Analysis of Ningxia Hui Autonomous District’s Gray Water Footprint from the Perspective of Water Sustainability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assessment of the Gray Water Footprint
2.2.1. Gray Water Footprint
- (1)
- Gray water footprint calculation of industrial and domestic sectors
- (2)
- Gray water footprint calculation of the agricultural sector
- (3)
- Regional gray water footprint
- (4)
- Gray water footprint intensity
- (5)
- Remaining gray water footprint
- (6)
- Water pollution level
2.2.2. Decomposition Analysis
2.2.3. Data Sources
2.2.4. Sample Collection
3. Results
3.1. Analysis of the GWF
3.1.1. Changes in the GWF
3.1.2. Remaining Gray Water Footprint
3.1.3. Gray Water Footprint Intensity
3.2. Concentrations of Contaminants in River and Groundwater
4. Discussion
4.1. Driving Forces of GWF Change
4.2. Effect of the Pollutant Load on Water
4.3. Implications in Water Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Z.W.; Li, B.; Xia, R.; Ma, S.Q.; Jia, R.N.; Ma, C.; Wang, L.; Chen, Y.; Bin, L.L. Understanding China’s industrialization driven water pollution stress in 2002–2015—A multi-pollutant based net gray water footprint analysis. J. Environ. Manag. 2022, 310, 114735. [Google Scholar] [CrossRef] [PubMed]
- Amy, M. As Cape Town water crisis deepens, scientists prepare for ’Day Zero’. Nature 2018, 554, 13–14. [Google Scholar]
- Wang, Y.Q.; Xian, C.F.; Ouyang, Z.Y. Integrated assessment of sustainability in urban water resources utilization in China based on grey water footprint. Acta Ecol. Sin. 2021, 8, 2983–2995. [Google Scholar]
- István, P. OECD environmental outlook to 2050. The Consequences of Inaction. Hung. Geogr. Bull. 2012, 61, 343–345. [Google Scholar]
- He, Z.W.; Xiang, P.A. An analysis of the variations and driving factors of grey water footprint in Hunan Province. China Rural. Water Hydropower 2018, 10, 19–26. [Google Scholar]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Hoekstra, M.M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water. Environ. Sci. Technol. 2015, 49, 12860–12868. [Google Scholar] [CrossRef]
- Li, C.H.; Xu, M.; Wang, X.; Tan, Q. Spatial analysis of dual-scale water stresses based on water footprint accounting in the Haihe River Basin, China. Ecol. Indic. 2018, 1, 254–267. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, H.j.; Geng, Y.; Francisco, M. China’s provincial gray water footprint characteristic and driving forces. Sci. Total Environ. 2019, 677, 427–435. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Sun, C.Z. Driving effect measurements and spatial-temporal variation of the per capita gray water ecological footprint in China. Acta Ecol. Sin. 2018, 38, 4596–4608. [Google Scholar]
- Aldaya, M.M.; Rodriguez, C.I.; Fernandez-Poulussen, A.; Merchan, D.; Beriain, M.J.; Llamas, R. Grey water footprint as an indicator for diffuse nitrogen pollution: The case of Navarra, Spain. Sci. Total Environ. 2020, 698, 134338.1–134338.13. [Google Scholar] [CrossRef]
- Li, S.N.; Wang, Y.; Luo, J.; Jiang, P.P.; Chen, H.Y. Spatio-temporal variations and driving factors of grey water footprint in Fujian Province. Acta Ecol. Sin. 2020, 40, 7952–7965. [Google Scholar]
- Wu, Z.; Tian, G.L.; Xia, Q.; Hu, H.; Li, J.W. Connotation, calculation and influencing factors of the water-use rights benchmark price: A case study of agricultural water use in the Ningxia Yellow River irrigation area. Agric. Water Manag. 2023, 283, 108300. [Google Scholar] [CrossRef]
- Bai, L.; Liu, X.S. Quality analysis of shallow groundwater in Yinchuan Plain. Ningxia Eng. Technol. 2019, 18, 280–282. [Google Scholar]
