The Sources of Polycyclic Aromatic Hydrocarbons in Road Dust and Their Potential Hazard
Abstract
:1. Introduction
2. Methodologies
2.1. Study Area along with Its Sampling Procedures
2.2. Analysis of the Water-Soluble Organic Carbon (WSOC) and PAHs Compositions
2.2.1. Determination of Water-Soluble Organic Carbon (WSOC) Analysis
2.2.2. Extraction and Chemical Analysis of PAHs
2.2.3. Analysis of PAHs Using Gas Chromatograph—Flame Ionisation Detector (GC-FID)
2.2.4. Quality Assurance and Quality Control (QA/QC)
2.3. Source Apportionment and Health Risk Modeling
2.3.1. Source Apportionment Modeling
Diagnostic Ratio (DR)
Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) Models
2.3.2. US EPA Health Risk Modeling
3. Results
3.1. Level of Water-Soluble Organic Carbon (WSOC) in the Road Dust
3.2. The Concentration of PAHs in Road Dust near Bus Stations
4. Discussion
4.1. Determination of Possible Unknown Sources of PAHs in Road Dust
4.1.1. Diagnostic Ratios (DRs)
4.1.2. Multivariate Receptor Modeling Using PCA-MLR
4.2. Human Exposure of PAHs in Road Dust
4.2.1. Carcinogenic Assessment
Benzo[a]pyrene Equivalent Concentration (BaPeq)
Incremental lifetime Cancer Risk (ILCR)
- (a)
- Incremental Lifetime Cancer Risk (ILCR) of the inhalation pathway
- (b)
- Incremental Lifetime Cancer Risk (ILCR) through ingestion pathway
- (c)
- Incremental Lifetime Cancer Risk (ILCR) through dermal pathway
4.2.2. Non-Carcinogenic Assessment
- a.
- Hazard Quotient (HQ) through Inhalation Pathway
- b.
- Hazard Quotient (HQ) through Ingestion Pathway
- c.
- Hazard Quotient (HQ) through Dermal Pathway
- d.
- Hazard Index (HI)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoskins, J.A. Health Effects Due to Indoor Air Pollution. In Survival and Sustainability: Environmental Concerns in the 21st Century; Gökçekus, H., Türker, U., LaMoreaux, J.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 665–676. [Google Scholar]
- Zhang, J.; Smith, K.R. Indoor air pollution: A global health concern. Br. Med. Bull. 2003, 68, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Alghamdi, M.A. Measurement of tyre dust particles in the atmosphere using chemical tracers. Atmos. Environ. 2023, 298, 119607. [Google Scholar] [CrossRef]
- Gbeddy, G.; Egodawatta, P.; Akortia, E.; Goonetilleke, A. Inherent and external factors influencing the distribution of PAHs, hydroxy-PAHs, carbonyl-PAHs and nitro-PAHs in urban road dust. Environ. Pollut. 2022, 308, 119705. [Google Scholar] [CrossRef]
- Li, H.-H.; Yang, Z.-B.; Xu, X.-X.; Zhu, X.-M.; Xian, J.-R.; Yang, Y.-X.; Cheng, Z. Polycyclic aromatic hydrocarbons in street dust from different functional areas in Chengdu, China: Seasonal variation and health risk assessment. Environ. Geochem. Health 2022, 44, 1161–1173. [Google Scholar] [CrossRef] [PubMed]
- Nasrabadi, T.; Ruegner, H.; Schwientek, M.; Ghadiri, A.; Hashemi, S.H.; Grathwohl, P. Dilution of PAHs loadings of particulate matter in air, dust and rivers in urban areas: A comparative study (Tehran megacity, Iran and city of Tübingen, SW-Germany). Sci. Total Environ. 2022, 806, 151268. [Google Scholar] [CrossRef]
- Rybak, J.; Wróbel, M.; Krzyżyńska, R.; Rogula–Kozłowska, W.; Olszowski, T. Is Poland at risk of urban road dust? Comparison studies on mutagenicity of dust. Environ. Pollut. 2022, 314, 120337. [Google Scholar] [CrossRef]
