban Insect Farming—Opportunities and Challenges. AIMS Bioeng. 2018, 5, 226–237. [Google Scholar] [CrossRef]
- Roffeis, M.; Fitches, E.C.; Wakefield, M.E.; Almeida, J.; Alves Valada, T.R.; Devic, E.; Koné, N.G.; Kenis, M.; Nacambo, S.; Koko, G.K.D.; et al. Ex-Ante Life Cycle Impact Assessment of Insect Based Feed Production in West Africa. Agric. Syst. 2020, 178, 102710. [Google Scholar] [CrossRef] [Green Version]
- Shumo, M.; Osuga, I.M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.M.; Subramanian, S.; Ekesi, S.; van Huis, A.; Borgemeister, C. The Nutritive Value of Black Soldier Fly Larvae Reared on Common Organic Waste Streams in Kenya. Sci. Rep. 2019, 9, 10110. [Google Scholar] [CrossRef] [Green Version]
- Hogsette, J.A. New Diets for Production of House Flies and Stable Flies (Diptera: Muscidae) in the Laboratory. J. Econ. Entomol. 1992, 85, 2291–2294. [Google Scholar] [CrossRef] [Green Version]
- Purkayastha, D.; Sarkar, S. Sustainable Waste Management Using Black Soldier Fly Larva: A Review. Int. J. Environ. Sci. Technol. 2022, 19, 12701–12726. [Google Scholar] [CrossRef]
- Gold, M.; Cassar, C.M.; Zurbrügg, C.; Kreuzer, M.; Boulos, S.; Diener, S.; Mathys, A. Biowaste Treatment with Black Soldier Fly Larvae: Increasing Performance through the Formulation of Biowastes Based on Protein and Carbohydrates. Waste Manag. 2020, 102, 319–329. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Adler, P.H.; Myers, H.M. Development of the Black Soldier Fly (Diptera: Stratiomyidae) in Relation to Temperature. Environ. Entomol. 2009, 38, 930–934. [Google Scholar] [CrossRef]
- Brits, D. Improving Feeding Efficiencies of Black Soldier Fly Larvae, Hermetia illucens (L., 1758) (Diptera: Stratiomyidae: Hermetiinae) through Manipulation of Feeding Conditions for Industrial Mass Rearing. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2017. [Google Scholar]
- Holmes, L.A.; Vanlaerhoven, S.L.; Tomberlin, J.K. Relative Humidity Effects on the Life History of Hermetia illucens (Diptera: Stratiomyidae). Environ. Entomol. 2012, 41, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chen, H.W. Using the Köppen Classification to Quantify Climate Variation and Change: An Example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- ur Rehman, K.; ur Rehman, R.; Somroo, A.A.; Cai, M.; Zheng, L.; Xiao, X.; ur Rehman, A.; Rehman, A.; Tomberlin, J.K.; Yu, Z.; et al. Enhanced Bioconversion of Dairy and Chicken Manure by the Interaction of Exogenous Bacteria and Black Soldier Fly Larvae. J. Environ. Manag. 2019, 237, 75–83. [Google Scholar] [CrossRef] [PubMed]
- ur Rehman, K.; Rehman, A.; Cai, M.; Zheng, L.; Xiao, X.; Somroo, A.A.; Wang, H.; Li, W.; Yu, Z.; Zhang, J. Conversion of Mixtures of Dairy Manure and Soybean Curd Residue by Black Soldier Fly Larvae (Hermetia illucens L.). J. Clean. Prod. 2017, 154, 366–373. [Google Scholar] [CrossRef]
- ur Rehman, K.; Cai, M.; Xiao, X.; Zheng, L.; Wang, H.; Soomro, A.A.; Zhou, Y.; Li, W.; Yu, Z.; Zhang, J. Cellulose Decomposition and Larval Biomass Production from the Co-Digestion of Dairy Manure and Chicken Manure by Mini-Livestock (Hermetia illucens L.). J. Environ. Manag. 2017, 196, 458–465. [Google Scholar] [CrossRef]
- Elsayed, M.; Ran, Y.; Ai, P.; Azab, M.; Mansour, A.; Jin, K.; Zhang, Y.; Abomohra, A.E.F. Innovative Integrated Approach of Biofuel Production from Agricultural Wastes by Anaerobic Digestion and Black Soldier Fly Larvae. J. Clean. Prod. 2020, 263, 121495. [Google Scholar] [CrossRef]
- Elsayed, M.; Li, W.; Abdalla, N.S.; Ai, P.; Zhang, Y.; Abomohra, A.E.F. Innovative Approach for Rapeseed Straw Recycling Using Black Solider Fly Larvae: Towards Enhanced Energy Recovery. Renew. Energy 2022, 188, 211–222. [Google Scholar] [CrossRef]
