Analysis of Municipal Solid Waste Collection Methods Focusing on Zero-Waste Management Using an Analytical Hierarchy Process
Abstract
:1. Introduction
- Can separation at source be planned depending on the density of the residence? Preliminary studies by the authors and face-to-face interviews with residents [53] and business owners show that waste can be separated into fewer components in residences than in workplaces. The number of independent residences and workplaces was obtained from the relevant municipality and classified and analyzed statistically as the residence density: workplace-dense neighborhoods (WDN), other dense neighborhoods (ODN), and residence-dense neighborhoods (Section 2.1 and Section 3.1).
- What effect do separation methods at source have on solid waste disposal methods? It is known that the more components in the waste that are separated at source, the higher the quality of the waste input to be disposed of in the disposal processes. We analyze which separation methods contribute to disposal methods, and at which rank these methods are positioned in the analytical hierarchy process (Section 2.2, Section 2.4 and Section 3.2).
- How do the exhaust emissions from the collection vehicle change quantitatively with route optimization? In the solid waste collection process, route optimization is achieved for both the existing mixed collection method and collection of the waste that is separated at source. The average exhaust emission loads generated by solid waste collection vehicles are calculated for both the solid waste mass collected and the route distance traveled by MSW collection vehicles. The exhaust emission loads of both recently optimized routes and solid waste collection vehicles’ routes within the scope of ZWM are evaluated. The results obtained are discussed and compared (Section 2.3, Section 2.5 and Section 3.4).
2. Materials and Methods
2.1. Material and Method for Estimating Residence Density
2.2. Analytical Hierarchy Process-Based Methods
2.3. GIS-Based Methods
2.4. Zero-Waste-Based Materials and Methods
2.5. Emission Factor-Based Materials and Methods
3. Results
3.1. Determination of Residence Density in the Sample Study Area
3.2. Determination of the Most Efficient Source Separation Method Using AHP
3.3. Zero-Waste Management in the Study Area
3.4. Exhaust Emission Factors of Municipal Solid Waste Collection in the Study Area
3.5. Costs of Municipal Solid Waste Collection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaman, A.; Ahsan, T. Zero-Waste: Reconsidering Waste Management for the Future, 1st ed.; Routledge: New York, NY, USA, 2020. [Google Scholar]
- Li, C.H.; Lee, T.T.; Lau, S.S.Y. Enhancement of Municipal Solid Waste Management in Hong Kong through Innovative Solutions: A Review. Sustainability 2023, 15, 3310. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Chen, Y.; Zheng, G.; Chen, Y. Source separation, transportation, pretreatment, and valorization of municipal solid waste: A critical review. Environ. Dev. Sustain. 2022, 24, 11471–11513. [Google Scholar] [CrossRef] [PubMed]
- Taelman, S.E.; Tonini, D.; Wandl, A.; Dewulf, J. A Holistic Sustainability Framework for Waste Management in European Cities: Concept Development. Sustainability 2018, 10, 2184. [Google Scholar] [CrossRef]
- Zaman, A.U.; Lehmann, S. Urban growth and waste management optimization towards zero waste city. City Cult. Soc. 2011, 2, 177–187. [Google Scholar] [CrossRef]
- Knickmeyer, D. Social factors influencing household waste separation: A literature review on good practices to improve the recycling performance of urban areas. J. Clean. Prod. 2020, 245, 118605. [Google Scholar] [CrossRef]
- Jiarong, H.; Kelvin, T.; Xuepeng, Q.; Furong, S.; Weisheng, Z. Behavioral change in waste separation at source in an international community: An application of the theory of planned behavior. Waste Manag. 2021, 135, 397–408. [Google Scholar] [CrossRef]
- Katya Stoeva, K.; Alriksson, S. Influence of recycling programmes on waste separation behavior. Waste Manag. 2017, 68, 732–741. [Google Scholar] [CrossRef]