- Li, J.; Wang, W.K.; Cheng, D.W.; Li, Y.; Wu, P.; Huang, X.Q. Hydrogeological structure modelling based on an integrated approach using multi-source data. J. Hydrol. 2021, 600, 126435. [Google Scholar] [CrossRef]
- Huang, X.R.; Jia, L.; Chen, D.; You, J.J.; Guo, Z.H. Analysis of the coordination relationship between water resources and industrial development in Ningxia. Yellow River 2021, 5, 74–79. [Google Scholar]
- Chen, Y.P.; Fu, B.; Zhao, Y.; Wang, K.B.; Zhao, M.M.; Ma, J.F.; Wu, J.H.; Xu, C.; Liu, W.G.; Wang, H. Sustainable development in the Yellow River Basin: Issues and strategies. J. Clean. Prod. 2020, 263, 121223. [Google Scholar] [CrossRef]
- Wang, X.D.; Zheng, W.D.; Tian, W.; Gao, Y.M.; Wang, X.Z.; Tian, Y.Q.; Li, J.S.; Zhang, X.Y. Groundwater hydrogeochemical characterization and quality assessment based on integrated weight matter-element extension analysis in Ningxia, upper Yellow River, northwest China. Ecol. Indic. 2022, 135, 108525. [Google Scholar] [CrossRef]
- Hou, K.; Yang, M.; Qian, H.; Lin, T.; Xu, P.P. The background values of ammonia-nitrogen, total phosphorus and COD of the mainstream of Yellow River within Ningxia Province. J. Irrig. Drain. 2017, 8, 65–71. [Google Scholar]
- Voccia, D.; Mortella, G.; Ferrari, F.; Fontanella, M.C.; Trevisan, M.; Lamastra, L. The anthropic pressure on the grey water footprint: The case of the Vulnerable Areas of the Emilia-Romagna region in Italy. Sustainability 2022, 14, 16353. [Google Scholar] [CrossRef]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Standardization Administration of the People's Republic of China: Beijing, China, 2002.
- GB 14848-2017; Standards for Groundwater Quality. Standardization Administration of the People’s Republic of China: Beijing, China, 2017.
- Li, Z.H.; Wu, H.W.; Deng, X.Z. Spatial Pattern of Water Footprints for Crop Production in Northeast China. Sustainability 2022, 14, 13649. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K. Globalization of Water: Sharing the Planet’s Freshwater Resources; Wiley-Blackwell: Oxford, UK, 2008. [Google Scholar]
- Chen, J.; Gao, Y.Y.; Qian, H.; Jia, H.; Zhang, Q.Y. Insights into water sustainability from a grey water footprint perspective in an irrigated region of the Yellow River Basin. J. Clean. Prod. 2021, 316, 128329. [Google Scholar] [CrossRef]
- Bureau of Statistics of Ningxia. Ningxia Statistic Yearbook; Ningxia Statistics Press: Yinchuan, China; Available online: http://nxdata.com.cn/publish.htm?cn=G01 (accessed on 18 August 2023).
- Galloway, J.N.; Aber, J.D.; Willem, E.J.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Jack, C.B. The nitrogen cascade. Bioscience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Miglietta, P.P.; Toma, P.; Fanizzi, F.P.; De Donno, A.; Coluccia, B.; Migoni, D.; Bagordo, F.; Serio, F. A grey water footprint assessment of groundwater chemical pollution: Case study in Salento (Southern Italy). Sustainability 2017, 9, 799. [Google Scholar] [CrossRef]
- ANG, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Zhang, C.J.; Zhao, Y.; Shi, C.F.; Chiu, Y. Can China achieve its water use peaking in 2030? A scenario analysis based on LMDI and Monte Carlo method. J. Clean. Prod. 2021, 278, 123214. [Google Scholar] [CrossRef]
- Ningxia Water Conservancy. Ningxia Water Resource Bulletin; Ningxia Statistics Press: Yinchuan, China. Available online: http://slt.nx.gov.cn/nxsearch/search.html?code=17c7942ea47&tenantId=33&searchWord=%E6%B0%B4%E8%B5%84%E6%BA%90%E5%85%AC%E6%8A%A5 (accessed on 18 August 2023).