- Seyedalmoosavi, M.M.; Mielenz, M.; Veldkamp, T.; Daş, G.; Metges, C.C. Growth Efficiency, Intestinal Biology, and Nutrient Utilization and Requirements of Black Soldier Fly (Hermetia illucens) Larvae Compared to Monogastric Livestock Species: A Review. J. Anim. Sci. Biotechnol. 2022, 13, 31. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, L.; Qiu, N.; Cai, H.; Tomberlin, J.K.; Yu, Z. Bioconversion of Dairy Manure by Black Soldier Fly (Diptera: Stratiomyidae) for Biodiesel and Sugar Production. Waste Manag. 2011, 31, 1316–1320. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wu, L.; Li, B.; Zhang, D. Reproductive Potential and Nutritional Composition of Hermetia illucens (Diptera: Stratiomyidae) Prepupae Reared on Different Organic Wastes. J. Econ. Entomol. 2020, 113, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Julita, U.; Suryani, Y.; Kinasih, I.; Yuliawati, A.; Cahyanto, T.; Maryeti, Y.; Permana, A.D.; Fitri, L.L. Growth Performance and Nutritional Composition of Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae) Reared on Horse and Sheep Manure. IOP Conf. Ser. Earth Environ. Sci. 2018, 187, 012071. [Google Scholar] [CrossRef]
- Cohen, A.C. Insect Diets: Science and Technology; CRC Press: London, UK, 2003. [Google Scholar]
- Yu, G.H.; Yang, Z.H.; Xia, Q.; Chen, Y.F.; Cheng, P. Effect of Chicken Manure Treated by Gut Symbiotic Bacteria on the Growth and Development of Black Solder Fly Hermetia illucens. Chin. Bull. Entomol. 2010, 47, 1123–1127. [Google Scholar]
- Yu, G.; Cheng, P.; Chen, Y.; Li, Y.; Yang, Z.; Chen, Y.; Tomberlin, J.K. Inoculating Poultry Manure with Companion Bacteria Influences Growth and Development of Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environ. Entomol. 2011, 40, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Chen, Y.; Huang, Y.; Feng, D. Research on Feed Characteristics of Bacillus Natto. Chin. J. Anim. Nutr. 2009, 21, 371–378. [Google Scholar]
- Liu, X.; Chen, X.; Wang, H.; Yang, Q.; Ur Rehman, K.; Li, W.; Cai, M.; Li, Q.; Mazza, L.; Zhang, J.; et al. Dynamic Changes of Nutrient Composition throughout the Entire Life Cycle of Black Soldier Fly. PLoS ONE 2017, 12, e0182601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sripontan, Y.; Chiu, C.I.; Tanansathaporn, S.; Leasen, K.; Manlong, K.; Papadopoulos, N. Modeling the Growth of Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae): An Approach to Evaluate Diet Quality. J. Econ. Entomol. 2020, 113, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of Feedstock on Larval Development and Process Efficiency in Waste Treatment with Black Soldier Fly (Hermetia illucens). J. Clean. Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Nyakeri, E.M.; Ayieko, M.A.; Amimo, F.A.; Salum, H.; Ogola, H.J.O. An Optimal Feeding Strategy for Black Soldier Fly Larvae Biomass Production and Faecal Sludge Reduction. J. Insects Food Feed. 2019, 5, 201–213. [Google Scholar] [CrossRef]
- Saucier, L.; M’ballou, C.; Ratti, C.; Deschamps, M.H.; Lebeuf, Y.; Vandenberg, G.W. Comparison of Black Soldier Fly Larvae Pre-Treatments and Drying Techniques on the Microbial Load and Physico-Chemical Characteristics. J. Insects Food Feed. 2020, 8, 45–64. [Google Scholar] [CrossRef]
- Parodi, A.; Gerrits, W.J.J.; Van Loon, J.J.A.; De Boer, I.J.M.; Aarnink, A.J.A.; Van Zanten, H.H.E. Black Soldier Fly Reared on Pig Manure: Bioconversion Efficiencies, Nutrients in the Residual Material, Greenhouse Gas and Ammonia Emissions. Waste Manag. 2021, 126, 674–683. [Google Scholar] [CrossRef]