- Arey, J.; Atkinson, R. Photochemical Reactions of PAHs in the Atmosphere. In PAHs: An Ecotoxicological Perspective; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003; pp. 47–63. [Google Scholar]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Luo, J.; Han, Y.; Zhao, Y.; Huang, Y.; Liu, X.; Tao, S.; Liu, J.; Huang, T.; Wang, L.; Chen, K.; et al. Effect of northern boreal forest fires on PAH fluctuations across the arctic. Environ. Pollut. 2020, 261, 114186. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Pan, D.; Zhang, J.; Zhang, Y.; Lu, Z. Source and health risk assessment of soil polycyclic aromatic hydrocarbons under straw burning condition in Changchun City, China. Sci. Total Environ. 2023, 894, 165057. [Google Scholar] [CrossRef]
- Qian, Y.; Yuan, K.; Hong, X.; Xu, Z.; Liang, H. Contamination characteristics of alkyl polycyclic aromatic hydrocarbons in dust and topsoil collected from Huaibei Coalfield, China. Environ. Geochem. Health 2023, 45, 2935–2948. [Google Scholar] [CrossRef]
- Wang, D.-G.; Yang, M.; Jia, H.-L.; Zhou, L.; Li, Y.-F. Polycyclic Aromatic Hydrocarbons in Urban Street Dust and Surface Soil: Comparisons of Concentration, Profile, and Source. Arch. Environ. Contam. Toxicol. 2009, 56, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-F.; Wang, X.-T.; Wang, F.; Jia, Y.; Wu, M.-H.; Sheng, G.-Y.; Fu, J.-M. Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of Shanghai, China. Chemosphere 2009, 75, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Dreyer, A.; Bock, M.; Fiedler, S.; Mehring, M.; Heitmann, T. Source Apportionment of Organic Pollutants of a Highway-Traffic-Influenced Urban Area in Bayreuth (Germany) Using Biomarker and Stable Carbon Isotope Signatures. Environ. Sci. Technol. 2005, 39, 3911–3917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, S.; Wan, C.; Yue, D.; Ye, Y.; Wang, X. Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environ. Pollut. 2008, 153, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.T.T.; Lee, B.-K. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 2009, 74, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Khpalwak, W.; Jadoon, W.A.; Abdel-dayem, S.M.; Sakugawa, H. Polycyclic aromatic hydrocarbons in urban road dust, Afghanistan: Implications for human health. Chemosphere 2019, 218, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-G.; Lin, Q.; Lu, T.-T.; Ke, C.-L.; Sun, R.-X.; Du, F.-Y. Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in surface sediments from Nan’ao Island, a representative mariculture base in South China. Mar. Pollut. Bull. 2013, 75, 310–316. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, C.-S.; Xu, J.; Tian, Y.-Z.; Shi, G.-L.; Feng, Y.-C. Potential source contributions and risk assessment of PAHs in sediments from Taihu Lake, China: Comparison of three receptor models. Water Res. 2012, 46, 3065–3073. [Google Scholar] [CrossRef]
- Krugly, E.; Martuzevicius, D.; Sidaraviciute, R.; Ciuzas, D.; Prasauskas, T.; Kauneliene, V.; Stasiulaitiene, I.; Kliucininkas, L. Characterization of particulate and vapor phase polycyclic aromatic hydrocarbons in indoor and outdoor air of primary schools. Atmos. Environ. 2014, 82, 298–306. [Google Scholar] [CrossRef]
- Beyer, J.; Jonsson, G.; Porte, C.; Krahn, M.M.; Ariese, F. Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: A review. Environ. Toxicol. Pharmacol. 2010, 30, 224–244. [Google Scholar] [CrossRef]
