Sun-Shading Sails in Courtyards: An Italian Case Study with RayMan
Abstract
:1. Introduction
1.1. Evaluation of Thermal Comfort in Courtyards
1.2. Covered Open Spaces and Courtyards in the Literature
2. Research Goals
3. Methodology
- Defining the courtyard floor surface temperature, considering 37 °C and 39 °C as two cases useful in assessing the relevance of this variable. These 2 floor surface temperatures were selected as being representative of common flooring materials in sunny days, respectively, of grass or pavement with a medium reflectance surface (average 37 °C) and asphalt or other similar pavements with low reflectance (average 39 °C). Further details and reasoning behind this can be found in previous studies such as [48,49].
- Defining alternative scenarios by associating the shade/cover material features and RayMan cloudy indexes.
4. Case Study
5. Results
6. Discussion and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Spano, D.; Armiento, M.; Aslam, M.F.; Bacciu, V.; Bigano, A.; Bosello, F.; Breil, M.; Buonocore, M.; Butenschön, M.; Cadau, M.; et al. G20 Climate Risk Atlas. Impacts, Policy, Economics. European Union; CMCC: Lecce, Italy, 2021. [Google Scholar] [CrossRef]
- Xu, T.; Yao, R.; Du, C.; Huang, X. A Method of Predicting the Dynamic Thermal Sensation under Varying Outdoor Heat Stress Conditions in Summer. Build. Environ. 2022, 223, 109454. [Google Scholar] [CrossRef]
- Detommaso, M.; Gagliano, A.; Marletta, L.; Nocera, F. Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level. Sustainability 2021, 13, 3138. [Google Scholar] [CrossRef]
- Scudo, G. Shading Architectures—Bioclimatic Approach to “Well Tempered” Civic Spaces. In Bioclimatic Approaches in Urban and Building Design; Springer: Berlin/Heidelberg, Germany, 2021; pp. 415–423. [Google Scholar]
- Schibuola, L.; Tambani, C. A Monthly Performance Comparison of Green Infrastructures Enhancing Urban Outdoor Thermal Comfort. Energy Build. 2022, 273, 112368. [Google Scholar] [CrossRef]
- Manavvi, S.; Rajasekar, E. Assessing Thermal Comfort in Urban Squares in Humid Subtropical Climate: A Structural Equation Modelling Approach. Build. Environ. 2023, 229, 109931. [Google Scholar] [CrossRef]
- Zhang, Y.; He, H.; Dai, K.; Lin, Z.; Fang, Z.; Zheng, Z. Thermal Responses of Face-Masked Pedestrians during Summer: An Outdoor Investigation under Tree-Shaded Areas. Build. Environ. 2023, 233, 110058. [Google Scholar] [CrossRef] [PubMed]
- Acero, J.A.; Ruefenacht, L.A.; Koh, E.J.Y.; Tan, Y.S.; Norford, L.K. Measuring and Comparing Thermal Comfort in Outdoor and Semi-Outdoor Spaces in Tropical Singapore. Urban Clim. 2022, 42, 101122. [Google Scholar] [CrossRef]
- Zhu, R.; Zhang, X.; Yang, L.; Liu, Y.; Cong, Y.; Gao, W. Correlation Analysis of Thermal Comfort and Physiological Responses under Different Microclimates of Urban Park. Case Stud. Therm. Eng. 2022, 34, 102044. [Google Scholar] [CrossRef]
- Berkovic, S.; Yezioro, A.; Bitan, A. Study of Thermal Comfort in Courtyards in a Hot Arid Climate. Solar Energy 2012, 86, 1173–1186. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierik, M.; van den Dobbelsteen, A. Indoor Thermal Comfort in Urban Courtyard Block Dwellings in the Netherlands. Build. Environ. 2014, 82, 566–579. [Google Scholar] [CrossRef]
- López-Cabeza, V.P.; Galán-Marín, C.; Rivera-Gómez, C.; Roa-Fernández, J. Courtyard Microclimate ENVI-Met Outputs Deviation from the Experimental Data. Build. Environ. 2018, 144, 129–141. [Google Scholar] [CrossRef]
