Exploring the Synergy of Renewable Energy in the Circular Economy Framework: A Bibliometric Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Conceptual Structure
3.1.1. Co-Occurrence Network
3.1.2. Thematic Map
3.1.3. Thematic Evolution
3.2. Intellectual Structure
3.3. Social Structure
3.4. Challenges to Implementing a Circular Economy That Utilizes Renewable Energy
3.4.1. High Investment Costs for Renewable Energy Generation Technologies
3.4.2. Inadequate Regulatory Framework, Policies, and Government Support
3.4.3. Discontinuity in the Availability of Renewable Energy Sources
3.4.4. Scarcity of Resources and Components of Renewable Energy Generation Technologies
3.4.5. Relatively Low Energy Conversion Efficiency
3.4.6. Consumer Awareness and Behavioral Change
3.4.7. End of Life Cycle of Renewable Energy Power Generation Technologies
3.4.8. Future Research Direction
4. Conclusions
- Our first findings relate to the structure of knowledge synthesis in studies associated with applying renewable energy in the circular economy context. As environmental consciousness developed, the emphasis turned from renewable energy to effective waste and resource management and green technology in a circular economy. Co-occurrence network analysis showed the circular economy and renewable energy as recurring themes, with authors like Geissdoerfer, M., Korhonen, J., Ghisellini, P., and Kirchherr, J. discussing sustainability, and Zott, C., Boons, F., and Rockstrom, J. discussing business model innovation and the earth’s sustainability constraints. A co-citation network emphasizes sustainability and business model innovation.
- Our second finding relates to the barriers and challenges of integrating the renewable energy process into the circular economy, which includes financial constraints, such as a high initial investment, the lack of an adequate regulatory framework and government support, and the inconsistent availability of renewable energy sources. Other obstacles include the scarcity of resources and components for renewable energy generation technologies, relatively low energy conversion efficiency, and a variety of other issues.
- Offer financial incentives (tax breaks, subsidies) to energy suppliers, producers, and consumers to increase the use of renewable energy.
- Create a comprehensive regulatory framework to support regional, national, and international renewable energy initiatives.
- Invest in research focusing on renewable energy storage technologies and environmentally friendly alternative components for electric power and encourage collaboration between researchers and commercial companies.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sassanelli, C.; Rosa, P.; Rocca, R.; Terzi, S. Circular Economy Performance Assessment Methods: A Systematic Literature Review. J. Clean. Prod. 2019, 229, 440–453. [Google Scholar] [CrossRef]
- Hasheminasab, H.; Hashemkhani Zolfani, S.; Kazimieras Zavadskas, E.; Kharrazi, M.; Skare, M. A Circular Economy Model for Fossil Fuel Sustainable Decisions Based on MADM Techniques. Econ. Res.-Ekon. Istraz. 2022, 35, 564–582. [Google Scholar] [CrossRef]
- Sherwood, J.; Gongora, G.T.; Velenturf, A.P.M. A Circular Economy Metric to Determine Sustainable Resource Use Illustrated with Neodymium for Wind Turbines. J. Clean. Prod. 2022, 376, 134305. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Belhadi, A.; Kamble, S.S.; Chiappetta Jabbour, C.J.; Mani, V.; Khan, S.A.R.; Touriki, F.E. A Self-Assessment Tool for Evaluating the Integration of Circular Economy and Industry 4.0 Principles in Closed-Loop Supply Chains. Int. J. Prod. Econ. 2022, 245, 108372. [Google Scholar] [CrossRef]
- Govindan, K. Sustainable Consumption and Production in the Food Supply Chain: A Conceptual Framework. Int. J. Prod. Econ. 2018, 195, 419–431. [Google Scholar] [CrossRef]
- Patwa, N.; Sivarajah, U.; Seetharaman, A.; Sarkar, S.; Maiti, K.; Hingorani, K. Towards a Circular Economy: An Emerging Economies Context. J. Bus. Res. 2021, 122, 725–735. [Google Scholar] [CrossRef]
- Ünal, E.; Shao, J. A Taxonomy of Circular Economy Implementation Strategies for Manufacturing Firms: Analysis of 391 Cradle-to-Cradle Products. J. Clean. Prod. 2019, 212, 754–765. [Google Scholar] [CrossRef]
- Ghazanfari, A. An Analysis of Circular Economy Literature at the Macro Level, with a Particular Focus on Energy Markets. Energies 2023, 16, 1779. [Google Scholar] [CrossRef]
- Olabi, A.G. Circular Economy and Renewable Energy. Energy 2019, 181, 450–454. [Google Scholar] [CrossRef]
- Hens, L.; Block, C.; Cabello-Eras, J.J.; Sagastume-Gutierez, A.; Garcia-Lorenzo, D.; Chamorro, C.; Herrera Mendoza, K.; Haeseldonckx, D.; Vandecasteele, C. On the Evolution of “Cleaner Production” as a Concept and a Practice. J. Clean. Prod. 2018, 172, 3323–3333. [Google Scholar] [CrossRef]
- Razmjoo, A.; Gakenia Kaigutha, L.; Vaziri Rad, M.A.; Marzband, M.; Davarpanah, A.; Denai, M. A Technical Analysis Investigating Energy Sustainability Utilizing Reliable Renewable Energy Sources to Reduce CO2 Emissions in a High Potential Area. Renew Energy 2021, 164, 46–57. [Google Scholar] [CrossRef]
- Maggio, G.; Nicita, A.; Squadrito, G. How the Hydrogen Production from RES Could Change Energy and Fuel Markets: A Review of Recent Literature. Int. J. Hydrogen. Energy 2019, 44, 11371–11384. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Dong, K. How Renewable Energy Reduces CO2 Emissions? Decoupling and Decomposition Analysis for 25 Countries along the Belt and Road. Appl. Econ. 2021, 53, 4597–4613. [Google Scholar] [CrossRef]
- Lima, M.A.; Mendes, L.F.R.; Mothé, G.A.; Linhares, F.G.; de Castro, M.P.P.; da Silva, M.G.; Sthel, M.S. Renewable Energy in Reducing Greenhouse Gas Emissions: Reaching the Goals of the Paris Agreement in Brazil. Environ. Dev. 2020, 33, 100504. [Google Scholar] [CrossRef]
- Bello, M.O.; Solarin, S.A. Searching for Sustainable Electricity Generation: The Possibility of Substituting Coal and Natural Gas with Clean Energy. Energy Environ. 2022, 33, 64–84. [Google Scholar] [CrossRef]
- Bonsu, N.O. Towards a Circular and Low-Carbon Economy: Insights from the Transitioning to Electric Vehicles and Net Zero Economy. J. Clean. Prod. 2020, 256, 120659. [Google Scholar] [CrossRef]
