Citizen Science Apps in a Higher Education Botany Course: Data Quality and Learning Effects
Abstract
:1. Introduction
- Does the use of a plant identification app by students provide useful data in comparison with conventional species identification resources (field guides, scientific literature)?
- Does a plant identification app enhance the process of knowledge acquisition for species identification?
2. Methodology
2.1. Study Context
2.1.1. Pl@ntNet App
2.1.2. Scientific Keys for Plant Determination
2.2. Study Participants
2.2.1. Students
2.2.2. Experts
2.3. Data Collection
2.3.1. Study Sites
2.3.2. Task Description and Vegetation Surveys
2.4. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cooper, C.B.; Hawn, C.L.; Larson, L.R.; Parrish, J.K.; Bowser, G.; Cavalier, D.; Dunn, R.R.; Haklay, M.; Gupta, K.K.; Jelks, N.T.O.; et al. Inclusion in citizen science: The conundrum of rebranding. Science 2021, 372, 1386–1388. [Google Scholar] [CrossRef]
- Newman, G.; Wiggins, A.; Crall, A.; Graham, E.; Newman, S.; Crowston, K. The future of citizen science: Emerging technologies and shifting paradigms. Front. Ecol. Environ. 2012, 10, 298–304. [Google Scholar] [CrossRef]
- Sullivan, B.L.; Aycrigg, J.L.; Barry, J.H.; Bonney, R.E.; Bruns, N.; Cooper, C.B.; Damoulas, T.; Dhondt, A.A.; Dietterich, T.; Farnsworth, A.; et al. The eBird enterprise: An integrated approach to development and application of citizen science. Biol. Conserv. 2014, 169, 31–40. [Google Scholar] [CrossRef]
- Prudic, K.L.; McFarland, K.P.; Oliver, J.C.; Hutchinson, R.A.; Long, E.C.; Kerr, J.T.; Larrivee, M. eButterfly: Leveraging massive online citizen science for butterfly conservation. Insects 2017, 8, 53. [Google Scholar] [CrossRef]
- Pernat, N.; Kampen, H.; Ruland, F.; Jeschke, J.M.; Werner, D. Drivers of spatio-temporal variation in mosquito submissions to the citizen science project ‘Muckenatlas’. Sci. Rep. 2021, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, E.; Specht, H. Influence of volunteer and project characteristics on data quality of biological surveys. Conserv. Biol. J. Soc. Conserv. Biol. 2015, 29, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Kelling, S.; Johnston, A.; Bonn, A.; Fink, D.; Ruiz-Gutierrez, V.; Bonney, R.; Fernandez, M.; Hochachka, W.M.; Julliard, R.; Kraemer, R.; et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 2019, 69, 170–179. [Google Scholar] [CrossRef]
- Locke, C.M.; Anhalt-Depies, C.M.; Frett, S.; Stenglein, J.L.; Cameron, S.; Malleshappa, V.; Peltier, T.; Zuckerberg, B.; Townsend, P.A. Managing a large citizen science project to monitor wildlife. Wildl. Soc. Bull. 2019, 43, 4–10. [Google Scholar] [CrossRef]
- Isaac, N.J.B.; van Strien, A.J.; August, T.A.; de Zeeuw, M.P.; Roy, D.B.; Anderson, B. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 2014, 5, 1052–1060. [Google Scholar] [CrossRef]
- Kelling, S.; Fink, D.; La Sorte, F.A.; Johnston, A.; Bruns, N.E.; Hochachka, W.M. Taking a ‘Big Data’ approach to data quality in a citizen science project. Ambio 2015, 44 (Suppl. 4), 601–611. [Google Scholar] [CrossRef]
- Isaac, N.J.B.; Jarzyna, M.A.; Keil, P.; Dambly, L.I.; Boersch-Supan, P.H.; Browning, E.; Freeman, S.N.; Golding, N.; Guillera-Arroita, G.; Henrys, P.A.; et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 2020, 35, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.; Hochachka, W.M.; Strimas-Mackey, M.E.; Ruiz Gutierrez, V.; Robinson, O.J.; Miller, E.T.; Auer, T.; Kelling, S.T.; Fink, D.; Fourcade, Y. Analytical guidelines to increase the value of community science data: An example using eBird data to estimate species distributions. Divers. Distrib. 2021, 27, 1265–1277. [Google Scholar] [CrossRef]