- Veltman, K.; Huijbregts, M.A.; Rye, H.; Hertwich, E.G. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: The case of offshore oil and gas production. Integr. Environ. Assess. Manag. 2011, 7, 678–686. [Google Scholar] [CrossRef]
- Axelsson, G.; Barregard, L.; Holmberg, E.; Sallsten, G. Cancer incidence in a petrochemical industry area in Sweden. Sci. Total Environ. 2010, 408, 4482–4487. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-M.; Sun, Y.-W.; Krebs, N.M.; Sun, D.; Krzeminski, J.; Reinhart, L.; Gowda, K.; Amin, S.; Mallery, S.; Richie, J.P., Jr.; et al. Detection of DNA adducts derived from the tobacco carcinogens, benzo[a]pyrene and dibenzo[def,p]chrysene in human oral buccal cells. Carcinogenesis 2022, 43, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lai, B.; Wei, Y.; Ma, Q.; Liang, H.; Yang, H.; Ye, R.; Zeng, M.; Wang, H.; Wu, Y.; et al. Polluting characteristics, sources, cancer risk, and cellular toxicity of PAHs bound in atmospheric particulates sampled from an economic transformation demonstration area of Dongguan in the Pearl River Delta, China. Environ. Res. 2022, 215, 114383. [Google Scholar] [CrossRef]
- Mallah, M.A.; Changxing, L.; Mallah, M.A.; Noreen, S.; Liu, Y.; Saeed, M.; Xi, H.; Ahmed, B.; Feng, F.; Mirjat, A.A.; et al. Polycyclic aromatic hydrocarbon and its effects on human health: An overeview. Chemosphere 2022, 296, 133948. [Google Scholar] [CrossRef]
- Hennigan, C.J.; Bergin, M.H.; Russell, A.G.; Nenes, A.; Weber, R.J. Gas/particle partitioning of water-soluble organic aerosol in Atlanta. Atmos. Chem. Phys 2009, 9, 3613–3628. [Google Scholar] [CrossRef]
- Stone, E.A.; Snyder, D.C.; Sheesley, R.J.; Sullivan, A.; Weber, R.; Schauer, J. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006. Atmos. Meas. Tech. 2008, 8, 1249–1259. [Google Scholar] [CrossRef]
- Wallace, B.; Purcell, M.; Furlong, J. Total organic carbon analysis as a precursor to disinfection byproducts in potable water: Oxidation technique considerations. J. Environ. Monit. 2002, 4, 35–42. [Google Scholar] [CrossRef]
- Tay, K.S.; Rahman, N.A.; Abas, M.R.B. Magnetic nanoparticle assisted dispersive liquid–liquid microextraction for the determination of 4-n-nonylphenol in water. Anal. Methods 2013, 5, 2933–2938. [Google Scholar] [CrossRef]
- Hassanien, M.A.; Abdel-Latif, N.M. Polycyclic aromatic hydrocarbons in road dust over Greater Cairo, Egypt. J. Hazard. Mater. 2008, 151, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, M.-j.; Kang, Y.; Wang, H.-s.; Leung, A.O.W.; Cheung, K.C.; Wong, M.H. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Sci. Total Environ. 2011, 409, 4519–4527. [Google Scholar] [CrossRef]
- Wu, S.; Liu, X.; Liu, M.; Chen, X.; Liu, S.; Cheng, L.; Lin, X.; Li, Y. Sources, influencing factors and environmental indications of PAH pollution in urban soil columns of Shanghai, China. Ecol. Indic. 2018, 85, 1170–1180. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Akyüz, M.; Çabuk, H. Gas-particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci. Total Environ. 2010, 408, 5550–5558. [Google Scholar] [CrossRef]