- Asif, M.; Jajja, M.S.S.; Searcy, C. A Review of Literature on the Antecedents of Electric Vehicles Promotion: Lessons for Value Chains in Developing Countries. IEEE Trans. Eng. Manag. 2021, 70, 3697–3710. [Google Scholar] [CrossRef]
- Sun, D.; Kyere, F.; Sampene, A.K.; Asante, D.; Kumah, N.Y.G. An Investigation on the Role of Electric Vehicles in Alleviating Environmental Pollution: Evidence from Five Leading Economies. Environ. Sci. Pollut. Res. 2023, 30, 18244–18259. [Google Scholar] [CrossRef]
- Remme, D.; Jackson, J. Green Mission Creep: The Unintended Consequences of Circular Economy Strategies for Electric Vehicles. J. Clean. Prod. 2023, 394, 136346. [Google Scholar] [CrossRef]
- Cavicchi, C.; Oppi, C.; Vagnoni, E. Energy Management to Foster Circular Economy Business Model for Sustainable Development in an Agricultural SME. J. Clean. Prod. 2022, 368, 133188. [Google Scholar] [CrossRef]
- Khayyam, H.; Naebe, M.; Milani, A.S.; Fakhrhoseini, S.M.; Date, A.; Shabani, B.; Atkiss, S.; Ramakrishna, S.; Fox, B.; Jazar, R.N. Improving Energy Efficiency of Carbon Fiber Manufacturing through Waste Heat Recovery: A Circular Economy Approach with Machine Learning. Energy 2021, 225, 120113. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thorne, R.J.; Colón, J.; Ponsá, S.; Al-Mansour, F.; et al. Municipal Solid Waste Management and Waste-to-Energy in the Context of a Circular Economy and Energy Recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Escamilla-García, P.E.; Camarillo-López, R.H.; Carrasco-Hernández, R.; Fernández-Rodríguez, E.; Legal-Hernández, J.M. Technical and Economic Analysis of Energy Generation from Waste Incineration in Mexico. Energy Strategy Rev. 2020, 31, 100542. [Google Scholar] [CrossRef]
- de Vilas Boas da Silva, L.J.; dos Santos, I.F.S.; Mensah, J.H.R.; Gonçalves, A.T.T.; Barros, R.M. Incineration of Municipal Solid Waste in Brazil: An Analysis of the Economically Viable Energy Potential. Renew Energy 2020, 149, 1386–1394. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Liang, X.; O’callaghan, E.; Goh, H.; Othman, M.H.D.; Avtar, R.; Kusworo, T.D. Transformation of Solid Waste Management in China: Moving towards Sustainability through Digitalization-Based Circular Economy. Sustainability 2022, 14, 2374. [Google Scholar] [CrossRef]
- Seruga, P.; Krzywonos, M.; den Boer, E.; Niedźwiecki, Ł.; Urbanowska, A.; Pawlak-Kruczek, H. Anaerobic Digestion as a Component of Circular Bioeconomy—Case Study Approach. Energies 2023, 16, 140. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y.; et al. Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef]
- Negri, C.; Ricci, M.; Zilio, M.; D’Imporzano, G.; Qiao, W.; Dong, R.; Adani, F. Anaerobic Digestion of Food Waste for Bio-Energy Production in China and Southeast Asia: A Review. Renew. Sustain. Energy Rev. 2020, 133, 110138. [Google Scholar] [CrossRef]
- Van, D.P.; Fujiwara, T.; Tho, B.L.; Toan, P.P.S.; Minh, G.H. A Review of Anaerobic Digestion Systems for Biodegradable Waste: Configurations, Operating Parameters, and Current Trends. Environ. Eng. Res. 2020, 25, 1–17. [Google Scholar] [CrossRef]
- Antoniou, N.; Monlau, F.; Sambusiti, C.; Ficara, E.; Barakat, A.; Zabaniotou, A. Contribution to Circular Economy Options of Mixed Agricultural Wastes Management: Coupling Anaerobic Digestion with Gasification for Enhanced Energy and Material Recovery. J. Clean. Prod. 2019, 209, 505–514. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R. Performance Evaluation of Anaerobic Digestion Technology for Energy Recovery from Organic Fraction of Municipal Solid Waste: A Review. Energy 2020, 197, 117253. [Google Scholar] [CrossRef]
- Bellia, C.; Zarbà, C.; Shin, H.W. Economic Assessment for Vegetable Waste Valorization through the Biogas-Biomethane Chain in Italy with a Circular Economy Approach. Front. Sustain. Food Syst. 2022, 6, 1035357. [Google Scholar] [CrossRef]
- Szyba, M.; Mikulik, J. Energy Production from Biodegradable Waste as an Example of the Circular Economy. Energies 2022, 15, 1269. [Google Scholar] [CrossRef]
- Rosokhata, A.; Minchenko, M.; Khomenko, L.; Chygryn, O. Renewable Energy: A Bibliometric Analysis. In Proceedings of the E3S Web of Conferences, Kec. Depok, Indonesia, 9 April 2021; EDP Sciences: Ulys, France; Volume 250. [Google Scholar]
- Cusa, Y.G.; Laureano, J.; Rodríguez, M.; Alexandre, S.; Vieira De Melo, B.; Torres, E.A. Optimization of Hybrid Renewable Energy Systems for Power Generation: A Bibliometric Review. Int. J. Innov. Educ. Res. 2021, 9, 369–393. [Google Scholar] [CrossRef]
- Azevedo, S.G.; Santos, M.; Antón, J.R. Supply Chain of Renewable Energy: A Bibliometric Review Approach. Biomass Bioenergy 2019, 126, 70–83. [Google Scholar] [CrossRef]
- Nunes, A.M.M.; Coelho Junior, L.M.; Abrahão, R.; Santos Júnior, E.P.; Simioni, F.J.; Rotella Junior, P.; Rocha, L.C.S. Public Policies for Renewable Energy: A Review of the Perspectives for a Circular Economy. Energies 2023, 16, 485. [Google Scholar] [CrossRef]
- Arruda, E.H.; Melatto, R.A.P.B.; Levy, W.; Conti, D. de M. Circular Economy: A Brief Literature Review (2015–2020). Sustain. Oper. Comput. 2021, 2, 79–86. [Google Scholar] [CrossRef]
- Rojas-Sánchez, M.A.; Palos-Sánchez, P.R.; Folgado-Fernández, J.A. Systematic Literature Review and Bibliometric Analysis on Virtual Reality and Education. Educ. Inf. Technol. 2023, 28, 155–192. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting Systematic Literature Reviews and Bibliometric Analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
- Kristia, K.; Kovács, S.; Bács, Z.; Rabbi, M.F. A Bibliometric Analysis of Sustainable Food Consumption: Historical Evolution, Dominant Topics and Trends. Sustainability 2023, 15, 8998. [Google Scholar] [CrossRef]
- Malatesta, T.; Morrison, G.M.; Breadsell, J.K.; Eon, C. A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices. Sustainability 2023, 15, 9172. [Google Scholar] [CrossRef]
- Gonçalves, B. de S.M.; de Carvalho, F.L.; Fiorini, P. de C. Circular Economy and Financial Aspects: A Systematic Review of the Literature. Sustainability 2022, 14, 3023. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 285–320. [Google Scholar]