- Callaghan, C.T.; Rowley, J.J.L.; Cornwell, W.K.; Poore, A.G.B.; Major, R.E. Improving big citizen science data: Moving beyond haphazard sampling. PLoS Biol. 2019, 17, e3000357. [Google Scholar] [CrossRef]
- Vohland, K.; Land-Zandstra, A.; Ceccaroni, L.; Lemmens, R.; Perelló, J.; Ponti, M.; Samson, R.; Wagenknecht, K. The Science of Citizen Science; Springer Nature: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Domroese, M.C.; Johnson, E.A. Why watch bees? Motivations of citizen science volunteers in the Great Pollinator Project. Biol. Conserv. 2017, 208, 40–47. [Google Scholar] [CrossRef]
- Larson, L.R.; Cooper, C.B.; Futch, S.; Singh, D.; Shipley, N.J.; Dale, K.; LeBaron, G.S.; Takekawa, J.Y. The diverse motivations of citizen scientists: Does conservation emphasis grow as volunteer participation progresses? Biol. Conserv. 2020, 242, 108428. [Google Scholar] [CrossRef]
- West, S.; Dyke, A.; Pateman, R. Variations in the motivations of environmental citizen scientists. Citiz. Sci. Theory Pract. 2021, 6, 14. [Google Scholar] [CrossRef]
- Boakes, E.H.; Gliozzo, G.; Seymour, V.; Harvey, M.; Smith, C.; Roy, D.B.; Haklay, M. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. 2016, 6, 33051. [Google Scholar] [CrossRef] [PubMed]
- August, T.; Fox, R.; Roy, D.B.; Pocock, M.J.O. Data-derived metrics describing the behaviour of field-based citizen scientists provide insights for project design and modelling bias. Sci. Rep. 2020, 10, 11009. [Google Scholar] [CrossRef]
- Sturm, U.; Straka, T.M.; Moormann, A.; Egerer, M. Fascination and joy: Emotions predict urban gardeners’ pro-pollinator behaviour. Insects 2021, 12, 785. [Google Scholar] [CrossRef]
- Mac Domhnaill, C.; Lyons, S.; Nolan, A. The citizens in citizen science: Demographic, socioeconomic, and health characteristics of biodiversity recorders in Ireland. Citiz. Sci. Theory Pract. 2020, 5, 16. [Google Scholar] [CrossRef]
- Pateman, R.; Dyke, A.; West, S. The diversity of participants in environmental citizen science. Citiz. Sci. Theory Pract. 2021, 6, 9. [Google Scholar] [CrossRef]
- Haywood, B.K.; Parrish, J.K.; Dolliver, J. Place-based and data-rich citizen science as a precursor for conservation action. Conserv. Biol. J. Soc. Conserv. Biol. 2016, 30, 476–486. [Google Scholar] [CrossRef]
- Schuttler, S.G.; Sears, R.S.; Orendain, I.; Khot, R.; Rubenstein, D.; Rubenstein, N.; Dunn, R.R.; Baird, E.; Kandros, K.; O’Brien, T.; et al. Citizen science in schools: Students collect valuable mammal data for science, conservation, and community engagement. BioScience 2019, 69, 69–79. [Google Scholar] [CrossRef]
- Peter, M.; Diekötter, T.; Kremer, K. Participant outcomes of biodiversity citizen science projects: A systematic literature review. Sustainability 2019, 11, 2780. [Google Scholar] [CrossRef]
- Peter, M.; Diekötter, T.; Höffler, T.; Kremer, K. Biodiversity citizen science: Outcomes for the participating citizens. People Nat. 2021, 3, 294–311. [Google Scholar] [CrossRef]
- Bonney, R.; Phillips, T.B.; Ballard, H.L.; Enck, J.W. Can citizen science enhance public understanding of science? Public Underst. Sci. 2016, 25, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Vance-Chalcraft, H.D.; Hurlbert, A.H.; Styrsky, J.N.; Gates, T.A.; Bowser, G.; Hitchcock, C.B.; Reyes, M.A.; Cooper, C.B. Citizen science in postsecondary education: Current practices and knowledge gaps. Bioscience 2022, 72, 276–288. [Google Scholar] [CrossRef]