- Ali, N.; Ismail, I.M.I.; Khoder, M.; Shamy, M.; Alghamdi, M.; Al Khalaf, A.; Costa, M. Polycyclic aromatic hydrocarbons (PAHs) in the settled dust of automobile workshops, health and carcinogenic risk evaluation. Sci. Total Environ. 2017, 601–602, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Brändli, R.C.; Bucheli, T.D.; Ammann, S.; Desaules, A.; Keller, A.; Blum, F.; Stahel, W.A. Critical evaluation of PAH source apportionment tools using data from the Swiss soil monitoring network. J. Environ. Monit. 2008, 10, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Dickhut, R.M.; Canuel, E.A.; Gustafson, K.E.; Liu, K.; Arzayus, K.M.; Walker, S.E.; Edgecombe, G.; Gaylor, M.O.; MacDonald, E.H. Automotive Sources of Carcinogenic Polycyclic Aromatic Hydrocarbons Associated with Particulate Matter in the Chesapeake Bay Region. Environ. Sci. Technol. 2000, 34, 4635–4640. [Google Scholar] [CrossRef]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Manoli, E.; Kouras, A.; Samara, C. Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 2004, 56, 867–878. [Google Scholar] [CrossRef]
- Pies, C.; Hoffmann, B.; Petrowsky, J.; Yang, Y.; Ternes, T.A.; Hofmann, T. Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere 2008, 72, 1594–1601. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol. 1993, 27, 636–651. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: Roads as sources and sinks. Environ. Sci. Technol. 1993, 27, 1892–1904. [Google Scholar] [CrossRef]
- De La Torre-Roche, R.J.; Lee, W.-Y.; Campos-Díaz, S.I. Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: Analysis of a potential problem in the United States/Mexico border region. J. Hazard. Mater. 2009, 163, 946–958. [Google Scholar] [CrossRef]
- Harrison, R.M.; Smith, D.J.T.; Luhana, L. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environ. Sci. Technol. 1996, 30, 825–832. [Google Scholar] [CrossRef]
- Hopke, P.K. Review of receptor modeling methods for source apportionment. J. Air Waste Manag. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- Jamhari, A.A.; Sahani, M.; Latif, M.T.; Chan, K.M.; Tan, H.S.; Khan, M.F.; Mohd Tahir, N. Concentration and source identification of polycyclic aromatic hydrocarbons (PAHs) in PM10 of urban, industrial and semi-urban areas in Malaysia. Atmos. Environ. 2014, 86, 16–27. [Google Scholar] [CrossRef]
- Khan, M.F.; Hirano, K.; Masunaga, S. Quantifying the sources of hazardous elements of suspended particulate matter aerosol collected in Yokohama, Japan. Atmos. Environ. 2010, 44, 2646–2657. [Google Scholar] [CrossRef]
- Anh, H.Q.; Minh, T.B.; Tran, T.M.; Takahashi, S. Road dust contamination by polycyclic aromatic hydrocarbons and their methylated derivatives in northern Vietnam: Concentrations, profiles, emission sources, and risk assessment. Environ. Pollut. 2019, 254, 113073. [Google Scholar] [CrossRef]
- EPA. Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments); Office of Emergency and Remedial Response; US Environmental Protection Agency: Washington, DC, USA, 2001.
- EPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; Peer Review Draft, OSWER 9355; EPA: Washington, DC, USA, 2001; pp. 4–24.
- Gope, M.; Masto, R.E.; George, J.; Balachandran, S. Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India. Sustain. Cities Soc. 2018, 38, 616–626. [Google Scholar] [CrossRef]
- Hamid, H.H.A.; Latif, M.T.; Nadzir, M.S.M.; Uning, R.; Khan, M.F.; Kannan, N. Ambient BTEX levels over urban, suburban and rural areas in Malaysia. Air Qual. Atmos. Health 2019, 12, 341–351. [Google Scholar] [CrossRef]