- Winans, K.; Kendall, A.; Deng, H. The History and Current Applications of the Circular Economy Concept. Renew. Sustain. Energy Rev. 2017, 68, 825–833. [Google Scholar] [CrossRef]
- Alcalde-Calonge, A.; Sáez-Martínez, F.J.; Ruiz-Palomino, P. Evolution of Research on Circular Economy and Related Trends and Topics. A Thirteen-Year Review. Ecol. Inform. 2022, 70, 101716. [Google Scholar] [CrossRef]
- Mohajan, H.K.; Kumar, H. Cradle to Cradle Is a Sustainable Economic Policy for the Better Future Human Rights View Project General Relativity View Project Cradle to Cradle Is a Sustainable Economic Policy for the Better Future. Ann. Spiru Haret Univ. Econ. Ser. 2021, 21, 559–572. [Google Scholar] [CrossRef]
- Ghisellini, P.; Protano, G.; Viglia, S.; Gaworski, M.; Setti, M.; Ulgiati, S. Integrated Agricultural and Dairy Production within a Circular Economy Framework. A Comparison of Italian and Polish Farming Systems. J. Environ. Account. Manag. 2014, 2, 367–384. [Google Scholar] [CrossRef]
- Supino, S.; Malandrino, O.; Testa, M.; Sica, D. Sustainability in the EU Cement Industry: The Italian and German Experiences. J. Clean. Prod. 2016, 112, 430–442. [Google Scholar] [CrossRef]
- Palm, E.; Nilsson, L.J.; Åhman, M. Electricity-Based Plastics and Their Potential Demand for Electricity and Carbon Dioxide. J. Clean. Prod. 2016, 129, 548–555. [Google Scholar] [CrossRef]
- Reiche, D. Renewable Energy Policies in the Gulf Countries: A Case Study of the Carbon-Neutral “Masdar City” in Abu Dhabi. Energy Policy 2010, 38, 378–382. [Google Scholar] [CrossRef]
- Olabi, V.; Wilberforce, T.; Elsaid, K.; Sayed, E.T.; Abdelkareem, M.A. Impact of COVID-19 on the Renewable Energy Sector and Mitigation Strategies. Chem. Eng. Technol. 2022, 45, 558–571. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, R.; Li, R. Towards Smart Energy Systems—A Survey about the Impact of COVID-19 Pandemic on Renewable Energy Research. Energy Strategy Rev. 2022, 41, 100845. [Google Scholar] [CrossRef]
- Salim, H.K.; Stewart, R.A.; Sahin, O.; Dudley, M. Drivers, Barriers and Enablers to End-of-Life Management of Solar Photovoltaic and Battery Energy Storage Systems: A Systematic Literature Review. J. Clean. Prod. 2019, 211, 537–554. [Google Scholar] [CrossRef]
- Eligüzel, İ.M.; Özceylan, E. A Bibliometric, Social Network and Clustering Analysis for a Comprehensive Review on End-of-Life Wind Turbines. J. Clean. Prod. 2022, 380, 135004. [Google Scholar] [CrossRef]
- Patyal, V.S.; Sarma, P.R.S.; Modgil, S.; Nag, T.; Dennehy, D. Mapping the Links between Industry 4.0, Circular Economy and Sustainability: A Systematic Literature Review. J. Enterp. Inf. Manag. 2022, 35, 1–35. [Google Scholar] [CrossRef]
- Ampese, L.C.; Sganzerla, W.G.; Di Domenico Ziero, H.; Mudhoo, A.; Martins, G.; Forster-Carneiro, T. Research Progress, Trends, and Updates on Anaerobic Digestion Technology: A Bibliometric Analysis. J. Clean. Prod. 2022, 331, 130004. [Google Scholar] [CrossRef]
- Atif, S. The Role of Industry 4.0-Enabled Data-Driven Shared Platform as an Enabler of Product-Service System in the Context of Circular Economy: A Systematic Literature Review and Future Research Directions. Bus. Strategy Dev. 2023, 1–21. [Google Scholar] [CrossRef]
- Pu, R.; Li, X.; Chen, P. Sustainable Development and Sharing Economy: A Bibliometric Analysis. Probl. Perspect. Manag. 2021, 19, 1–19. [Google Scholar] [CrossRef]
- Srivastava, N.; Kumar, A. Minerals and Energy Interface in Energy Transition Pathways: A Systematic and Comprehensive Review. J. Clean. Prod. 2022, 376, 134354. [Google Scholar]
- Ngetich, B.K.; Nuryakin, N.; Qamari, I.N. How Research in Sustainable Energy Supply Chain Distribution Is Evolving: Bibliometric Review. J. Distrib. Sci. 2022, 20, 47–56. [Google Scholar] [CrossRef]
- Mejia, C.; Wu, M.; Zhang, Y.; Kajikawa, Y. Exploring Topics in Bibliometric Research Through Citation Networks and Semantic Analysis. Front. Res. Metr. Anal. 2021, 6, 742311. [Google Scholar] [CrossRef]
- Aparicio, G.; Iturralde, T.; Maseda, A. Conceptual Structure and Perspectives on Entrepreneurship Education Research: A Bibliometric Review. Eur. Res. Manag. Bus. Econ. 2019, 25, 105–113. [Google Scholar] [CrossRef]
- Mathews, J.A. Schumpeterian Economic Dynamics of Greening: Propagation of Green Eco-Platforms. J. Evol. Econ. 2020, 30, 929–948. [Google Scholar] [CrossRef]
- Bansal, S.; Singh, S.; Nangia, P. Assessing the Role of Natural Resource Utilization in Attaining Select Sustainable Development Goals in the Era of Digitalization. Resour. Policy 2022, 79, 103040. [Google Scholar] [CrossRef]
- Balasescu, A.; Seguin, T. Another Economy: Towards a Cultural Dialectics between Energy and Society. Innov. Eur. J. Soc. Sci. Res. 2018, 31, 251–277. [Google Scholar] [CrossRef]
- Basile, V.; Capobianco, N.; Vona, R. The Usefulness of Sustainable Business Models: Analysis from Oil and Gas Industry. Corp. Soc. Responsib. Environ. Manag. 2021, 28, 1801–1821. [Google Scholar] [CrossRef]
- Abdul Manaf, N.; Milani, D.; Abbas, A. An Intelligent Platform for Evaluating Investment in Low-Emissions Technology for Clean Power Production under ETS Policy. J. Clean. Prod. 2021, 317, 128362. [Google Scholar] [CrossRef]
- Somoza-Tornos, A.; Pozo, C.; Graells, M.; Espuña, A.; Puigjaner, L. Process Screening Framework for the Synthesis of Process Networks from a Circular Economy Perspective. Resour. Conserv. Recycl. 2021, 164, 105147. [Google Scholar] [CrossRef]
- Duarte Castro, F.; Cutaia, L.; Vaccari, M. End-of-Life Automotive Lithium-Ion Batteries (LIBs) in Brazil: Prediction of Flows and Revenues by 2030. Resour. Conserv. Recycl. 2021, 169, 105522. [Google Scholar] [CrossRef]
- Ferronato, N.; Calle Mendoza, I.J.; Ruiz Mayta, J.G.; Gorritty Portillo, M.A.; Conti, F.; Torretta, V. Biomass and Cardboard Waste-Based Briquettes for Heating and Cooking: Thermal Efficiency and Emissions Analysis. J. Clean. Prod. 2022, 375, 134111. [Google Scholar] [CrossRef]
- Yu, Z.; Khan, S.A.R.; Ponce, P.; Zia-ul-haq, H.M.; Ponce, K. Exploring Essential Factors to Improve Waste-to-Resource Recovery: A Roadmap towards Sustainability. J. Clean. Prod. 2022, 350, 131305. [Google Scholar] [CrossRef]
