A Real-Time Measurement Method and System for the Harvesting Area of a Grain Combine Harvester
Abstract
:1. Introduction
- (1)
- The proposed method measures the area of grain harvesting operations for irregularly shaped and sized land parcels with high precision in real time at low cost.
- (2)
- The system has established a recognition model for the effective identification of operation points from the positioning information, and based on this, the effective travel distance between the operation points within the sampling interval is calculated to obtain harvesting operation area in real time.
- (3)
- The fusion area measurement algorithm in the system combines intelligent measurement and circular measurement, effectively increasing the accuracy of measurements.
2. Materials and Methods
2.1. Real-Time Measurement System for Harvesting Area
2.2. Harvest Area Measurement Using the Human–Machine Interaction System
2.3. Real-Time Measurement of the Harvesting Area
2.4. Test Design
2.4.1. Simulation Test
2.4.2. Field Tests
3. Results
3.1. Simulation Test: Intelligent Measurement Results
3.2. Simulation Test Circle Measurement Results
3.3. Field Test Result Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, L.; Guan, J.J.; He, J.; Man, Z.X.; Tian, L.; Luo, X.W. Design and experiment of automatic driving operation system of peanut harvester based on BDS. Trans. Chin. Soc. Agric. Mach. 2022, 53, 21–27. [Google Scholar] [CrossRef]
- Guan, Z.H.; Mu, S.L.; Wu, C.Y.; Chen, K.Y.; Liao, Y.T.; Ding, Y.C.; Liao, Q.X. Steering kinematic analysis and experiment of tracked combine harvester working in paddy field. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2020, 36, 29–38. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Qi, S.M.; Zhang, M. Spatial flow law of cross-regional operation of wheat combine harvesters in China. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 19–27. [Google Scholar] [CrossRef]
- Xie, D.M.; Wang, X.C.; Wu, J.Q. Research on the spatial spillover effect of the level of agricultural mechanization on the technical efficiency of grain production in China. J. Chin. Agric. Mech. 2023, 44, 223–231. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S. Research on optimal allocation of cross regional operation of agricultural achinery in heilongjiang reclamation area. J. Heilongjiang Bayi Agric. Univ. 2022, 34, 134–140. [Google Scholar] [CrossRef]
- Ruan, D.Y.; Zhou, J. Research progress on market differentiation of agricultural machinery cross regional operation service and its causes. Hubei Agric. Sci. 2021, 60, 9–13. [Google Scholar] [CrossRef]
- Zhao, N.; Jin, C.Q.; Wang, C.; Tang, X.H.; Guo, Z. Research progress on intelligent technology of grain combined harvester cleaning system. J. Chin. Agric. Mech. 2023, 44, 163–170. [Google Scholar] [CrossRef]
- He, X.; Chen, X.; Qu, Z.; Lan, M.M.; Wang, W.Z. Review on application research and development of intelligent technology in the process of wheat harvest. J. Henan Agric. Univ. 2022, 56, 341–354. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Xu, S.C.; Wang, Z.; Wang, Z.; Liu, Z.Q.; Li, J.R.; Liu, X.Y.; Chang, K. Anti-jamming strategy of BeiDou satellite positioning based on navigation warfare. J. Navig. Position. 2023, 11, 24–29. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.G.; Bai, W.H.; Sun, Y.Q.; Liao, M.; Han, Y. Analysis of beidou radio occultation data from fy-3d satellite. Chin. J. Space Sci. 2022, 42, 476–484. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X.M.; Liu, J.Z.; Li, H.J. Application of GPS double-difference ambiguity in real-time pecise point positioning. J. Navig. Position. 2023, 11, 134–141. [Google Scholar] [CrossRef]