- Mihankhah, T.; Saeedi, M.; Karbassi, A. Contamination and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban dust from different land-uses in the most populated city of Iran. Ecotoxicol. Environ. Saf. 2020, 187, 109838. [Google Scholar] [CrossRef]
- Škrbić, B.; Đurišić-Mladenović, N.; Živančev, J.; Tadić, Đ. Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. Sci. Total Environ. 2019, 647, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Tavakol, T.; Lahijanzadeh, A.R.; Jaafarzadeh, N.; Kermani, M. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci. Total Environ. 2015, 505, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Chiu, T.R.; Nanyan, N.F.M.; Ali, M.M. Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Sediments of Kapas Island, Terengganu, Malaysia. Procedia Environ. Sci. 2015, 30, 162–167. [Google Scholar] [CrossRef]
- Omar, N.Y.M.J.; Abas, M.R.B.; Ketuly, K.A.; Tahir, N.M. Concentrations of PAHs in atmospheric particles (PM-10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmos. Environ. 2002, 36, 247–254. [Google Scholar] [CrossRef]
- Wei, C.; Bandowe, B.A.M.; Han, Y.; Cao, J.; Zhan, C.; Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi’an, Central China. Chemosphere 2015, 134, 512–520. [Google Scholar] [CrossRef]
- Bandowe, B.A.M.; Nkansah, M.A. Occurrence, distribution and health risk from polycyclic aromatic compounds (PAHs, oxygenated-PAHs and azaarenes) in street dust from a major West African Metropolis. Sci. Total Environ. 2016, 553, 439–449. [Google Scholar] [CrossRef]
- Tahir, N.M.; Jeen, L.B.; Rahim, H.M.A.; Ariffin, M.; Suratman, S.; Abas, M.R. Polycyclic aromatic hydrocarbons in urban soils of Kemaman. Malay. J. Analyt. Sci. 2008, 12, 69–76. [Google Scholar]
- Bixiong, Y.; Zhihuan, Z.; Ting, M. Pollution sources identification of polycyclic aromatic hydrocarbons of soils in Tianjin area, China. Chemosphere 2006, 64, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lee, S.C.; Ho, K.F.; Wang, X.M.; Zou, S.C. Particle-associated polycyclic aromatic hydrocarbons in urban air of Hong Kong. Atmos. Environ. 2003, 37, 5307–5317. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Huang, Q.-h.; Li, W.-y.; Tang, Y.-j.; Zhao, J.-f. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Huangpu River, Shanghai, China. Sci. Total Environ. 2009, 407, 2931–2938. [Google Scholar] [CrossRef]
- Jadoon, W.A.; Sakugawa, H. Concentrations of polycyclic aromatic hydrocarbons: Their potential health risks and sources at three non-urban sites in Japan. J. Environ. Sci. Health Part A 2016, 51, 884–899. [Google Scholar] [CrossRef]
- Tham, Y.W.F.; Takeda, K.; Sakugawa, H. Polycyclic aromatic hydrocarbons (PAHs) associated with atmospheric particles in Higashi Hiroshima, Japan: Influence of meteorological conditions and seasonal variations. Atmos. Res. 2008, 88, 224–233. [Google Scholar] [CrossRef]
- Martinho, F.C.G.; Farinha, J.P.S. An overview of the use of nanoclay modified bitumen in asphalt mixtures for enhanced flexible pavement performances. Road Mater. Pavement Des. 2019, 20, 671–701. [Google Scholar] [CrossRef]
- Keiluweit, M.; Kleber, M. Molecular-Level Interactions in Soils and Sediments: The Role of Aromatic π-Systems. Environ. Sci. Technol. 2009, 43, 3421–3429. [Google Scholar] [CrossRef]