- Giel, R.; Dabrowska, A. Estimating Time Spent at the Waste Collection Point by A Garbage Truck with A Multiple Regression Model. Sustainability 2021, 13, 4272. [Google Scholar] [CrossRef]
- Apaydin, Ö.; Gönüllü, M.T. Route optimization for solid waste collection: Trabzon (Turkey) case study. Glob. Nest J. 2007, 9, 6–11. [Google Scholar] [CrossRef]
- Das, S.; Bhattacharyya, B.K. Optimization of municipal solid waste collection and transportation routes. Waste Manag. 2015, 43, 9–18. [Google Scholar] [CrossRef]
- Hashemi-Amiri, O.; Mohammadi, M.; Rahmanifar, G.; Hajiaghaei-Keshteli, M.; Fusco, G.; Colombaroni, C. An allocation-routing optimization model for integrated solid waste management. Expert Syst. Appl. 2023, 227, 120364. [Google Scholar] [CrossRef]
- Tavares, G.; Zsigraiova, Z.; Semiao, V.; Carvalho, M.D. A case study of fuel savings through optimisation of MSW transportation routes. Manag. Environ. Qual. 2008, 19, 444–454. [Google Scholar] [CrossRef]
- Del Carmen-Niño, V.; Herrera-Navarrete, R.; Juárez-López, A.L.; Sampedro-Rosas, M.L.; Reyes-Umaña, M. Municipal Solid Waste Collection: Challenges, Strategies and Perspectives in the Optimization of a Municipal Route in a Southern Mexican Town. Sustainability 2023, 15, 1083. [Google Scholar] [CrossRef]
- Islam, S.M.D.; Rahman, S.H.; Hassan, M.; Azam, G. Municipal Solid Waste Management using GIS Application in Mirpur Area of Dhaka City, Bangladesh. Pollution 2016, 2, 141–151. [Google Scholar] [CrossRef]
- Araiza-Aguilar, J.A.; Cram-Heydrich, S.; Ruiz-Rivera, N.; Oropeza-Orozco, O.; Fernandez-Lomelin, M.D.; Rojas-Valencia, M.N. GIS-based approach to zoning the risk associated with municipal solid waste management: Application to regional scale, Environ. Monit. Assess. 2021, 193, 2. [Google Scholar] [CrossRef] [PubMed]
- Villa, F.; Arcidiacono, A.; Causone, F.; Masera, G.; Tadi, M.; Grosso, M. GIS-Entering Rocinha: A GIS Approach for The Improvement of Solid Waste Management In a Slum In Rio De Janeiro (Brazil). Detritus 2020, 9, 221–231. [Google Scholar] [CrossRef]
- Manoharam, G.; Ismail, M.T.; Abir, I.A.; Ali, M.K.M. Efficient Solid Waste Management in Prai Industrial Area through GIS using Dijkstra and Travelling Salesman Problem Algorithms. Pertanika J. Sci. Technol. 2021, 29, 1397–1418. [Google Scholar] [CrossRef]
- Medina-Salas, L.D.; Castillo-González, E.; Giraldi-Díaz, M.R.; Guzmán-González, V. Analysis of Economical and Environ-mental Costs for the Selection of Municipal Solid Waste Treatment and Disposal Scenarios through Multicriteria Analysis (ELECTRE Method). Sustainability 2017, 9, 1758. [Google Scholar] [CrossRef]
- Ooi, J.K.; Woon, K.S.; Hashim, H. A multi-objective model to optimize country-scale municipal solid waste management with economic and environmental objectives: A case study in Malaysia. J. Clean. Prod. 2021, 316, 128366. [Google Scholar] [CrossRef]
- Kannah, R.Y.; Merrylin, J.; Devi, T.P.; Kavitha, S.; Sivashanmugham, P.; Kumar, G.; Banu, J.R. Food waste valorization: Biofuels and value added product recovery. Bioresour. Technol. Rep. 2020, 11, 100524. [Google Scholar] [CrossRef]
- Hasan, M.; Rasul, M.; Khan, M.; Ashwath, N.; Jahirul, M. Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renew. Sust. Energ. Rev. 2021, 145, 111073. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Q.; Qu, Y.; Dai, Y.; He, Y.; Wang, C.H.; Tong, Y.W. Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production. Appl. Energy 2020, 257, 113988. [Google Scholar] [CrossRef]
- Bala, R.; Mondal, M.K. Study of biological and thermo-chemical pretreatment of organic fraction of municipal solid waste for enhanced biogas yield. Environ. Sci. Pollut. Res. 2020, 27, 27293–27304. [Google Scholar] [CrossRef] [PubMed]
- Cetin, M. Consideration of permeable pavement in landscape architecture. J. Environ. Prot. Ecol. 2015, 16, 385–392. Available online: https://www.researchgate.net/publication/284992967_Consideration_of_permeable_pavement_in_landscape_architecture (accessed on 22 February 2023).