- Obrecht, M.; Singh, R.; Zorman, T. Conceptualizing a New Circular Economy Feature—Storing Renewable Electricity in Batteries beyond EV End-of-Life: The Case of Slovenia. Int. J. Product. Perform. Manag. 2022, 71, 896–911. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y.; Zhu, Q.; Sarkis, J. Green Supply Chain Management and the Circular Economy: Reviewing Theory for Advancement of Both Fields. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 794–817. [Google Scholar] [CrossRef]
- Edwards, C.; McNerney, C.C.; Lawton, L.A.; Palmer, J.; Macgregor, K.; Jack, F.; Cockburn, P.; Plummer, A.; Lovegrove, A.; Wood, A. Recoverable Resources from Pot Ale & Spent Wash from Scotch Whisky Production. Resour. Conserv. Recycl. 2022, 179, 106114. [Google Scholar] [CrossRef]
- Liang, X.; Kurniawan, T.A.; Goh, H.H.; Zhang, D.; Dai, W.; Liu, H.; Goh, K.C.; Othman, M.H.D. Conversion of Landfilled Waste-to-Electricity (WTE) for Energy Efficiency Improvement in Shenzhen (China): A Strategy to Contribute to Resource Recovery of Unused Methane for Generating Renewable Energy on-Site. J. Clean. Prod. 2022, 369, 133078. [Google Scholar] [CrossRef]
- Kuo, P.C.; Illathukandy, B.; Kung, C.H.; Chang, J.S.; Wu, W. Process Simulation Development of a Clean Waste-to-Energy Conversion Power Plant: Thermodynamic and Environmental Assessment. J. Clean. Prod. 2021, 315, 128156. [Google Scholar] [CrossRef]
- Colangelo, G.; Facchini, F.; Ranieri, L.; Starace, G.; Vitti, M. Assessment of Carbon Emissions’ Effects on the Investments in Conventional and Innovative Waste-to-Energy Treatments. J. Clean. Prod. 2023, 388, 135849. [Google Scholar] [CrossRef]
- Hussain, Z.; Mishra, J.; Vanacore, E. Waste to Energy and Circular Economy: The Case of Anaerobic Digestion. J. Enterp. Inf. Manag. 2020, 33, 817–838. [Google Scholar] [CrossRef]
- Schaubroeck, T.; Gibon, T.; Igos, E.; Benetto, E. Sustainability Assessment of Circular Economy over Time: Modelling of Finite and Variable Loops & Impact Distribution among Related Products. Resour. Conserv. Recycl. 2021, 168, 105319. [Google Scholar] [CrossRef]
- Sanjaya, E.; Abbas, A. Plasma Gasification as an Alternative Energy-from-Waste (EFW) Technology for the Circular Economy: An Environmental Review. Resour. Conserv. Recycl. 2023, 189, 106730. [Google Scholar] [CrossRef]
- Spiller, M.; Moretti, M.; De Paepe, J.; Vlaeminck, S.E. Environmental and Economic Sustainability of the Nitrogen Recovery Paradigm: Evidence from a Structured Literature Review. Resour. Conserv. Recycl. 2022, 184, 106406. [Google Scholar] [CrossRef]
- Metson, G.S.; Feiz, R.; Lindegaard, I.; Ranggård, T.; Quttineh, N.H.; Gunnarsson, E. Not All Sites Are Created Equal—Exploring the Impact of Constraints to Suitable Biogas Plant Locations in Sweden. J. Clean. Prod. 2022, 349, 131390. [Google Scholar] [CrossRef]
- Rodrigues, I.; Mata, T.M.; Martins, A.A. Environmental Analysis of a Bio-Based Coating Material for Automobile Interiors. J. Clean. Prod. 2022, 367, 133011. [Google Scholar] [CrossRef]
- Liang, X.; Goh, H.H.; Kurniawan, T.A.; Zhang, D.; Dai, W.; Liu, H.; Liu, J.; Goh, K.C. Utilizing Landfill Gas (LFG) to Electrify Digital Data Centers in China for Accelerating Energy Transition in Industry 4.0 Era. J. Clean. Prod. 2022, 369, 133297. [Google Scholar] [CrossRef]
- Gungor, B.; Dincer, I. Development of a Sustainable Community with an Integrated Renewable and Waste to Energy System for Multiple Useful Outputs. J. Clean. Prod. 2021, 312, 127704. [Google Scholar] [CrossRef]
- Othman, N.F.; Ya’acob, M.E.; Abdul-Rahim, A.S.; Shahwahid Othman, M.; Radzi, M.A.M.; Hizam, H.; Wang, Y.D.; Ya’Acob, A.M.; Jaafar, H.Z.E. Embracing New Agriculture Commodity through Integration of Java Tea as High Value Herbal Crops in Solar PV Farms. J. Clean. Prod. 2015, 91, 71–77. [Google Scholar] [CrossRef]
- Kılkış, Ş.; Kılkış, B. Integrated Circular Economy and Education Model to Address Aspects of an Energy-Water-Food Nexus in a Dairy Facility and Local Contexts. J. Clean. Prod. 2017, 167, 1084–1098. [Google Scholar] [CrossRef]
- Rogetzer, P.; Silbermayr, L.; Jammernegg, W. Sustainable Sourcing Including Capacity Reservation for Recycled Materials: A Newsvendor Framework with Price and Demand Correlations. Int. J. Prod. Econ. 2019, 214, 206–219. [Google Scholar] [CrossRef]
- Akcil, A.; Agcasulu, I.; Swain, B. Valorization of Waste LCD and Recovery of Critical Raw Material for Circular Economy: A Review. Resour. Conserv. Recycl. 2019, 149, 622–637. [Google Scholar] [CrossRef]
- Nazmul Islam, K.M.; Sultana, A.; Wadley, D.; Dargusch, P.; Henry, M.; Naito, Y. Opportunities for Inclusive and Efficient Low Carbon Food System Development in Bangladesh. J. Clean. Prod. 2021, 319, 128586. [Google Scholar] [CrossRef]
- Nong, D. Development of the Electricity-Environmental Policy CGE Model (GTAP-E-PowerS): A Case of the Carbon Tax in South Africa. Energy Policy 2020, 140, 111375. [Google Scholar] [CrossRef]
- Sawhney, A. Striving towards a Circular Economy: Climate Policy and Renewable Energy in India. Clean Technol Environ Policy 2021, 23, 491–499. [Google Scholar] [CrossRef]
- Eggemann, L.; Escobar, N.; Peters, R.; Burauel, P.; Stolten, D. Life Cycle Assessment of a Small-Scale Methanol Production System: A Power-to-Fuel Strategy for Biogas Plants. J. Clean. Prod. 2020, 271, 122476. [Google Scholar] [CrossRef]
- van Loon, P.; Diener, D.; Harris, S. Circular Products and Business Models and Environmental Impact Reductions: Current Knowledge and Knowledge Gaps. J. Clean. Prod. 2021, 288, 125627. [Google Scholar] [CrossRef]
- Fernández-Amador, O.; Francois, J.F.; Oberdabernig, D.A.; Tomberger, P. Energy Footprints and the International Trade Network: A New Dataset. Is the European Union Doing It Better? Ecol. Econ. 2023, 204, 107635. [Google Scholar] [CrossRef]
- Nižetić, S.; Djilali, N.; Papadopoulos, A.; Rodrigues, J.J.P.C. Smart Technologies for Promotion of Energy Efficiency, Utilization of Sustainable Resources and Waste Management. J. Clean. Prod. 2019, 231, 565–591. [Google Scholar] [CrossRef]
- Mikulčić, H.; Baleta, J.; Klemeš, J.J.; Wang, X. Energy Transition and the Role of System Integration of the Energy, Water and Environmental Systems. J. Clean. Prod. 2021, 292, 126027. [Google Scholar] [CrossRef]
- Mackie, C.; Velenturf, A.P.M. Trouble on the Horizon: Securing the Decommissioning of Offshore Renewable Energy Installations in UK Waters. Energy Policy 2021, 157, 112479. [Google Scholar] [CrossRef]