- Martinelli, L.; Matzarakis, A. Influence of Height/Width Proportions on the Thermal Comfort of Courtyard Typology for Italian Climate Zones. Sustain. Cities Soc. 2017, 29, 97–106. [Google Scholar] [CrossRef]
- Safarzadeh, H.; Bahadori, M.N. Passive Cooling Effects of Courtyards. Build. Environ. 2005, 40, 89–104. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N. Outdoor Thermal Comfort: Coupling Microclimatic Parameters with Subjective Thermal Assessment to Design Urban Performative Spaces. Buildings 2020, 10, 238. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A. Study on Importance, Procedure, and Scope of Outdoor Thermal Comfort—A Review. Sustain. Cities Soc. 2020, 61, 102297. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Azizi, M.M.; Aminzadeh, B.; O’Donnell, J. A Comprehensive Review of Outdoor Thermal Comfort in Urban Areas: Effective Parameters and Approaches. Energy Environ. 2022. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Thermal Comfort in Outdoor Urban Spaces: Analysis across Different European Countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef]
- Ruefenacht, L.A.; Adelia, A.S.; Acero, J.A.; Nevat, I. Urban Design Guidelines for Improvement of Outdoor Thermal Comfort in Tropical Cities. Cybergeo 2022. [Google Scholar] [CrossRef]
- Fadhil, M.; Hamoodi, M.N.; Ziboon, A.R.T. Mitigating Urban Heat Island Effects in Urban Environments: Strategies and Tools. IOP Conf. Ser. Earth Environ. Sci. 2023, 1129, 012025. [Google Scholar] [CrossRef]
- C40 Cities Climate Leadership Group How to Adapt Your City to Extreme Heat. Available online: https://www.c40knowledgehub.org/s/article/How-to-adapt-your-city-to-extreme-heat?language=en_US (accessed on 14 March 2023).
- Tsoka, S.; Tsikaloudaki, K.; Theodosiou, T.; Bikas, D. Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review. Energies 2020, 13, 1414. [Google Scholar] [CrossRef]
- Saneinejad, S.; Moonen, P.; Carmeliet, J. Comparative Assessment of Various Heat Island Mitigation Measures. Build. Environ. 2014, 73, 162–170. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments—Application of the RayMan Model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Roset Calzada, J.; Vidmar, J. Evaluation of Simulation Tools for Assessment of Urban Form Based on Physical Performance. 2013. Available online: https://core.ac.uk/download/pdf/41772342.pdf (accessed on 14 March 2023).
- Kearney, M.R.; Porter, W.P. NicheMapR—An R Package for Biophysical Modelling: The Microclimate Model. Ecography 2017, 40, 664–674. [Google Scholar] [CrossRef]
- Fabbri, K.; Di Nunzio, A.; Gaspari, J.; Antonini, E.; Boeri, A. Outdoor Comfort: The ENVI-BUG Tool to Evaluate PMV Values Output Comfort Point by Point. Energy Procedia 2017, 111, 510–519. [Google Scholar] [CrossRef]
- Bandurski, K.; Bandurska, H.; Kazimierczak-Grygiel, E.; Koczyk, H. The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities. Energies 2020, 13, 2755. [Google Scholar] [CrossRef]
- Li, M.; Jin, Y.; Guo, J. Dynamic Characteristics and Adaptive Design Methods of Enclosed Courtyard: A Case Study of a Single-Story Courtyard Dwelling in China. Build Environ. 2022, 223, 109445. [Google Scholar] [CrossRef]
- Soflaei, F.; Shokouhian, M.; Abraveshdar, H.; Alipour, A. The Impact of Courtyard Design Variants on Shading Performance in Hot- Arid Climates of Iran. Energy Build. 2017, 143, 71–83. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Berardi, U.; Ghaffarianhoseini, A. Thermal Performance Characteristics of Unshaded Courtyards in Hot and Humid Climates. Build. Environ. 2015, 87, 154–168. [Google Scholar] [CrossRef]