- TCCB (Turkish Republic Presidency), 2023, Resmi Gazete (Official Newspaper). Ambalaj Atıklarının Kontrolü Yönetmeliği (Packaging Waste Control Regulation). Available online: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=38745&MevzuatTur=7&MevzuatTertip=5 (accessed on 6 April 2023).
- Gundupalli, S.P.; Hait, S.; Thakur, A. A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag. 2017, 60, 56–74. [Google Scholar] [CrossRef]
- Pellegrinelli, S. Confguration and reconfguration of robotic systems for waste macro sorting. Int. J. Adv. Manuf. Technol. 2019, 102, 3677–3687. [Google Scholar] [CrossRef]
- Singh, A. Solid waste management through the applications of mathematical models, Resour. Conserv. Recycl. 2019, 151, 104503. [Google Scholar] [CrossRef]
- Singh, A. Managing the uncertainty problems of municipal solid waste disposal. J. Environ. Manag. 2019, 240, 259–265. [Google Scholar] [CrossRef]
- Tan, S.T.; Lee, C.T.; Hashim, H.; Ho, W.S.; Lim, J.S. Optimal process network for municipal solid waste management in Iskandar Malaysia. J. Clean. Prod. 2014, 71, 48–58. [Google Scholar] [CrossRef]
- Ng, W.P.Q.; Varbanov, P.S.; Klemeš, J.J.; Hegyháti, M.; Bertók, B.; Heckl, I.; Lam, H.L. Waste to energy for small cities: Economics versus carbon footprint. Chem. Eng. Trans. 2013, 35, 889–894. [Google Scholar] [CrossRef]
- Juul, N.; Münster, M.; Ravn, H.; Söderman, M.L. Challenges when performing economic optimization of waste treatment: A review. Waste Manag. 2013, 33, 1918–1925. [Google Scholar] [CrossRef] [PubMed]
- Apaydin, Ö.; Gönüllü, M.T. Route Time Estimation of Solid Waste Collection Vehicles Based on Population Density. Glob. Nest J. 2011, 13, 162–169. [Google Scholar] [CrossRef]
- Santibañez-Aguilar, J.E.; Martinez-Gomez, J.; Ponce-Ortega, J.M. Optimal planning for the reuse of municipal solid waste considering economic, environmental, and safety objectives. Am. Inst. Chem. Eng. 2015, 61, 1881–1899. [Google Scholar] [CrossRef]
- Niziolek, A.M.; Önel, O.; Faruque Hasan, M.M.; Floudas, C.A. Municipal solid waste to liquid transportation fuels-part II: Process synthesis and global optimization strategies. Comput. Chem. Eng. 2015, 74, 184–203. [Google Scholar] [CrossRef]
- Galante, G.; Aiello, G.; Enea, M.; Panascia, E. A multi-objective approach to solid waste management. Waste Manag. 2010, 30, 1720–1728. [Google Scholar] [CrossRef]
- Chang, N.B.; Chen, Y.L.; Wang, S.F. A fuzzy interval multi objective mixed integer programming approach for the optimal planning of solid waste management systems. Fuzzy Sets Syst. 1997, 89, 35–59. [Google Scholar] [CrossRef]
- Phonphoton, N.; Pharino, C. Multi-criteria decision analysis to mitigate the impact of municipal solid waste management services during floods, Resour. Conserv. Recycl. 2019, 146, 106–113. [Google Scholar] [CrossRef]
- Makarichi, L.; Techato, K.; Jutidamrongphan, W. Material flow analysis as a support tool for multi-criteria analysis in solid waste management decision-making, Resour. Conserv. Recycl. 2018, 139, 351–365. [Google Scholar] [CrossRef]
- Lin, C.; Wen, L.; Tsai, Y. Applying decision-making tools to national e-waste recycling policy: An example of analytic hierarchy process. Waste Manag. 2010, 30, 863–869. [Google Scholar] [CrossRef]
- Garfì, M.; Tondelli, S.; Bonoli, A. Multi-criteria decision analysis for waste management in Saharawi refugee camps. Waste Manag. 2009, 29, 2729–2739. [Google Scholar] [CrossRef]
- Younes, M.K.; Nopiah, Z.M.; Ahmad Basri, N.E.; Basri, H.; Abushammala, M.F.M.; Maulud, K.N.A. Prediction of municipal solid waste generation using nonlinear autoregressive network, Environ. Monit. Assess. 2015, 187, 753. [Google Scholar] [CrossRef] [PubMed]
- Antanasijević, D.; Pocajt, V.; Popović, I.; Redžić, N.; Ristić, M. The forecasting of municipal waste generation using artificial neural networks and sustainability indicators. Sustain. Sci. 2013, 8, 37–46. [Google Scholar] [CrossRef]