- Minami, I. Molecular Science of Lubricant Additives. Appl. Sci. 2017, 7, 445. [Google Scholar] [CrossRef]
- Wei, D.P.; Spikes, H.A.; Korcek, S. The Lubricity of Gasoline. Tribol. Trans. 1999, 42, 813–823. [Google Scholar] [CrossRef]
- Kong, S.; Shi, J.; Lu, B.; Qiu, W.; Zhang, B.; Peng, Y.; Zhang, B.; Bai, Z. Characterization of PAHs within PM10 fraction for ashes from coke production, iron smelt, heating station and power plant stacks in Liaoning Province, China. Atmos. Environ. 2011, 45, 3777–3785. [Google Scholar] [CrossRef]
- Mostert, M.M.R.; Ayoko, G.A.; Kokot, S. Application of chemometrics to analysis of soil pollutants. TrAC Trends Anal. Chem. 2010, 29, 430–445. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Kumar, R.; Saxena, P.; Sinha, S. Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere. Environ. Monit. Assess. 2008, 136, 183–196. [Google Scholar] [CrossRef]
- Fang, G.-C.; Chang, C.-N.; Wu, Y.-S.; Fu, P.P.-C.; Yang, I.L.; Chen, M.-H. Characterization, identification of ambient air and road dust polycyclic aromatic hydrocarbons in central Taiwan, Taichung. Sci. Total Environ. 2004, 327, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Kim, Y.J.; Kang, C.H. Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos. Environ. 2002, 36, 2917–2924. [Google Scholar] [CrossRef]
- Sulong, N.A.; Latif, M.T.; Sahani, M.; Khan, M.F.; Fadzil, M.F.; Tahir, N.M.; Mohamad, N.; Sakai, N.; Fujii, Y.; Othman, M.; et al. Distribution, sources and potential health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 collected during different monsoon seasons and haze episode in Kuala Lumpur. Chemosphere 2019, 219, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Popovicheva, O.B.; Irimiea, C.; Carpentier, Y.; Ortega, I.K.; Kireeva, E.D.; Shonija, N.K.; Schwarz, J.; Vojtíšek-Lom, M.; Focsa, C. Chemical composition of diesel/biodiesel particulate exhaust by FTIR spectroscopy and mass spectrometry: Impact of fuel and driving cycle. Aerosol Air Qual. Res. 2017, 17, 1717–1734. [Google Scholar] [CrossRef]
- Masih, A.; Taneja, A. Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 2006, 65, 449–456. [Google Scholar] [CrossRef]
- Motelay-Massei, A.; Ollivon, D.; Garban, B.; Tiphagne-Larcher, K.; Zimmerlin, I.; Chevreuil, M. PAHs in the bulk atmospheric deposition of the Seine river basin: Source identification and apportionment by ratios, multivariate statistical techniques and scanning electron microscopy. Chemosphere 2007, 67, 312–321. [Google Scholar] [CrossRef]
- Sarkar, S.; Khillare, P.S. Profile of PAHs in the inhalable particulate fraction: Source apportionment and associated health risks in a tropical megacity. Environ. Monit. Assess. 2013, 185, 1199–1213. [Google Scholar] [CrossRef] [PubMed]
- Simcik, M.F.; Eisenreich, S.J.; Lioy, P.J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos. Environ. 1999, 33, 5071–5079. [Google Scholar] [CrossRef]
- Zuo, Q.; Duan, Y.H.; Yang, Y.; Wang, X.J.; Tao, S. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China. Environ. Pollut. 2007, 147, 303–310. [Google Scholar] [CrossRef]
- Caricchia, A.M.; Chiavarini, S.; Pezza, M. Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the city of Naples (Italy). Atmos. Environ. 1999, 33, 3731–3738. [Google Scholar] [CrossRef]
- Pei, C.S. Coal as an energy resource in Malaysia. Geol. Soc. Malays. 1993, 3, 399–410. [Google Scholar]