- Mastrocinque, E.; Ramírez, F.J.; Honrubia-Escribano, A.; Pham, D.T. Industry 4.0 Enabling Sustainable Supply Chain Development in the Renewable Energy Sector: A Multi-Criteria Intelligent Approach. Technol. Forecast. Soc. Chang. 2022, 182, 121813. [Google Scholar] [CrossRef]
- Fuldauer, L.I.; Parker, B.M.; Yaman, R.; Borrion, A. Managing Anaerobic Digestate from Food Waste in the Urban Environment: Evaluating the Feasibility from an Interdisciplinary Perspective. J. Clean. Prod. 2018, 185, 929–940. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Styles, D.; Prade, T.; Adams, P.; Thelin, G.; Rodhe, L.; Gunnarsson, I.; D’Hertefeldt, T. Closing Nutrient Loops through Decentralized Anaerobic Digestion of Organic Residues in Agricultural Regions: A Multi-Dimensional Sustainability Assessment. Resour. Conserv. Recycl. 2018, 136, 110–117. [Google Scholar] [CrossRef]
- Petrillo, A.; Travaglioni, M.; Di Fraia, S.; Vanoli, L.; Cirillo, D.; La Villetta, M. Experimental Study and Life Cycle Assessment of Biomass Small-Scale Trigeneration Plant. J. Clean. Prod. 2021, 326, 129234. [Google Scholar] [CrossRef]
- Buonocore, E.; Paletto, A.; Russo, G.F.; Franzese, P.P. Indicators of Environmental Performance to Assess Wood-Based Bioenergy Production: A Case Study in Northern Italy. J. Clean. Prod. 2019, 221, 242–248. [Google Scholar] [CrossRef]
- Santoyo-Castelazo, E.; Solano-Olivares, K.; Martínez, E.; García, E.O.; Santoyo, E. Life Cycle Assessment for a Grid-Connected Multi-Crystalline Silicon Photovoltaic System of 3 KWp: A Case Study for Mexico. J. Clean. Prod. 2021, 316, 128314. [Google Scholar] [CrossRef]
- Gençer, E.; Agrawal, R. A Commentary on the US Policies for Efficient Large Scale Renewable Energy Storage Systems: Focus on Carbon Storage Cycles. Energy Policy 2016, 88, 477–484. [Google Scholar] [CrossRef]
- Matheri, A.N.; Nabadda, E.; Mohamed, B. Sustainable and Circularity in the Decentralized Hybrid Solar-Bioenergy System. Environ. Dev. Sustain. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Burg, V.; Rolli, C.; Schnorf, V.; Scharfy, D.; Anspach, V.; Bowman, G. Agricultural Biogas Plants as a Hub to Foster Circular Economy and Bioenergy: An Assessment Using Substance and Energy Flow Analysis. Resour. Conserv. Recycl. 2023, 190, 106770. [Google Scholar] [CrossRef]
- Koytsoumpa, E.I.; Magiri–Skouloudi, D.; Karellas, S.; Kakaras, E. Bioenergy with Carbon Capture and Utilization: A Review on the Potential Deployment towards a European Circular Bioeconomy. Renew. Sustain. Energy Rev. 2021, 152, 111641. [Google Scholar] [CrossRef]
- Ding, N.; Liu, J.; Kong, Z.; Yan, L.; Yang, J.X. Life Cycle Greenhouse Gas Emissions of Chinese Urban Household Consumption Based on Process Life Cycle Assessment: Exploring the Critical Influencing Factors. J. Clean. Prod. 2019, 210, 898–906. [Google Scholar] [CrossRef]
- Mathur, N.; Singh, S.; Sutherland, J.W. Promoting a Circular Economy in the Solar Photovoltaic Industry Using Life Cycle Symbiosis. Resour. Conserv. Recycl. 2020, 155, 104649. [Google Scholar] [CrossRef]
- Ueda, T.; Roberts, E.S.; Norton, A.; Styles, D.; Williams, A.P.; Ramos, H.M.; Gallagher, J. A Life Cycle Assessment of the Construction Phase of Eleven Micro-Hydropower Installations in the UK. J. Clean. Prod. 2019, 218, 1–9. [Google Scholar] [CrossRef]
- Winquist, E.; Rikkonen, P.; Pyysiäinen, J.; Varho, V. Is Biogas an Energy or a Sustainability Product?—Business Opportunities in the Finnish Biogas Branch. J. Clean. Prod. 2019, 233, 1344–1354. [Google Scholar] [CrossRef]
- Bustamante, G.; Giannetti, B.F.; Agostinho, F.; Liu, G.; Almeida, C.M.V.B. Prioritizing Cleaner Production Actions towards Circularity: Combining LCA and Emergy in the PET Production Chain. Sustainability 2022, 14, 6821. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. An Economic Analysis of Biogas-Biomethane Chain from Animal Residues in Italy. J. Clean. Prod. 2019, 230, 888–897. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Miliacca, M. A Profitability Analysis of Small-Scale Plants for Biomethane Injection into the Gas Grid. J. Clean. Prod. 2018, 184, 179–187. [Google Scholar] [CrossRef]
- Brião, G. de V.; da Silva, M.G.; Vieira, M.G.A. Adsorption Potential for the Concentration and Recovery of Rare Earth Metals from NdFeB Magnet Scrap in the Hydrometallurgical Route: A Review in a Circular Economy Approach. J. Clean. Prod. 2022, 380, 135112. [Google Scholar] [CrossRef]
- Faraca, G.; Martinez-Sanchez, V.; Astrup, T.F. Environmental Life Cycle Cost Assessment: Recycling of Hard Plastic Waste Collected at Danish Recycling Centres. Resour. Conserv. Recycl. 2019, 143, 299–309. [Google Scholar] [CrossRef]
- Honic, M.; Kovacic, I.; Aschenbrenner, P.; Ragossnig, A. Material Passports for the End-of-Life Stage of Buildings: Challenges and Potentials. J. Clean. Prod. 2021, 319, 128702. [Google Scholar] [CrossRef]
- Maani, T.; Mathur, N.; Rong, C.; Sutherland, J.W. Estimating Potentially Recoverable Nd from End-of-Life (EoL) Products to Meet Future U.S. Demands. Resour. Conserv. Recycl. 2023, 190, 106864. [Google Scholar] [CrossRef]
- Henry, A.; McCallum, C.; McStay, D.; Rooney, D.; Robertson, P.; Foley, A. Analysis of Wind to Hydrogen Production and Carbon Capture Utilisation and Storage Systems for Novel Production of Chemical Energy Carriers. J. Clean. Prod. 2022, 354, 131695. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, G.; Zheng, L.; Zhang, Y.; Qi, X.; Ke, S.; Gao, L.; Bai, R.; Liu, G. Modeling Waste Generation and End-of-Life Management of Wind Power Development in Guangdong, China until 2050. Resour. Conserv. Recycl. 2021, 169, 105533. [Google Scholar] [CrossRef]
- da Silva Romero, C.W.; Miyazaki, M.R.; Berni, M.D.; Figueiredo, G.K.D.A.; Lamparelli, R.A.C. A Spatial Approach for Integrating GIS and Fuzzy Logic in Multicriteria Problem Solving to Support the Definition of Ideal Areas for Biorefinery Deployment. J. Clean. Prod. 2023, 390, 135886. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Potential of Microalgae Cultivation Using Nutrient-Rich Wastewater and Harvesting Performance by Biocoagulants/Bioflocculants: Mechanism, Multi-Conversion of Biomass into Valuable Products, and Future Challenges. J. Clean. Prod. 2022, 365, 132806. [Google Scholar] [CrossRef]