- Lee, K.S.; Yun, E.Y.; Goo, T.W. Optimization of Feed Components to Improve Hermetia illucens Growth and Development of Oil Extractor to Produce Biodiesel. Animals 2021, 11, 2573. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Ristow, B.; Rahayu, T.; Putra, N.S.; Widya Yuwono, N.; Nisa’, K.; Mategeko, B.; Smetana, S.; Saki, M.; Nawaz, A.; et al. Black Soldier Fly Larvae (BSFL) and Their Affinity for Organic Waste Processing. Waste Manag. 2022, 140, 1–13. [Google Scholar] [CrossRef]
- Mahmood, S.; Zurbrügg, C.; Tabinda, A.B.; Ali, A.; Ashraf, A. Sustainable Waste Management at Household Level with Black Soldier Fly Larvae (Hermetia illucens). Sustainability 2021, 13, 9722. [Google Scholar] [CrossRef]
- Peng, C.; Zhou, T.; Song, S.; Sun, S. Analysis and Experiment of Feeding Material Process of Hermetia illucens L. Frass Bucket Wheel Based on DEM. Comput. Electron. Agric. 2022, 196, 106855. [Google Scholar] [CrossRef]
- Naser El Deen, S.; van Rozen, K.; Elissen, H.; van Wikselaar, P.; Fodor, I.; van der Weide, R.; Hoek-van den Hil, E.F.; Rezaei Far, A.; Veldkamp, T. Bioconversion of Different Waste Streams of Animal and Vegetal Origin and Manure by Black Soldier Fly Larvae Hermetia illucens L. (Diptera: Stratiomyidae). Insects 2023, 14, 204. [Google Scholar] [CrossRef]
- Fry, J.P.; Mailloux, N.A.; Love, D.C.; Milli, M.C.; Cao, L. Feed Conversion Efficiency in Aquaculture: Do We Measure It Correctly? Environ. Res. Lett. 2018, 13, 024017. [Google Scholar] [CrossRef]
- Waldbauer, G.P. The Consumption and Utilization of Food by Insects. In Advances in Insect Physiology; Beament, J.W.L., Treherne, J.E., Wigglesworth, V.B., Eds.; Academic Press: Cambridge, MA, USA, 1968; Volume 5, pp. 229–288. ISBN 0065-2806. [Google Scholar]
- Morris, R.M. Feed conversion efficiency and the efficiency of the UK food chain. Agric. Syst. 1980, 5, 267–278. [Google Scholar] [CrossRef]
- Pérez, J.; Muñoz-Dorado, J.; De La Rubia, T.; Martínez, J. Biodegradation and Biological Treatments of Cellulose, Hemicellulose and Lignin: An Overview. Int. Microbiol. 2002, 5, 53–63. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, T.; Tan, H.; Lv, X.; Liu, W.; Luo, G. Using Black Soldier Fly Larvae (Hermetiaillucens) Converted the Bioflocs Produced with Shrimp Solid Waste. Aquaculture 2023, 568, 739329. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassauer, F.; Ferdous, J.; Pelletier, N. Manure Valorization Using Black Soldier Fly Larvae: A Review of Current Systems, Production Characteristics, Utilized Feed Substrates, and Bioconversion and Nitrogen Conversion Efficiencies. Sustainability 2023, 15, 12177. https://doi.org/10.3390/su151612177
Grassauer F, Ferdous J, Pelletier N. Manure Valorization Using Black Soldier Fly Larvae: A Review of Current Systems, Production Characteristics, Utilized Feed Substrates, and Bioconversion and Nitrogen Conversion Efficiencies. Sustainability. 2023; 15(16):12177. https://doi.org/10.3390/su151612177
Chicago/Turabian StyleGrassauer, Florian, Jannatul Ferdous, and Nathan Pelletier. 2023. "Manure Valorization Using Black Soldier Fly Larvae: A Review of Current Systems, Production Characteristics, Utilized Feed Substrates, and Bioconversion and Nitrogen Conversion Efficiencies" Sustainability 15, no. 16: 12177. https://doi.org/10.3390/su151612177
APA StyleGrassauer, F., Ferdous, J., & Pelletier, N. (2023). Manure Valorization Using Black Soldier Fly Larvae: A Review of Current Systems, Production Characteristics, Utilized Feed Substrates, and Bioconversion and Nitrogen Conversion Efficiencies. Sustainability, 15(16), 12177. https://doi.org/10.3390/su151612177