- Almhafdy, A.; Ibrahim, N.; Ahmad, S.S.; Yahya, J. Courtyard Design Variants and Microclimate Performance. Procedia Soc. Behav. Sci. 2013, 101, 170–180. [Google Scholar] [CrossRef]
- Forouzandeh, A. Numerical Modeling Validation for the Microclimate Thermal Condition of Semi-Closed Courtyard Spaces between Buildings. Sustain. Cities Soc. 2018, 36, 327–345. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B.; Bedra, K.B. Evaluating the Improvements of Thermal Comfort by Different Natural Elements within Courtyards in Singapore. Urban Clim. 2022, 45, 101253. [Google Scholar] [CrossRef]
- Garcia-Nevado, E.; Beckers, B.; Coch, H. Assessing the Cooling Effect of Urban Textile Shading Devices Through Time-Lapse Thermography. Sustain. Cities Soc. 2020, 63, 102458. [Google Scholar] [CrossRef]
- Cantini, A.; Angelotti, A.; Zanelli, A. A lightweight textile device for urban microclimate control and thermal comfort improvement: Concept project and design parameters. Ediltecnico 2019. [Google Scholar] [CrossRef]
- Rocío, T.; Amores, P.; Del Carmen, M.; Delgado, G.; Castro Medina, D.; Cerezo Narváez, A.; Ramos, J.S.; Álvarez Domínguez, S. Study of Bioclimatic Shading Strategies in Seville. In Proceedings of the CLIMA 2022 Conference, Rotterdam, The Netherlands, 22–25 May 2022; pp. 1–7. [Google Scholar]
- Wu, R.; Fang, X.; Liu, S.; Middel, A. A Fast and Accurate Mean Radiant Temperature Model for Courtyards: Evidence from the Keyuan Garden in Central Guangdong. China. Build. Environ. 2023, 229, 109916. [Google Scholar] [CrossRef]
- Medina, D.C.; Delgado, M.G.; Amores, T.R.P.; Toulou, A.; Ramos, J.S.; Domínguez, S.Á. Climatic Control of Urban Spaces Using Natural Cooling Techniques to Achieve Outdoor Thermal Comfort. Sustainability 2022, 14, 14173. [Google Scholar] [CrossRef]
- Lee, H.; Oertel, A.; Mayer, H. Enhanced Human Heat Exposure in Summer in a Central European Courtyard Subsequently Roofed with Transparent ETFE Foil Cushions. Urban Clim. 2022, 44, 101210. [Google Scholar] [CrossRef]
- Elgheznawy, D.; Eltarabily, S. The Impact of Sun Sail-Shading Strategy on the Thermal Comfort in School Courtyards. Build. Environ. 2021, 202, 108046. [Google Scholar] [CrossRef]
- Eslamirad, N.; Sepúlveda, A.; De Luca, F.; Sakari Lylykangas, K. Evaluating Outdoor Thermal Comfort Using a Mixed-Method to Improve the Environmental Quality of a University Campus. Energies 2022, 15, 1577. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Zhu, Y. A Simplified Method to Predict the Outdoor Thermal Environment in Residential District. Build. Simul. 2012, 5, 157–167. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments: Basics of the RayMan Model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef]
- Fröhlich, D.; Gangwisch, M.; Matzarakis, A. Effect of Radiation and Wind on Thermal Comfort in Urban Environments—Application of the RayMan and SkyHelios Model. Urban Clim. 2019, 27, 1–7. [Google Scholar] [CrossRef]
- Shamsipour, A.A.; Azizi, G.; Ahmadabad, M.K.; Moghbel, M. Surface Temperature Pattern of Asphalt, Soil and Grass in Different Weather Condition. J. Biodivers. Environ. Sci. 2013, 9, 42–50. [Google Scholar]
- Gui, J.; Phelan, P.E.; Kaloush, K.E.; Golden, J.S. Impact of Pavement Thermophysical Properties on Surface Temperatures. J. Mater. Civ. Eng. 2007, 19, 683–690. [Google Scholar] [CrossRef]
- Matzarakis, A.; Amelung, B. Physiological Equivalent Temperature as Indicator for Impacts of Climate Change on Thermal Comfort of Humans. Media 2008, 30, 161–172. [Google Scholar] [CrossRef]
- RayMan Website. Available online: www.urbanclimate.net/rayman/index.htm (accessed on 8 May 2023).