- People’s Publishing House. Action Plan for Prevention and Control of Water Pollution; People’s Publishing House: Beijing, China, 2015. [Google Scholar]
- Du, J.; Yang, Z.H.; Yang, G.Y.; Li, S.Y.; Luo, Z.T. Driving force analysis of agricultural economic growth related to water utilization effects based on LMDI method in Ningxia, northwest China. Water 2021, 13, 3639. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Chinese Statistical Yearbook; China Statistics Press: Beijing, China, 2019. [Google Scholar]
- Omer, A.; Elagib, N.A.; Zhuguo, M.; Saleem, F.; Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 2020, 749, 141446. [Google Scholar] [CrossRef]
- Wang, S.J.; Yan, M.; Yan, Y.X. Contributions of climate change and human activities to the changes in runoff increment in different sections of the Yellow River. Quat. Int. 2012, 282, 66–77. [Google Scholar] [CrossRef]
- Wang, W.H.; Jing, H.F.; Guo, X.X.; Dou, B.Y.; Zhang, W.S. Analysis of Water and Salt Spatio-Temporal Distribution along Irrigation Canals in Ningxia Yellow River Irrigation Area, China. Sustainability 2023, 15, 12114. [Google Scholar] [CrossRef]
- Wang, Z.P.; Tian, J.C.; Feng, K.P. Response of runoff in Ningxia section of Yellow River Basin of China to climate changes. Appl. Ecol. Environ. Res. 2019, 17, 7855–7863. [Google Scholar] [CrossRef]
Region | Nitrogen Fertilizer Application (t) | Industrial Wastewater COD Discharge (t) | Domestic Wastewater COD Discharge (t) | GDP (¥ 104) | Water Resource (108 m3) | Population |
---|---|---|---|---|---|---|
Total | 519,202.56 | 46,864.64 | 29,007.17 | 30,748,826.50 | 11.10 | 6,842,416 |
Yinchuan City | 127,878.89 | 7896.84 | 8198.84 | 14,763,377.33 | 1.51 | 2,408,675 |
Shizuishan City | 102,421.89 | 2878.94 | 6784.06 | 4,669,425.40 | 1.34 | 765,032 |
Wuzhong City | 135,392.78 | 12,665.77 | 5465.49 | 4,479,482.78 | 1.24 | 1,364,507 |
Guyuan City | 49,712.78 | 9064.69 | 3598.64 | 2,383,784.10 | 5.53 | 1,197,406 |
Zhongwei City | 103,796.22 | 14,358.40 | 4960.14 | 3,368,340.20 | 1.49 | 1,106,796 |
Sector | Year | Total | Yinchuan City | Shizuishan City | Wuzhong City | Guyuan City | Zhongwei City |
---|---|---|---|---|---|---|---|
Agricultural sector | 2012 | 21.89 | 6.20 | 3.97 | 5.60 | 1.78 | 4.34 |
2013 | 22.36 | 6.39 | 4.08 | 5.66 | 1.88 | 4.34 | |
2014 | 21.52 | 5.63 | 4.08 | 5.51 | 1.98 | 4.32 | |
2015 | 20.88 | 5.12 | 4.15 | 5.36 | 2.00 | 4.25 | |
2016 | 20.99 | 5.13 | 4.13 | 5.48 | 2.06 | 4.20 | |
2017 | 20.93 | 5.17 | 4.19 | 5.53 | 1.99 | 4.05 | |
2018 | 19.73 | 4.36 | 4.10 | 5.25 | 2.13 | 3.89 | |
2019 | 19.51 | 4.11 | 4.12 | 5.21 | 2.07 | 4.00 | |
2020 | 19.09 | 3.93 | 4.05 | 5.14 | 2.01 | 3.97 | |
Industrial sector | 2012 | 51.06 | 7.74 | 2.61 | 16.56 | 9.93 | 13.23 |
2013 | 49.97 | 7.74 | 2.43 | 16.58 | 8.78 | 13.43 | |
2014 | 48.40 | 6.45 | 2.42 | 14.12 | 8.80 | 15.75 | |