- Paradise, C.; Bartkovich, L. Integrating citizen science with online biological collections to promote species and biodiversity literacy in an entomology course. Citiz. Sci. Theory Pract. 2021, 6, 28. [Google Scholar] [CrossRef]
- Lichti, D.; Mosley, P.; Callis-Duehl, K. Learning from the trees: Using project budburst to enhance data literacy and scientific writing skills in an introductory biology laboratory during remote learning. Citiz. Sci. Theory Pract. 2021, 6, 32. [Google Scholar] [CrossRef]
- Stevenson, R.; Merrill, C.; Burn, P. Useful biodiversity data were obtained by novice observers using iNaturalist during college orientation retreats. Citiz. Sci. Theory Pract. 2021, 6, 27. [Google Scholar] [CrossRef]
- Van Haeften, S.; Milic, A.; Addison-Smith, B.; Butcher, C.; Davies, J.M. Grass Gazers: Using citizen science as a tool to facilitate practical and online science learning for secondary school students during the COVID-19 lockdown. Ecol. Evol. 2021, 11, 3488–3500. [Google Scholar] [CrossRef] [PubMed]
- Oberbauer, A.M.; Lai, E.; Kinsey, N.A.; Famula, T.R. Enhancing student scientific literacy through participation in citizen science focused on companion animal behavior. Transl. Anim. Sci. 2021, 5, txab131. [Google Scholar] [CrossRef] [PubMed]
- Schirmel, J. COVID-19 pandemic turns life-science students into “citizen scientists”: Data indicate multiple negative effects of urbanization on biota. Sustainability 2021, 13, 2992. [Google Scholar] [CrossRef]
- Baker, B. Biodiversity collections, data, and COVID. BioScience 2020, 70, 841–847. [Google Scholar] [CrossRef]
- Gerhart, L.M.; Jadallah, C.C.; Angulo, S.S.; Ira, G.C. Teaching an experiential field course via online participatory science projects: A COVID-19 case study of a UC California Naturalist course. Ecol. Evol. 2021, 11, 3537–3550. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, P.; Denelle, P.; Brambach, F.; Kreft, H. BotanizeR: A flexible R package with Shiny app to practice plant identification for online teaching and beyond. Plants People Planet 2021, 4, 122–127. [Google Scholar] [CrossRef]
- Genovart, M.; Tavecchia, G.; Enseñat, J.J.; Laiolo, P. Holding up a mirror to the society: Children recognize exotic species much more than local ones. Biol. Conserv. 2013, 159, 484–489. [Google Scholar] [CrossRef]
- Yli-Panula, E.; Matikainen, E. students and student teachers’ ability to name animals in ecosystems: A perspective of animal knowledge and biodiversity. J. Balt. Sci. Educ. 2014, 13, 559–572. [Google Scholar] [CrossRef]
- Buck, T.; Bruchmann, I.; Zumstein, P.; Drees, C. Just a small bunch of flowers: The botanical knowledge of students and the positive effects of courses in plant identification at German universities. PeerJ 2019, 7, e6581. [Google Scholar] [CrossRef]
- Gerl, T.; Randler, C.; Jana Neuhaus, B. Vertebrate species knowledge: An important skill is threatened by extinction. Int. J. Sci. Educ. 2021, 43, 928–948. [Google Scholar] [CrossRef]
- Sieg, A.K.; Teibtner, R.; Dreesmann, D. Don’t know much about bumblebees?—A study about secondary school students’ knowledge and attitude shows educational demand. Insects 2018, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Christ, L.; Dreesmann, D.C. SAD but true: Species awareness disparity in bees is a result of bee-less biology lessons in Germany. Sustainability 2022, 14, 2604. [Google Scholar] [CrossRef]