- Lupoae, O.D.; Radu, R.I.; Isai, V.M.; Mihai, O.I. Sustainable Entrepreneurship in the Equestrian Sector through Horse Manure: A PLS-SEM Approach. Int. J. Entrep. Behav. Res. 2023, 29, 1497–1515. [Google Scholar] [CrossRef]
- Jesus, G.M.K.; Jugend, D.; Paes, L.A.B.; Siqueira, R.M.; Leandrin, M.A. Barriers to the Adoption of the Circular Economy in the Brazilian Sugarcane Ethanol Sector. Clean Technol. Environ. Policy 2023, 25, 381–395. [Google Scholar] [CrossRef]
- Peter John, E.; Mishra, U. A Sustainable Three-Layer Circular Economic Model with Controllable Waste, Emission, and Wastewater from the Textile and Fashion Industry. J. Clean. Prod. 2023, 388, 135642. [Google Scholar] [CrossRef]
- Kasprzyk, M.; Czerwionka, K.; Gajewska, M. Waste Materials Assessment for Phosphorus Adsorption toward Sustainable Application in Circular Economy. Resour. Conserv. Recycl. 2021, 168, 105335. [Google Scholar] [CrossRef]
- Contreras, M.D.; Barros, R.S.; Zapata, J.; Chamorro, M.V.; Arrieta, A.A. A Look to the Biogas Generation from Organic Wastes in Colombia. Int. J. Energy Econ. Policy 2020, 10, 248–254. [Google Scholar] [CrossRef]
- Carnicer, J.; Peñuelas, J. The World at a Crossroads: Financial Scenarios for Sustainability. Energy Policy 2012, 48, 611–617. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. Future Earth: Declining Energy Use and Economic Output. Foresight 2014, 16, 512–526. [Google Scholar] [CrossRef]
- Ahamer, G. Forward-Looking University Curricula and Enterprises for Renewable Energies. Int. J. Foresight Innov. Policy 2021, 15, 88–119. [Google Scholar] [CrossRef]
- Wrålsen, B.; Prieto-Sandoval, V.; Mejia-Villa, A.; O’Born, R.; Hellström, M.; Faessler, B. Circular Business Models for Lithium-Ion Batteries—Stakeholders, Barriers, and Drivers. J. Clean. Prod. 2021, 317, 128393. [Google Scholar] [CrossRef]
- Glöser-Chahoud, S.; Huster, S.; Rosenberg, S.; Baazouzi, S.; Kiemel, S.; Singh, S.; Schneider, C.; Weeber, M.; Miehe, R.; Schultmann, F. Industrial Disassembling as a Key Enabler of Circular Economy Solutions for Obsolete Electric Vehicle Battery Systems. Resour. Conserv. Recycl. 2021, 174, 10573. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Xu, Z. Analysis of Cobalt Flows in Mainland China: Exploring the Potential Opportunities for Improving Resource Efficiency and Supply Security. J. Clean. Prod. 2020, 275, 122841. [Google Scholar] [CrossRef]
- AliAkbari, R.; Ghasemi, M.H.; Neekzad, N.; Kowsari, E.; Ramakrishna, S.; Mehrali, M.; Marfavi, Y. High Value Add Bio-Based Low-Carbon Materials: Conversion Processes and Circular Economy. J. Clean. Prod. 2021, 293, 126101. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Chong, C.; Wang, C.H.; Wang, X. A Decision Support Framework for the Design and Operation of Sustainable Urban Farming Systems. J. Clean. Prod. 2020, 268, 121928. [Google Scholar] [CrossRef]
- Pasquali, F.; Suk, H.; Behdad, S.; Hall, J. Method for Design Life of Energy System Components Based on Levelized Cost of Energy. J. Clean. Prod. 2020, 268, 121971. [Google Scholar] [CrossRef]
- Dos Santos, P.S.; de, S. Campos, L.M. Practices for Garment Industry’s Post-Consumer Textile Waste Management in the Circular Economy Context: An Analysis on Literature. Braz. J. Oper. Prod. Manag. 2021, 18, 1–17. [Google Scholar] [CrossRef]
- Dongfang, W.; Ponce, P.; Yu, Z.; Ponce, K.; Tanveer, M. The Future of Industry 4.0 and the Circular Economy in Chinese Supply Chain: In the Era of Post-COVID-19 Pandemic. Oper. Manag. Res. 2022, 15, 342–356. [Google Scholar] [CrossRef]
- Alola, A.A.; Adebayo, T.S. The Potency of Resource Efficiency and Environmental Technologies in Carbon Neutrality Target for Finland. J. Clean. Prod. 2023, 389, 136127. [Google Scholar] [CrossRef]
- Deng, S.; Kpodzro, E.; Maani, T.; Li, Z.; Huang, A.; Yih, Y.; Zhao, F.; Sutherland, J.W. Planning a Circular Economy System for Electric Vehicles Using Network Simulation. J. Manuf. Syst. 2022, 63, 95–106. [Google Scholar] [CrossRef]
- Wu, N.; Lan, K.; Yao, Y. An Integrated Techno-Economic and Environmental Assessment for Carbon Capture in Hydrogen Production by Biomass Gasification. Resour. Conserv. Recycl. 2023, 188, 106693. [Google Scholar] [CrossRef]
- Rumayor, M.; Corredor, J.; Rivero, M.J.; Ortiz, I. Prospective Life Cycle Assessment of Hydrogen Production by Waste Photoreforming. J. Clean. Prod. 2022, 336, 130430. [Google Scholar] [CrossRef]
- Hidalgo-Carvajal, D.; Carrasco-Gallego, R. Preparing for Future E-Waste from Photovoltaic Modules: A Circular Economy Approach. Int. J. Prod. Manag. Eng. 2022, 10, 131–141. [Google Scholar] [CrossRef]
- Bartie, N.; Cobos-Becerra, L.; Fröhling, M.; Schlatmann, R.; Reuter, M. Metallurgical Infrastructure and Technology Criticality: The Link between Photovoltaics, Sustainability, and the Metals Industry. Miner. Econ. 2022, 35, 503–519. [Google Scholar] [CrossRef]
- Moura, B.; Monteiro, H.; Mata, T.M.; Iten, M.; Martins, A.A. Environmental Life Cycle Assessment of Early-Stage Development of Ergosterol Extraction from Mushroom Bio-Residues. J. Clean. Prod. 2022, 355, 131623. [Google Scholar] [CrossRef]
- Nanda, N.; Bharadvaja, N. Algal Bioplastics: Current Market Trends and Technical Aspects. Clean Technol. Environ. Policy 2022, 24, 2659–2679. [Google Scholar] [CrossRef]
- Kim, I.; Jang, Y. Material Efficiency and Greenhouse Gas Reduction Effect of Industrial Waste by Material Circulation in Korea. J. Clean. Prod. 2022, 376, 134053. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and Its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Zott, C.; Amit, R. Business Model Design: An Activity System Perspective. Long Range Plann. 2010, 43, 216–226. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Vladimirova, D.; Evans, S. Sustainable Business Model Innovation: A Review. J. Clean. Prod. 2018, 198, 401–416. [Google Scholar] [CrossRef]
- Boons, F.; Lüdeke-Freund, F. Business Models for Sustainable Innovation: State-of-the-Art and Steps towards a Research Agenda. J. Clean. Prod. 2013, 45, 9–19. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A Safe Operating Space for Humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Miliacca, M. Efficiency and Allocation of Emission Allowances and Energy Consumption over More Sustainable European Economies. J. Clean. Prod. 2018, 182, 805–817. [Google Scholar] [CrossRef]