2015 | 32.39 | 4.48 | 1.82 | 6.05 | 3.77 | 15.32 | |
2016 | 9.50 | 1.98 | 0.61 | 0.50 | 2.23 | 3.91 | |
2017 | 4.68 | 1.00 | 0.73 | 0.48 | 1.84 | 0.42 | |
2018 | 4.92 | 0.83 | 0.45 | 0.54 | 2.60 | 0.12 | |
2019 | 5.24 | 0.73 | 0.40 | 0.57 | 2.56 | 0.08 | |
2020 | 0.46 | 0.02 | 0.17 | 0.08 | 0.11 | 0.08 | |
Domestic sector | 2012 | 7.25 | 0.84 | 1.61 | 1.66 | 1.53 | 1.61 |
2013 | 5.57 | 0.12 | 1.54 | 1.35 | 1.26 | 1.30 | |
2014 | 6.20 | 0.64 | 1.57 | 1.18 | 1.45 | 1.35 | |
2015 | 18.12 | 4.03 | 2.42 | 4.75 | 2.97 | 3.95 | |
2016 | 21.12 | 6.06 | 3.09 | 4.44 | 2.87 | 4.67 | |
2017 | 17.49 | 5.22 | 2.96 | 3.52 | 1.87 | 3.92 | |
2018 | 15.37 | 5.07 | 3.05 | 2.36 | 1.85 | 3.05 | |
2019 | 12.15 | 4.09 | 4.01 | 2.08 | 1.10 | 0.86 | |
2020 | 9.54 | 1.40 | 7.15 | 0.62 | 0.27 | 0.10 | |
Total | 2012 | 80.20 | 14.78 | 8.19 | 23.83 | 13.24 | 19.18 |
2013 | 77.90 | 14.26 | 8.05 | 23.60 | 11.92 | 19.08 | |
2014 | 76.11 | 12.72 | 8.07 | 20.81 | 12.23 | 21.42 | |
2015 | 71.38 | 13.63 | 8.39 | 16.16 | 8.73 | 23.52 | |
2016 | 51.62 | 13.17 | 7.83 | 10.42 | 7.15 | 12.77 | |
2017 | 43.09 | 11.38 | 7.88 | 9.52 | 5.69 | 8.39 | |
2018 | 40.03 | 10.25 | 7.60 | 8.15 | 6.58 | 7.06 | |
2019 | 36.90 | 8.94 | 8.53 | 7.86 | 5.73 | 4.93 | |
2020 | 29.09 | 5.34 | 11.37 | 5.84 | 2.39 | 4.14 |
Year | Total GWF | Total Water Resource | Water Resource (Yellow River) | Original WPL | Modified WPL |
---|---|---|---|---|---|
2012 | 79.21 | 10.81 | 60.89 | 7.33 | 1.30 |
2013 | 76.89 | 11.27 | 63.30 | 6.83 | 1.21 |
2014 | 75.25 | 10.07 | 61.61 | 7.48 | 1.22 |
2015 | 70.44 | 9.16 | 62.03 | 7.69 | 1.14 |
2016 | 51.34 | 9.59 | 56.09 | 5.36 | 0.92 |
2017 | 35.13 | 10.77 | 56.67 | 3.26 | 0.62 |
2018 | 33.26 | 14.67 | 55.87 | 2.27 | 0.60 |
2019 | 29.06 | 12.58 | 59.74 | 2.31 | 0.49 |
2020 | 29.09 | 11.04 | 58.84 | 2.64 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, C.; Qian, Y.; Liu, F.; Cui, X.; Meng, S. Analysis of Ningxia Hui Autonomous District’s Gray Water Footprint from the Perspective of Water Sustainability. Sustainability 2023, 15, 12638. https://doi.org/10.3390/su151612638
Yue C, Qian Y, Liu F, Cui X, Meng S. Analysis of Ningxia Hui Autonomous District’s Gray Water Footprint from the Perspective of Water Sustainability. Sustainability. 2023; 15(16):12638. https://doi.org/10.3390/su151612638
Chicago/Turabian StyleYue, Chen, Yong Qian, Feng Liu, Xiangxiang Cui, and Suhua Meng. 2023. "Analysis of Ningxia Hui Autonomous District’s Gray Water Footprint from the Perspective of Water Sustainability" Sustainability 15, no. 16: 12638. https://doi.org/10.3390/su151612638
APA StyleYue, C., Qian, Y., Liu, F., Cui, X., & Meng, S. (2023). Analysis of Ningxia Hui Autonomous District’s Gray Water Footprint from the Perspective of Water Sustainability. Sustainability, 15(16), 12638. https://doi.org/10.3390/su151612638