- Hooykaas, M.J.D.; Schilthuizen, M.; Aten, C.; Hemelaar, E.M.; Albers, C.J.; Smeets, I. Identification skills in biodiversity professionals and laypeople: A gap in species literacy. Biol. Conserv. 2019, 238, 108202. [Google Scholar] [CrossRef]
- Frobel, K.; Schlumprecht, H. Erosion der Artenkenner. Naturschutz Landschaftsplanung 2016, 48, 105–113. [Google Scholar]
- Hochkirch, A. The insect crisis we can’t ignore. Nature 2016, 539, 141. [Google Scholar] [CrossRef] [PubMed]
- Wägele, J.W.; Bodesheim, P.; Bourlat, S.J.; Denzler, J.; Diepenbroek, M.; Fonseca, V.; Frommolt, K.-H.; Geiger, M.F.; Gemeinholzer, B.; Glöckner, F.O.; et al. Towards a multisensor station for automated biodiversity monitoring. Basic Appl. Ecol. 2022, 59, 105–138. [Google Scholar] [CrossRef]
- Dirzo, R.; Young, H.S.; Galetti, M.; Ceballos, G.; Isaac, N.J.; Collen, B. Defaunation in the Anthropocene. Science 2014, 345, 401–406. [Google Scholar] [CrossRef]
- Pocock, M.J.O.; Chandler, M.; Bonney, R.; Thornhill, I.; Albin, A.; August, T.; Bachman, S.; Brown, P.M.J.; Cunha, D.G.F.; Grez, A.; et al. A vision for global biodiversity monitoring with citizen science. In Advances in Ecological Research; Bohan, D.A., Dumbrell, A.J., Woodward, G., Jackson, M., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 59, pp. 169–223. [Google Scholar] [CrossRef]
- Hitchcock, C.; Vance-Chalcraft, H.; Aristeidou, M. Citizen science in higher education. Citiz. Sci. Theory Pract. 2021, 6, 22. [Google Scholar] [CrossRef]
- Rokop, M.; Srikanth, R.; Albert, M.; Radonic, C.; Vincent, R.; Stevenson, R. Looking more carefully: A successful Bioblitz orientation activity at an urban public university. Citiz. Sci. Theory Pract. 2022, 7, 1. [Google Scholar] [CrossRef]
- Chu, M.; Leonard, P.; Stevenson, F. Growing the base for citizen science. In Citizen Science: Public Participation in Environmental Research, 1st ed.; Dickinson, J.L., Bonney, R., Eds.; Cornell University Press: Ithaca, NY, USA, 2012; pp. 69–81. [Google Scholar]
- Wäldchen, J.; Rzanny, M.; Seeland, M.; Mader, P. Automated plant species identification—Trends and future directions. PLoS Comput. Biol. 2018, 14, e1005993. [Google Scholar] [CrossRef]
- Raphael, A.; Dubinsky, Z.; Iluz, D.; Netanyahu, N.S. Neural network recognition of marine benthos and corals. Diversity 2020, 12, 29. [Google Scholar] [CrossRef]
- Hoye, T.T.; Arje, J.; Bjerge, K.; Hansen, O.L.P.; Iosifidis, A.; Leese, F.; Mann, H.M.R.; Meissner, K.; Melvad, C.; Raitoharju, J. Deep learning and computer vision will transform entomology. Proc. Natl. Acad. Sci. USA 2021, 118, e2002545117. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G. What plant is that? Tests of automated image recognition apps for plant identification on plants from the British flora. AoB Plants 2020, 12, plaa052. [Google Scholar] [CrossRef] [PubMed]
- Jäger, E. Exkursionsflora von Deutschland, 20th ed.; Springer Spektrum: Heidelberg, Germany, 2011. [Google Scholar]
- Jäger, E.; Rothmaler, J. Exkursionsflora von Deutschland, Gefäßpflanzen: Atlasband, 12th ed.; Springer Spektrum: Heidelberg, Germany, 2013. [Google Scholar]
- Bonnet, P.; Joly, A.; Faton, J.M.; Brown, S.; Kimiti, D.; Deneu, B.; Servajean, M.; Affouard, A.; Lombardo, J.C.; Mary, L.; et al. How citizen scientists contribute to monitor protected areas thanks to automatic plant identification tools. Ecol. Solut. Evid. 2020, 1, e12023. [Google Scholar] [CrossRef]