- Ferella, F.; Cucchiella, F.; D’Adamo, I.; Gallucci, K. A Techno-Economic Assessment of Biogas Upgrading in a Developed Market. J. Clean. Prod. 2019, 210, 945–957. [Google Scholar] [CrossRef]
- Ghisellini, P.; Passaro, R.; Ulgiati, S. Environmental Assessment of Multiple “Cleaner Electricity Mix” Scenarios within Just Energy and Circular Economy Transitions, in Italy and Europe. J. Clean. Prod. 2023, 388, 135891. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ji, X.; Liu, G.; Ulgiati, S. Evaluating the Transition towards Cleaner Production in the Construction and Demolition Sector of China: A Review. J. Clean. Prod. 2018, 195, 418–434. [Google Scholar] [CrossRef]
- Santagata, R.; Zucaro, A.; Viglia, S.; Ripa, M.; Tian, X.; Ulgiati, S. Assessing the Sustainability of Urban Eco-Systems through Emergy-Based Circular Economy Indicators. Ecol. Indic. 2020, 109, 105859. [Google Scholar] [CrossRef]
- Zhong, S.; Geng, Y.; Kong, H.; Liu, B.; Tian, X.; Chen, W.; Qian, Y.; Ulgiati, S. Emergy-Based Sustainability Evaluation of Erhai Lake Basin in China. J. Clean. Prod. 2018, 178, 142–153. [Google Scholar] [CrossRef]
- Metson, G.S.; Feiz, R.; Quttineh, N.H.; Tonderski, K. Optimizing Transport to Maximize Nutrient Recycling and Green Energy Recovery. Resour. Conserv. Recycl. X 2020, 9–10, 100049. [Google Scholar] [CrossRef]
- García-Quevedo, J.; Jové-Llopis, E.; Martínez-Ros, E. Barriers to the Circular Economy in European Small and Medium-Sized Firms. Bus. Strategy Environ. 2020, 29, 2450–2464. [Google Scholar] [CrossRef]
- Kakadellis, S.; Harris, Z.M. Don’t Scrap the Waste: The Need for Broader System Boundaries in Bioplastic Food Packaging Life-Cycle Assessment—A Critical Review. J. Clean. Prod. 2020, 274, 122831. [Google Scholar] [CrossRef]
- Orsini, F.; Marrone, P. Approaches for a Low-Carbon Production of Building Materials: A Review. J. Clean. Prod. 2019, 241, 118380. [Google Scholar] [CrossRef]
- Chen, J.; Wu, Y.; Xu, C.; Song, M.; Liu, X. Global Non-Fossil Fuel Consumption: Driving Factors, Disparities, and Trends. Manag. Decis. 2019, 57, 791–810. [Google Scholar] [CrossRef]
- Scarpellini, S.; Gimeno, J.Á.; Portillo-Tarragona, P.; Llera-Sastresa, E. Financial Resources for the Investments in Renewable Self-Consumption in a Circular Economy Framework. Sustainability 2021, 13, 6838. [Google Scholar] [CrossRef]
- Lybæk, R.; Kjær, T. Pre-Assessment of the Circular Economic Benefits and Challenges of Biogas Production in Denmark When Utilizing Sand Bedding in Dairy Cow Stables. J. Clean. Prod. 2019, 219, 268–277. [Google Scholar] [CrossRef]
- Azcarate-Aguerre, J.F.; Conci, M.; Zils, M.; Hopkinson, P.; Klein, T. Building Energy Retrofit-as-a-Service: A Total Value of Ownership Assessment Methodology to Support Whole Life-Cycle Building Circularity and Decarbonisation. Constr. Manag. Econ. 2022, 40, 676–689. [Google Scholar] [CrossRef]
- Azhgaliyeva, D.; Beirne, J.; Mishra, R. What Matters for Private Investment in Renewable Energy? Clim. Policy 2023, 23, 71–87. [Google Scholar] [CrossRef]
- Knauf, J.; Wüstenhagen, R. Crowdsourcing Social Acceptance: Why, When and How Project Developers Offer Citizens to Co-Invest in Wind Power. Energy Policy 2023, 173, 113340. [Google Scholar] [CrossRef]
- Belaïd, F.; Al-Sarihi, A.; Al-Mestneer, R. Balancing Climate Mitigation and Energy Security Goals amid Converging Global Energy Crises: The Role of Green Investments. Renew Energy 2023, 205, 534–542. [Google Scholar] [CrossRef]
- Lee, R.P. Alternative Carbon Feedstock for the Chemical Industry?—Assessing the Challenges Posed by the Human Dimension in the Carbon Transition. J. Clean. Prod. 2019, 219, 786–796. [Google Scholar] [CrossRef]
- Beckmann, A.; Sivarajah, U.; Irani, Z. Circular Economy versus Planetary Limits: A Slovak Forestry Sector Case Study. J. Enterp. Inf. Manag. 2021, 34, 1673–1698. [Google Scholar] [CrossRef]
- Genys, D.; Pažėraitė, A. Mapping Lithuanian Transition towards Sustainable Energy: Sociological Account on a Waste-to-Energy Case. Entrep. Sustain. Issues 2022, 10, 527–543. [Google Scholar] [CrossRef]
- Cura, D.; Yilmaz, M.; Koten, H.; Senthilraja, S.; Awad, M.M. Evaluation of the Technical and Economic Aspects of Solar Photovoltaic Plants under Different Climate Conditions and Feed-in Tariff. Sustain. Cities Soc. 2022, 80, 103804. [Google Scholar] [CrossRef]
- Fahim, K.E.; De Silva, L.C.; Hussain, F.; Shezan, S.A.; Yassin, H. An Evaluation of ASEAN Renewable Energy Path to Carbon Neutrality. Sustainability 2023, 15, 6961. [Google Scholar] [CrossRef]
- Ellahi, M.; Abbas, G.; Khan, I.; Koola, P.M.; Nasir, M.; Raza, A.; Farooq, U. Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review. Energies 2019, 12, 4392. [Google Scholar] [CrossRef]
- Li, G.; Hu, R.; Wang, N.; Yang, T.; Xu, F.; Li, J.; Wu, J.; Huang, Z.; Pan, M.; Lyu, T. Cultivation of Microalgae in Adjusted Wastewater to Enhance Biofuel Production and Reduce Environmental Impact: Pyrolysis Performances and Life Cycle Assessment. J. Clean. Prod. 2022, 355, 131768. [Google Scholar] [CrossRef]
- Pavić, I.; Luburić, Z.; Pandžić, H.; Capuder, T.; Andročec, I. Defining and Evaluating Use Cases for Battery Energy Storage Investments: Case Study in Croatia. Energies 2019, 12, 376. [Google Scholar] [CrossRef]
- Rotella Junior, P.; Rocha, L.C.S.; Morioka, S.N.; Bolis, I.; Chicco, G.; Mazza, A.; Janda, K. Economic Analysis of the Investments in Battery Energy Storage Systems: Review and Current Perspectives. Energies 2021, 14, 2503. [Google Scholar] [CrossRef]
- Boretti, A. Integration of Solar Thermal and Photovoltaic, Wind, and Battery Energy Storage through AI in NEOM City. Energy AI 2021, 3, 100038. [Google Scholar] [CrossRef]
- Yu, H.F.; Hasanuzzaman, M.; Rahim, N.A.; Amin, N.; Nor Adzman, N. Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review. Sustainability 2022, 14, 8567. [Google Scholar] [CrossRef]
- Bhattacharjee, A.K.; Kutkut, N.; Batarseh, I. Review of Multiport Converters for Solar and Energy Storage Integration. IEEE Trans. Power Electron. 2019, 34, 1431–1445. [Google Scholar] [CrossRef]