- Suárez-García, A.; Díez-Mediavilla, M.; Granados-López, D.; González-Peña, D.; Alonso-Tristán, C. Benchmarking of Meteorological Indices for Sky Cloudiness Classification. Solar Energy 2020, 195, 499–513. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a Universal Thermal Index: Physiological Equivalent Temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- ARPAER. Wheather Data Emilia-Romagna Region. Available online: https://webbook.arpae.it/ (accessed on 2 May 2023).
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970; ISBN 9780070199156. [Google Scholar]
- Cassin, J.; Matthews, J.H.; Lopez Gunn, E. (Eds.) Nature-Based Solutions and Water Security; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780128198711. [Google Scholar]
- Viti, M.; Löwe, R.; Sørup, H.J.D.; Ladenburg, J.; Gebhardt, O.; Iversen, S.; McKnight, U.S.; Arnbjerg-Nielsen, K. Holistic Valuation of Nature-Based Solutions Accounting for Human Perceptions and Nature Benefits. J. Environ. Manag. 2023, 334, 117498. [Google Scholar] [CrossRef]
- Sarabi, S.; Han, Q.; de Vries, B.; Romme, A.G.L.; Almassy, D. The Nature-Based Solutions Case-Based System: A Hybrid Expert System. J. Environ. Manag. 2022, 324, 116413. [Google Scholar] [CrossRef]
- Snep, R.P.H.; Klostermann, J.; Lehner, M.; Weppelman, I. Social Housing as Focus Area for Nature-Based Solutions to Strengthen Urban Resilience and Justice: Lessons from Practice in the Netherlands. Environ. Sci. Policy 2023, 145, 164–174. [Google Scholar] [CrossRef]
- Kalantari, Z.; Ferreira, C.S.S.; Pan, H.; Pereira, P. Nature-Based Solutions to Global Environmental Challenges. Sci. Total Environ. 2023, 880, 163227. [Google Scholar] [CrossRef] [PubMed]
- Boeri, A.; Longo, D.; Fabbri, K.; Roversi, R.; Boulanger, S. The Relation between Outdoor Microclimate and People Flow in Historic City Context the Case Study of Bologna within the ROCK Project. Sustainability 2023, 15, 7527. [Google Scholar] [CrossRef]
- Fabbri, K.; Costanzo, V. Drone-Assisted Infrared Thermography for Calibration of Outdoor Microclimate Simulation Models. Sustain. Cities Soc. 2020, 52, 101855. [Google Scholar] [CrossRef]
- Oke, T.R. The Energetic Basis of the Urban Heat Island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781139016476. [Google Scholar]
- Bruse, M.; Fleer, H. Simulating Surface-Plant-Air Interactions inside Urban Environments with a Three Dimensional Numerical Model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Robinson, D.; Bruse, M. Computer Modelling for Sustainable Urban Design; Robinson, D., Ed.; Routledge: Oxfordshire, UK, 2012; ISBN 9781136539367. [Google Scholar]
- Matzarakis, A.; Martinelli, L.; Ketterer, C. Relevance of Thermal Indices for the Assessment of the Urban Heat Island. In Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Springer International Publishing: Cham, Switzerland, 2016; pp. 93–107. [Google Scholar]