- Schmeil, O.; Fitschen, J. Flora von Deutschland und Angrenzender Länder; Quelle & Meyer Verlag: Heidelberg, Germany, 1993. [Google Scholar]
- Seitz, B. Mapping the urban flora of Berlin. In The Botanical City, 1st ed.; Gandy, M., Jasper, S., Eds.; Jovis: Berlin, Germany, 2020; pp. 293–300. [Google Scholar]
- Seitz, B.; Ristow, M.; Meißner, J.; Machatzi, B.; Sukopp, H. Rote Liste und Gesamtartenliste der etablierten Farn- und Blütenpflanzen von Berlin. In Der Landesbeauftragte für Naturschutz und Landschaftspflege, Rote Listen der Gefährdeten Pflanzen, Pilze und Tiere von Berlin; Senatsverwaltung für Umwelt, Klima und Verkehr: Berlin, Germany, 2018; pp. 6–94. [Google Scholar]
- Seitz, B.; Ristow, M.; Prasse, R.; Machatzi, B.; Klemm, G.; Böcker, R.; Sukopp, H. Verhandlungen des Botanischen Vereins von Berlin und Brandenburg. In Der Berliner Florenatlas; Beiheft 7; Natur+Text GmbH: Rangsdorf, Germany, 2012; pp. 1–533. [Google Scholar]
- Senatsverwaltung für Stadtentwicklung und Wohnen Berlin. Luftbilder 2016 (Orthophotos). Digitale Farbige Orthophotos 2016 (DOP20RGB). Available online: https://fbinter.stadt-berlin.de/fb/?loginkey=showMap&mapId=k_luftbild2016_rgb@senstadt (accessed on 2 March 2020).
- von der Lippe, M.; Buchholz, S.; Hiller, A.; Seitz, B.; Kowarik, I. CityScapeLab Berlin: A research platform for untangling urbanization effects on biodiversity. Sustainability 2020, 12, 2565. [Google Scholar] [CrossRef]
- Leuschner, C.; Ellenberg, H. Ecology of Central European Non-Forest Vegetation: Coastal to Alpine, Natural to Man-Made Habitats; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Braun-Blanquet, J. Pflanzensoziologie, 3rd ed.; Springer: Wien, Austria; New York, NY, USA, 1964. [Google Scholar]
- van der Maarel, E.; Franklin, J. Vegetation Ecology, 2nd ed.; Blackwell: Wiley, Austria, 2012. [Google Scholar]
- Jäger, E. Exkursionsflora von Deutschland. Gefäßpflanzen: Grundband, 21st ed.; Springer Spektrum: Heidelberg, Germany, 2016. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simspon, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package, R Package; version 2.5–4; 2019. Available online: https://cran.r-project.org/package=vegan (accessed on 6 May 2022).
- Jeno, L.M.; Grytnes, J.-A.; Vandvik, V. The effect of a mobile-application tool on biology students’ motivation and achievement in species identification: A Self-Determination Theory perspective. Comput. Educ. 2017, 107, 1–12. [Google Scholar] [CrossRef]
- Albrecht, H.; Haider, S. Species diversity and life history traits in calcareous grasslands vary along an urbanization gradient. Biodivers. Conserv. 2013, 22, 2243–2267. [Google Scholar] [CrossRef]
- Cochard, A.; Pithon, J.; Jagaille, M.; Beaujouan, V.; Pain, G.; Daniel, H. Grassland plant species occurring in extensively managed road verges are filtered by urban environments. Plant Ecol. Divers. 2017, 10, 217–229. [Google Scholar] [CrossRef]
- Christmann, T.; Kowarik, I.; Bernard-Verdier, M.; Buchholz, S.; Hiller, A.; Seitz, B.; von der Lippe, M. Phenology of grassland plants responds to urbanization. Urban Ecosyst. 2023, 26, 261–275. [Google Scholar] [CrossRef]
- Krausch, H.-D. Die Sandtrockenrasen in Brandenburg. Mitt. Florist. Soziologischen Arb. (Neue Folge) 1968, 13, 71–100. [Google Scholar]
- Bornkamm, R. Zu den Standortbedingungen einiger Sand-Therophytenrasen in Berlin West. Verhandlungen Bot. Ver. Prov. Brandenbg. 1977, 113, 27–39. [Google Scholar]