- Dai, C.; Li, Y.P.; Huang, G.H. A two-stage support-vector regression optimization model for municipal solid waste management-a case study of Beijing, China. J. Environ. Manag. 2011, 92, 3023–3037. [Google Scholar] [CrossRef]
- Noori, R.; Karbassi, A.; Sabahi, M.S. Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction. J. Environ. Manag. 2010, 91, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Li, Z.; Han, J.; Shen, D.; Li, N.; Long, Y.; Chen, Z.; Xu, L.; Zhang, X.; Niu, D.; et al. Evaluating the capability of municipal solid waste separation in China based on AHP-EWM and BP neural network. Waste Manag. 2022, 139, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbi, K.M.A.S. Application of the AHP in project management. Int. J. Project Manag. 2001, 19, 19–27. [Google Scholar] [CrossRef]
- World Bank. Country and Lending Groups. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 19 November 2022).
- TUIK (Turkish Statistical Institute), Municipality Waste Statistics. 2018. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Belediye-Atik-Istatistikleri-2018-30666 (accessed on 6 April 2023).
- TCCB (Turkish Republic Presidency). Resmi Gazete (Official Newspaper), Sıfır atık Yönetmeliği (Zero Waste Regulation). 2023. Available online: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=32659&MevzuatTur=7&MevzuatTertip=5 (accessed on 6 April 2023).
- TCCB (Turkish Republic Presidency). 2023. Resmi Gazete (Official Newspaper), Atık Yönetimi Yönetmeliği (Waste Management Regulation). 2023. Available online: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=20644&MevzuatTur=7&MevzuatTertip=5 (accessed on 6 August 2023).
- Apaydin, Ö.; Yağci, A.; Civelek, A. The investigation of householders’ tendancies on separate at source point of recycelable solid wastes in Besiktas and Üskudar districts, Sigma. J. Eng. Nat. Sci. 2011, 3, 17–26. [Google Scholar]
- Berthouex, P.M.; Brown, L.C. Statistics for Environmental Engineers, 2nd ed.; Levis Publisher: Boca Raton, FL, USA, 2002; Available online: www.crcpress.com (accessed on 22 February 2023).
- Beyazıt, M.; Oğuz Yeğen, B. Mühendisler Için Istattistik (Statistics for Engineers); Birsen Yayınevi: Istanbul, Türkiye, 2005. [Google Scholar]
- Haseli, G.; Torkayesh, A.E.; Hajiaghaei-Keshteli, M.; Venghaus, S. Sustainable resilient recycling partner selection for urban waste management: Consolidating perspectives of decision-makers and Experts. Appl. Soft Comput. 2023, 137, 110120. [Google Scholar] [CrossRef]
- Haseli, G.; Ghoushchi, S.J. Extended base-criterion method based on the spherical fuzzy sets to evaluate waste management. Soft Comput. 2022, 26, 9979–9992. [Google Scholar] [CrossRef]
- Zafaranlouei, N.; Ghoushchi, S.J.; Haseli, G. Assessment of sustainable waste management alternatives using the extensions of the base criterion method and combined compromise solution based on the fuzzy Z-numbers, Environ. Sci. Pollut. Res. 2023, 30, 62121–62136. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Methods for multiple attribute decision making. In Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Turskis, Z.; Tamošaitiene, J. Selection of the effective dwelling house walls by applying attributes values determined at intervals. J. Civ. Eng. Manag. 2008, 14, 85–93. [Google Scholar] [CrossRef]
- Stevic, Z.; Pamucar, D.; Puska, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to compromise solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Modell. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process—Planning, Priority Setting and Resource Allocation; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. That is not the analytical hierarchical process: What the AHP is and what it is not. J. Multi-Criteria Decis. Anal. 1998, 6, 320–329. [Google Scholar] [CrossRef]
- Saaty, T.L. Rank from comparisons and from ratings in the analytic hierarchy/network processes. Eur. J. Operat. Res. 2006, 168, 557–570. [Google Scholar] [CrossRef]