- Zhu, L.; Ding, T.; Gao, M.; Peh, C.K.N.; Ho, G.W. Shape Conformal and Thermal Insulative Organic Solar Absorber Sponge for Photothermal Water Evaporation and Thermoelectric Power Generation. Adv. Energy Mater. 2019, 9, 1900250. [Google Scholar] [CrossRef]
- Mayilsamy, G.; Natesan, B.; Joo, Y.H.; Lee, S.R. Fast Terminal Synergetic Control of PMVG-Based Wind Energy Conversion System for Enhancing the Power Extraction Efficiency. Energies 2022, 15, 2774. [Google Scholar] [CrossRef]
- Majout, B.; El Alami, H.; Salime, H.; Zine Laabidine, N.; El Mourabit, Y.; Motahhir, S.; Bouderbala, M.; Karim, M.; Bossoufi, B. A Review on Popular Control Applications in Wind Energy Conversion System Based on Permanent Magnet Generator PMSG. Energies 2022, 15, 6238. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, X.; Al-Akayshee, M. A Reliable Medium-Voltage High-Power Conversion System for MWs Wind Turbines. IEEE Trans. Sustain. Energy 2020, 11, 859–867. [Google Scholar] [CrossRef]
- Mushafiq, M.; Arisar, M.M.K.; Tariq, H.; Czapp, S. Energy Efficiency and Economic Policy: Comprehensive Theoretical, Empirical, and Policy Review. Energies 2023, 16, 2381. [Google Scholar] [CrossRef]
- Tzani, D.; Stavrakas, V.; Santini, M.; Thomas, S.; Rosenow, J.; Flamos, A. Pioneering a Performance-Based Future for Energy Efficiency: Lessons Learnt from a Comparative Review Analysis of Pay-for-Performance Programmes. Renew. Sustain. Energy Rev. 2022, 158, 112162. [Google Scholar] [CrossRef]
- Lozano, F.J.; Lozano, R.; Freire, P.; Jiménez-Gonzalez, C.; Sakao, T.; Ortiz, M.G.; Trianni, A.; Carpenter, A.; Viveros, T. New Perspectives for Green and Sustainable Chemistry and Engineering: Approaches from Sustainable Resource and Energy Use, Management, and Transformation. J. Clean. Prod. 2018, 172, 227–232. [Google Scholar] [CrossRef]
- Liu, H.T.; Tsaur, R.C. The Theory of Reasoned Action Applied to Green Smartphones: Moderating Effect of Government Subsidies. Sustainability 2020, 12, 5979. [Google Scholar] [CrossRef]
Article Review Code | Review Main Topic | Publication Year | Total Citation | Number of Analyzed Articles | Review Method | Important Findings |
---|---|---|---|---|---|---|
[1] | Method development for measuring corporate circular economy performance | 2019 | 297 | 45 | SLR | DfX and Guidelines enhance product design and development, while LCA, MFA, DEA/IeO, MCDM, and DES evaluate all system variables across their lifecycle. |
[55] | End-of-life management of PV and BESS | 2019 | 110 | 191 | SLR | The paper categorized the factors affecting PV and BESS EoL management as drivers, barriers, and enablers. For drivers, the factors are economic, social, and environmental; for barriers, they are policy-related, economic, social, market-related, environmental, and recycling infrastructure-related; and for enablers, they are policy-related, economic, social, market-related, behavioral, and recycling technology and infrastructure-related. |
[60] | Sharing economy business models in China to promote sustainable growth | 2021 | 6 | 975 | Bibliometric | The main subtopics of sustainable development in the sharing economy cover collaborative and sustainable consumption; climate change and bioeconomy; renewable resources and business models; the circular economy in China; and life cycle assessment. |
[57] | Integration of Industry 4.0 and the circular economy for sustainable operations | 2022 | 28 | 76 | SLR | CE practices support SDGs, including clean water and sanitation, accessible and clean energy, industry innovation and infrastructure, ethical production and use, and climate action. |
[62] | Research trends in sustainable energy supply chains | 2022 | 2 | 69 | Bibliometric | Circular economy and green supply chain management are significant topics for future research, suggesting that researchers and practitioners should develop more sustainable models. |
[56] | End-of life management of wind turbines | 2022 | 2 | 42 | SLR | Studies focused on recycling composite materials, reusing wind turbine blades, exploring circular economy applications, analyzing recycled material properties, and decommissioning operations, but did not fully consider the entire life cycle assessment. |
[61] | Mineral criticality, energy transition, and circular economy | 2022 | 4 | 42 | SLR | The availability of critical minerals needed to transition to a renewable energy system is insufficient to fulfill demand and is concentrated in only a few countries, which can disrupt the supply chain and cause geopolitical risk. The concepts of just transition and decarbonization need to be carefully considered. |
[58] | Anaerobic digestion technology utilization for bioenergy production in accordance with CE | 2022 | 46 | 6854 | Bibliometric | Anaerobic digestion can be made more effective and sustainable for bioenergy recovery by combining feedstock characterization, pre-treatment, and process modeling. |
[59] | Integration of Industry 4.0 technology, product-service systems, and CE | 2023 | 1 | 126 | SLR-Bibliometric | Applying I4.0 technologies in conjunction with PSS can support reverse logistics, save costs, and enable the development of circular products and waste management. I4.0 technologies aim to transform ordinary machines into intelligent, self-learning AI-based machines, enhancing performance and management maintenance. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kristia, K.; Rabbi, M.F. Exploring the Synergy of Renewable Energy in the Circular Economy Framework: A Bibliometric Study. Sustainability 2023, 15, 13165. https://doi.org/10.3390/su151713165
Kristia K, Rabbi MF. Exploring the Synergy of Renewable Energy in the Circular Economy Framework: A Bibliometric Study. Sustainability. 2023; 15(17):13165. https://doi.org/10.3390/su151713165
Chicago/Turabian StyleKristia, Kristia, and Mohammad Fazle Rabbi. 2023. "Exploring the Synergy of Renewable Energy in the Circular Economy Framework: A Bibliometric Study" Sustainability 15, no. 17: 13165. https://doi.org/10.3390/su151713165
APA StyleKristia, K., & Rabbi, M. F. (2023). Exploring the Synergy of Renewable Energy in the Circular Economy Framework: A Bibliometric Study. Sustainability, 15(17), 13165. https://doi.org/10.3390/su151713165