- Lü, D.S.; Xue, E.; Zhao, Y. Monitoring accuracy analysis based on low cost GNSS receiver. J. Navig. Position. 2022, 10, 185–190. [Google Scholar] [CrossRef]
- Zhang, L.; Li, M.; Yao, L.M.; Xie, J.X.; Xiao, X.; Huang, J.J.; Huang, J.Q.; Li, X.M.; Fang, K. Design of farmland area measuring instrument based on beidou satellite navigation system. INMATEH-Agric. Eng. 2022, 68, 99–109. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Li, J.; Liu, B.; Xie, Y.; Gong, H. Measurement of agricultural machinery operation area based on improved Alpha Shapes algorithm. J. Chin. Agric. Mech. 2019, 40, 144–148. [Google Scholar] [CrossRef]
- Zeng, Y.M. Research on Measuring Technology of Small Farm Machine Working Area Based on Multi-Sensor. Master’s Thesis, Guizhou University, Guiyang, China, 2020. [Google Scholar] [CrossRef]
- Qi, H.; Zhou, T.; Yang, F.; Xiong, Z. Agricultural Machinery Working Area Calculation Method and System Based on Machine Learning. Chinese Patent CN114662621A, 24 May 2022. [Google Scholar]
- Chen, Y.; Han, F.; Wang, W.; Yan, L.; Zhang, L.; Dong, X.; Huang, Y.; Guo, F. A Multi-Sensor Fusion System for Accurate Measurement of Agricultural Machinery Working Area. Chinese Patent CN114608439A, 12 March 2022. [Google Scholar]
- Lu, Z.X.; Zhong, W.J.; Diao, X.Y.; Mei, S.K.; Zhou, J.; Cheng, Z. Measurement of field area based on tractor operation trajectory. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2015, 31, 169–176. [Google Scholar] [CrossRef]
- Xiong, Z.G.; Wu, T.Q.; He, J.; Ye, Z.H.; Ao, B.Q. Design of automatic measurement system for field working area in high-speed rice transplanter. Comput. Meas. Control 2015, 23, 2643–2646. [Google Scholar] [CrossRef]
- Yang, F.; Wei, Z.Y. Design of land area measuring instrument based on gps satellite positioning. Autom. Instrum. 2019, 34, 50–69. [Google Scholar] [CrossRef]
- Tang, Y. Analysis of area measurement method based on two handheld GPS. Mine Surveting 2015, 3, 69–71. [Google Scholar] [CrossRef]
- Dong, K.; Liu, W.G.; Meng, Z.J.; Fu, W.Q.; Wu, G.W. Handheld terminal design for farmland area measurement. J. Geomat. 2022, 47, 91–95. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, S.F.; Miao, C.W.; Li, Y.Y. Self-recovery monte carlo localization algorithm. J. Optoelectron. Laser 2023, 34, 43–51. [Google Scholar] [CrossRef]
- Xu, C.L.; Shu, H.M. Monte carlo approximate solution to a class of multiple integral and its locally weighted regression fitting. J. Chongqing Univ. Technol. (Nat. Sci.) 2022, 36, 222–234. [Google Scholar] [CrossRef]
- Li, W.B.; Ricardo, H.N. Two-scale methods for convex envelopes. Math. Comp. 2022, 91, 111–139. [Google Scholar] [CrossRef]
- Liu, H.B.; Geng, D.X.; Wu, G.B.; Sun, G.D.; Liang, Z. Research on forward kinematics of mechanical arm and workspace of its end robot hand. Mach. Tool Hydraul. 2022, 50, 15–20. [Google Scholar] [CrossRef]
- Gregorio, F.D.; Trajkovic, J.; Roperti, C.; Marcantoni, E.; Luzio, P.D.; Avenanti, A.; Thut, G.; Romei, V. Tuning alpha rhythms to shape conscious visual perception. Curr. Biol. 2022, 32, 988–998. [Google Scholar] [CrossRef] [PubMed]
- Lü, G.F.; Guo, H.J. Volume research of 3D model based on Alpha Shape. Comput. Technol. Autom. 2023, 42, 160–165. [Google Scholar] [CrossRef]
Type of Work Area | Rectangle | Triangle | Sector | Polygon | |
---|---|---|---|---|---|
Kubota T16 mu measuring instrument | Measurement value (m2) | 725.4 | 387.2 | 430.6 | 653.9 |
System intelligent mode measurement results | Measurement mean (m2) | 755.6 | 362.6 | 459.3 | 704.8 |
Absolute error (m2) | 30.2 | 24.6 | 28.7 | 50.9 | |
Accuracy rate (%) | 95.84 | 93.65 | 93.33 | 92.22 |
Type of Work Area | Rectangle | Triangle | Sector | Polygon | |||
---|---|---|---|---|---|---|---|
Kubota T16 mu measuring instrument | Measurement value (m2) | 725.4 | 387.2 | 430.6 | 653.9 | ||