- Sukopp, H. Sandmagerrasen auf urban-industriellen Sekundärstandorten. Beobachtungen im Berliner Gebiet 1952–1998. Verh. Bot. Ver. Berl. Brandenbg. 1999, 132, 221–252. [Google Scholar]
- Hüllbusch, E.; Brandt, L.M.; Ende, P.; Dengler, J. Little vegetation change during two decades in a dry grassland complex in the Biosphere Reserve Schorfheide-Chorin NE Germany. Tuexenia 2016, 36, 395–412. [Google Scholar] [CrossRef]
- Kosmala, M.; Wiggins, A.; Swanson, A.; Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 2016, 14, 551–560. [Google Scholar] [CrossRef]
- Soroye, P.; Ahmed, N.; Kerr, J.T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Chang. Biol. 2018, 24, 5281–5291. [Google Scholar] [CrossRef]
- Wäldchen, J.; Mäder, P.; Cooper, N. Machine learning for image based species identification. Methods Ecol. Evol. 2018, 9, 2216–2225. [Google Scholar] [CrossRef]
- Thomas, R.L.; Fellowes, M.D.E. Effectiveness of mobile apps in teaching field-based identification skills. J. Biol. Educ. 2016, 51, 136–143. [Google Scholar] [CrossRef]
- Stagg, B.C.; Donkin, M.E. Apps for angiosperms: The usability of mobile computers and printed field guides for UK wild flower and winter tree identification. J. Biol. Educ. 2016, 51, 123–135. [Google Scholar] [CrossRef]
- Finger, A.; Groß, J.; Zabel, J. Plant identification in the 21st century—What possibilities do modern identification keys offer for biology lessons? Educ. Sci. 2022, 12, 849. [Google Scholar] [CrossRef]
- Noss, R.F. The naturalists are dying off. Conserv. Biol. 1996, 10, 1–3. [Google Scholar] [CrossRef]
- Pearson, D.L.; Hamilton, A.L.; Erwin, T.L. Recovery plan for the endangered taxonomy profession. BioScience 2011, 61, 58–63. [Google Scholar] [CrossRef]
Bachelor Students | Master Students | Expert | |
---|---|---|---|
Study program | Ecology and Environmental Planning | Urban Ecosystem Sciences | - |
No. students enrolled | 20 | 20 | - |
Course form | Block (1st vegetation survey, two-week identification course, 2nd vegetation survey) | Continuous (weekly plus 1st and 2nd vegetation surveys) | - |
Survey plots (one plot per site) Working form (no. of plots) Survey year | 20 Individually (1)/pairs (2) 2021 | 19 Individually (1)/pairs (2) 2021 | 20 Individually (20) 2020 |
1st vegetation survey in 1st survey identification tools 2nd vegetation survey in 2nd survey identification tools | April PlantNet app June Scientific keys [57,58] | April PlantNet app June Scientific keys [57,58] | April/May Scientific keys [57,58] June Scientific keys [57,58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pernat, N.; Gathof, A.K.; Herrmann, J.; Seitz, B.; Buchholz, S. Citizen Science Apps in a Higher Education Botany Course: Data Quality and Learning Effects. Sustainability 2023, 15, 12984. https://doi.org/10.3390/su151712984
Pernat N, Gathof AK, Herrmann J, Seitz B, Buchholz S. Citizen Science Apps in a Higher Education Botany Course: Data Quality and Learning Effects. Sustainability. 2023; 15(17):12984. https://doi.org/10.3390/su151712984
Chicago/Turabian StylePernat, Nadja, Anika Kristin Gathof, Johann Herrmann, Birgit Seitz, and Sascha Buchholz. 2023. "Citizen Science Apps in a Higher Education Botany Course: Data Quality and Learning Effects" Sustainability 15, no. 17: 12984. https://doi.org/10.3390/su151712984
APA StylePernat, N., Gathof, A. K., Herrmann, J., Seitz, B., & Buchholz, S. (2023). Citizen Science Apps in a Higher Education Botany Course: Data Quality and Learning Effects. Sustainability, 15(17), 12984. https://doi.org/10.3390/su151712984