- Sicre, M.; Marty, J.; Saliot, A.; Aparicio, X.; Grimalt, J.; Albaiges, J. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmos. Environ. 1987, 21, 2247–2259. [Google Scholar] [CrossRef]
Compound | Mean ± Std. Deviation | Median (Min–Max) |
---|---|---|
TOC | 3026 ± 2104 | 2142 (831.3–7886) |
ACY | 69.80 ± 20.85 | 77.57 (37.07–90.24) |
ACP | 25.22 | 25.22 (25.22–25.22) |
FLR | 42.63 ± 11.82 | 48.23 (19.33–49.48) |
PHE | 61.99 ± 3.31 | 61.99 (59.66–63.34) |
ANT | 265.9 ± 168.5 | 271.3 (73.42–483.2) |
PYR | 348.5 ± 292.3 | 313.6 (22.15–746.0) |
BaA | 578.5 ± 348.5 | 589.6 (84.71–1023) |
CHY | 150.1 ± 47.14 | 158.9 (59.76–198.6) |
BbF | 491.3 ± 159.6 | 508.3 (208.2–674.4) |
BkF | 191.2 ± 76.58 | 199.8 (93.78–280.5) |
BaP | 249.6 ± 39.36 | 250.4 (122.8–374.8) |
IcP | 805.5 ± 304.1 | 917.5 (290.4–1094) |
BgP | 622.1 ± 227.9 | 710.7 (248.8–800.2) |
Total PAHs | 2458 ± 2251 | 1848 (137.8–5813) |
Variables | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
Acenapthylene | 0.861 | 0.293 | 0.254 |
Fluorene | 0.937 | 0.247 | 0.092 |
Anthracene | 0.263 | 0.283 | 0.907 |
Pyrene | 0.203 | 0.316 | 0.916 |
Benzo[a]anthracene | 0.199 | 0.660 | 0.694 |
Chrysene | 0.896 | 0.292 | 0.198 |
Benzo[b]fluoranthene | 0.226 | 0.868 | 0.405 |
Benzo[k]fluoranthene | 0.757 | 0.407 | 0.405 |
Benzo[a]pyrene | 0.527 | 0.730 | 0.217 |
Indeno[1,2,3-c,d]pyrene | 0.420 | 0.816 | 0.334 |
Benzo[g,h,i]perylene | 0.460 | 0.791 | 0.314 |
Eigenvalues | 8.035 | 1.513 | 0.747 |
Variance (%) | 73.04 | 13.75 | 6.789 |
Cumulative (%) | 73.04 | 86.79 | 93.58 |
PAHs Sources | Oil spills | Fuel combustion | Natural gas and coal burning |
Pathway | Children | Adult | |
---|---|---|---|
ILCR | Inhalation | 1.86 × 10−11 | 5.81 × 10−11 |
Ingestion | 9.60 × 10−7 | 7.49 × 10−7 | |
Dermal | 1.20 × 10−6 | 1.33 × 10−6 | |
Total | 2.16 × 10−6 | 2.08 × 10−6 | |
HQ | Inhalation | 1.617 × 10−6 | 1.386 × 10−6 |
Ingestion | 1.100 × 10−2 | 1.178 × 10−3 | |
Dermal | 4.003 × 10−3 | 6.112 × 10−4 | |
HI | Total | 1.500 × 10−2 | 1.791 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hishamuddin, N.H.; Khan, M.F.; Suradi, H.; Siraj, B.M.Z.; Islam, M.T.; Sairi, N.A.; Tajuddin, H.A.; Jamil, A.K.M.; Akanda, M.J.H.; Yusoff, S. The Sources of Polycyclic Aromatic Hydrocarbons in Road Dust and Their Potential Hazard. Sustainability 2023, 15, 12532. https://doi.org/10.3390/su151612532
Hishamuddin NH, Khan MF, Suradi H, Siraj BMZ, Islam MT, Sairi NA, Tajuddin HA, Jamil AKM, Akanda MJH, Yusoff S. The Sources of Polycyclic Aromatic Hydrocarbons in Road Dust and Their Potential Hazard. Sustainability. 2023; 15(16):12532. https://doi.org/10.3390/su151612532
Chicago/Turabian StyleHishamuddin, Nurul Hidayah, Md Firoz Khan, Hamidah Suradi, B. M. Zuhair Siraj, Md. Towhidul Islam, Nor Asrina Sairi, Hairul Anuar Tajuddin, Arniza Khairani Mohd Jamil, Md. Jahurul Haque Akanda, and Sumiani Yusoff. 2023. "The Sources of Polycyclic Aromatic Hydrocarbons in Road Dust and Their Potential Hazard" Sustainability 15, no. 16: 12532. https://doi.org/10.3390/su151612532
APA StyleHishamuddin, N. H., Khan, M. F., Suradi, H., Siraj, B. M. Z., Islam, M. T., Sairi, N. A., Tajuddin, H. A., Jamil, A. K. M., Akanda, M. J. H., & Yusoff, S. (2023). The Sources of Polycyclic Aromatic Hydrocarbons in Road Dust and Their Potential Hazard. Sustainability, 15(16), 12532. https://doi.org/10.3390/su151612532