- Fallmann, J.; Emeis, S.; Wagner, S.; Ketterer, C.; Matzarakis, A.; Krüzselyi, I.; Zsebeházi, G.; Kovács, M.; Halenka, T.; Huszár, P.; et al. Forecasting Models for Urban Warming in Climate Change. In Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–39. [Google Scholar]
- Shashua-Bar, L.; Pearlmutter, D.; Erell, E. The Cooling Efficiency of Urban Landscape Strategies in a Hot Dry Climate. Landsc. Urban Plan 2009, 92, 179–186. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Evapotranspiration Rates in Urban Areas. In Proceedings of the IUGG 99, Birmingham, UK, 19–30 July 1999; p. 259. [Google Scholar]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban Heat Island Mitigation by Green Infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Aram, F.; Higueras García, E.; Solgi, E.; Mansournia, S. Urban Green Space Cooling Effect in Cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef]
Scenarios | Materials | Solar Transmission | Cloud Cover (Otka) |
---|---|---|---|
1 | No cover, without sun-shading sail | 100% | 0 |
2 | ETFE (ethylene tetrafluoroethylene) | 90% | 2 |
3 | Generic sun-shading sail not waterproof (uncoated) | 30% | 5 |
4 | Tarp-curtain waterproof (PVC-coated) * | 7% | 7 |
PET (°C) | Thermal Perception | Grade of Physical Stress |
---|---|---|
>41 | Very hot | Extreme heat stress |
35–41 | Hot | Strong heat stress |
29–35 | Warm | Moderate heat stress |
23–29 | Slightly warm | Slight heat stress |
18–23 | Comfortable | No thermal stress |
13–18 | Slightly cool | Slight cold stress |
8–13 | Cool | Moderate cold stress |
4–8 | Cold | Strong cold stress |
<4 | Very cold | Extreme cold stress |
Surface Temperature | Scenarios | Cloud Cover (Otka) | Tmrt | Gap Compared to Scenario 1 | PET | Gap Compared to Scenario 1 |
---|---|---|---|---|---|---|
37 °C | 1 | 0 | 48.7 | 36.1 | ||
2 | 2 | 47.1 | −1.6 °C (−3.3%) | 35.2 | −0.9 °C (−2.5%) | |
3 | 5 | 45.6 | −3.1 °C (−6.4%) | 34.3 | −1.8 °C (−5.0%) | |
4 | 7 | 45.5 | −3.2 °C (−6.6%) | 34.2 | −1.9 °C (−5.3%) | |
39 °C | 1 | 0 | 49.5 | 36.7 | ||
2 | 2 | 48.0 | −1.5 °C (−3.0%) | 35.7 | −1.0 °C (−2.7%) | |
3 | 5 | 46.5 | −3.0 °C (−6.1%) | 34.8 | −1.9 °C (−5.2%) | |
4 | 7 | 46.3 | −3.2 °C (−6.5%) | 34.7 | −2.0 °C (−4.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabbri, K.; Antonini, E.; Marchi, L. Sun-Shading Sails in Courtyards: An Italian Case Study with RayMan. Sustainability 2023, 15, 13033. https://doi.org/10.3390/su151713033
Fabbri K, Antonini E, Marchi L. Sun-Shading Sails in Courtyards: An Italian Case Study with RayMan. Sustainability. 2023; 15(17):13033. https://doi.org/10.3390/su151713033
Chicago/Turabian StyleFabbri, Kristian, Ernesto Antonini, and Lia Marchi. 2023. "Sun-Shading Sails in Courtyards: An Italian Case Study with RayMan" Sustainability 15, no. 17: 13033. https://doi.org/10.3390/su151713033
APA StyleFabbri, K., Antonini, E., & Marchi, L. (2023). Sun-Shading Sails in Courtyards: An Italian Case Study with RayMan. Sustainability, 15(17), 13033. https://doi.org/10.3390/su151713033