System circle measurement mode measurement results | Convhull | Measurement value (m2) | Test 1 | 704.6 | 467.7 | 452.3 | 680.7 |
Test 2 | 689.4 | 388.3 | 500.1 | 700.8 | |||
Test 3 | 756 | 399.5 | 438.9 | 759.9 | |||
Measurement mean (m2) | 716.7 | 418.5 | 463.8 | 713.8 | |||
Absolute error (m2) | 8.7 | 31.3 | 33.2 | 59.9 | |||
Accuracy rate (%) | 98.8 | 91.92 | 92.29 | 90.84 | |||
ScatterHull | Measurement value (m2) | Test 1 | 680.9 | 386.8 | 431.4 | 642.4 | |
Test 2 | 674.8 | 343.4 | 500.6 | 655.3 | |||
Test 3 | 724.6 | 354.3 | 423.8 | 704.8 | |||
Measurement mean (m2) | 693.4 | 361.5 | 451.9 | 667.5 | |||
Absolute error (m2) | 32 | 25.7 | 21.3 | 13.6 | |||
Accuracy rate (%) | 95.59 | 93.36 | 95.05 | 97.92 | |||
AlphaShape | Measurement value (m2) | Test 1 | 651.9 | 374.8 | 432.2 | 640.4 | |
Test 2 | 643.3 | 343.4 | 493.3 | 650.2 | |||
Test 3 | 753.4 | 352.6 | 425.3 | 703.3 | |||
Measurement mean (m2) | 682.9 | 356.9 | 450.3 | 664.6 | |||
Absolute error (m2) | 42.5 | 30.3 | 19.7 | 10.7 | |||
Accuracy rate (%) | 94.14 | 92.17 | 95.42 | 98.36 |
Type of Work Area | NO. 1 | NO. 2 | NO. 3 | NO. 4 | NO. 5 | NO. 6 | ||
---|---|---|---|---|---|---|---|---|
Kubota T16 mu measuring instrument | Measurement value (m2) | 1133.3 | 2066.7 | 1866.7 | 1200.0 | 1800.0 | 2133.3 | |
Real-time measurement system for harvesting area of grain combine harvesters | Intelligent measurement mode | Measurement value (m2) | 1008.2 | 2157.0 | 1913.0 | 1229.5 | 1779.9 | 2304.3 |
Absolute error (m2) | 125.1 | 90.3 | 46.3 | 29.5 | 20.1 | 171 | ||
Accuracy rate (%) | 88.96 | 95.63 | 97.52 | 97.54 | 98.88 | 91.98 | ||
Circular mode | Measurement value (m2) | 1234.1 | 1999.8 | 1760.1 | 1259.3 | 1817.8 | 2171.9 | |
Absolute error (m2) | 100.8 | 66.9 | 106.6 | 59.3 | 17.8 | 38.6 | ||
Accuracy rate (%) | 91.11 | 96.76 | 94.29 | 95.06 | 99.01 | 98.19 | ||
Fusion measurement mode | Measurement value (m2) | 1121.2 | 2078.4 | 1836.6 | 1244.4 | 1798.9 | 2238.1 | |
Absolute error (m2) | 12.1 | 11.7 | 30.1 | 44.4 | 1.1 | 104.8 | ||
Accuracy rate (%) | 98.93 | 99.43 | 98.39 | 96.30 | 99.94 | 95.09 |
Inspection Method | Real-Time Measurement System for the Harvesting Area of Grain Combine Harvesters | Kubota T16 mu Measuring Instrument | |||
---|---|---|---|---|---|
Intelligent Measurement Mode | Circle Measurement Mode | Fusion Mode | |||
Mean value | 1731.983333 | 1707.166667 | 1719.6 | 1700 | |
Variance | 263,920.0777 | 148,205.9267 | 200,290.956 | 186,231.112 | |
Number of observations | 6 | 6 | 6 | 6 | |
df | 5 | 5 | 5 | ||
f-test | F | 1.417164269 | 0.795817224 | 1.075496752 | |
p (F ≤ f) | 0.355677915 | 0.404111828 | 0.469144136 | ||
t-test | Poisson correlation coefficient | 0.99253384 | 0.987858485 | 0.994531772 | |
t Stat | 0.780891194 | 0.222890935 | 0.986601068 | ||
p (T ≤ t) | 0.235102153 | 0.416219903 | 0.184571957 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Jin, C.; Yang, T.; Liu, Z. A Real-Time Measurement Method and System for the Harvesting Area of a Grain Combine Harvester. Sustainability 2023, 15, 12852. https://doi.org/10.3390/su151712852
Chen M, Jin C, Yang T, Liu Z. A Real-Time Measurement Method and System for the Harvesting Area of a Grain Combine Harvester. Sustainability. 2023; 15(17):12852. https://doi.org/10.3390/su151712852
Chicago/Turabian StyleChen, Man, Chengqian Jin, Tengxiang Yang, and Zheng Liu. 2023. "A Real-Time Measurement Method and System for the Harvesting Area of a Grain Combine Harvester" Sustainability 15, no. 17: 12852. https://doi.org/10.3390/su151712852
APA StyleChen, M., Jin, C., Yang, T., & Liu, Z. (2023). A Real-Time Measurement Method and System for the Harvesting Area of a Grain Combine Harvester. Sustainability, 15(17), 12852. https://doi.org/10.3390/su151712852