- Saaty, T.L. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks; RWS Publications: Pittsburgh, PA, USA, 2013. [Google Scholar]
- Kersuliene, V.; Zavadskas, E.K.; Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). J. Bus. Econ. Manag. 2010, 11, 243–258. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Pamucar, D.; Stevic, Z.; Sremac, S.A. A new model for determining weight coefficients of criteria in MCDM models: Full consistency method (fucom). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef]
- Haseli, G.; Sheikh, R.; Sana, S.S. Base-criterion on multi-criteria decision-making method and its applications. Int. J. Manag. Sci. Eng. Manag. 2020, 15, 79–88. [Google Scholar] [CrossRef]
- Haseli, G.; Sheikh, R. Base-Criterion Method (BCM). Multiple Criteria Decision Making: Techniques, Analysis and Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Ferronato, N.; Preziosi, G.; Portillo, M.A.G.; Lizarazu, E.G.G.; Torretta, V. Assessment of municipal solid waste selective collection scenarios with geographic information systems in Bolivia. Waste Manag. 2020, 102, 919–931. [Google Scholar] [CrossRef]
- Katpatal, Y.B.; Rao, B.V.S.R. Urban Spatial Decision Support System for Municipal Solid Waste Management of Nagpur Urban Area Using High-Resolution Satellite Data and Geographic Information System. J. Urban Plan. Dev. 2011, 137, 65–76. [Google Scholar] [CrossRef]
- Carlos, M.; Gallardo, A.; Peris, M.; Colomer, F.J. Optimization of the Location of the Municipal Solid Waste Bins Using Geographic Information Systems. In Project Management and Engineering Research; Selected Papers from the 18th International AEIPRO Congress held in Alcañiz, Spain, in 2014; Springer: Cham, Switzerland, 2014; Available online: https://link.springer.com/book/10.1007/978-3-319-26459-2 (accessed on 6 August 2023).
- Colvero, D.A.; Gomes, A.P.D.; dos Santos, K.A. Use of a geographic information system to find areas for locating of municipal solid waste management facilities. Waste Manag. 2018, 77, 500–515. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Trong, K.; Nguyen-Thi-Ngoc, A.; Nguyen-Ngoc, D.; Dinh-Thi-Hai, V. Optimization of municipal solid waste transportation by integrating GIS analysis, equation-based, and agent-based model. Waste Manag. 2017, 59, 14–22. [Google Scholar] [CrossRef] [PubMed]
- ASTM D5231; Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. ASTM: West Conshohocken, PA, USA, 2016.
- Zhou, C.; Jiang, D.; Zhao, Z. Quantification of Greenhouse Gas Emissions from the Predisposal Stage of Municipal Solid Waste Management. Environ. Sci. Technol. 2016, 51, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Castrejón-Godínez, M.L.; Sánchez-Salinas, E.; Rodríguez, A.; Ortiz-Hernández, M.L. Analysis of Solid Waste Management and Greenhouse Gas Emissions inMéxico: A Study Case in the Central Region. J. Environ. Prot. 2015, 6, 146. [Google Scholar] [CrossRef]
- Oyoo, R.; Leemans, R.; Mol, A.P.J. Comparison of environmental performance for different waste management scenarios in East Africa: The case of Kampala City, Uganda. Habitat Int. 2014, 44, 349–357. [Google Scholar] [CrossRef]
- Friedrich, E.; Trois, C. Quantification of greenhouse gas emissions from waste management processes for municipalities—A comparative review focusing on Africa. Waste Manag. 2011, 31, 1585–1596. [Google Scholar] [CrossRef]
- Barnaud, F.; Schmezle, P.; Schulz, P. AQUAZOLET: An Original Emulsified Water–Diesel Fuel for Heavy-Duty Applications, Diesel and Gasoline Performance and Additives; Society of Automative Engineers, Inc.: Warrendale, PA, USA, 2000; pp. 95–99. [Google Scholar]
- Boskovic, G.; Jovicic, N.; Milasinovic, M.; Jovicic, G.; Milasinovic, D. Methodology for reduction of GHG emissions from MSW collection and transport. Int. J. Qual. Res. 2013, 7, 641–652. [Google Scholar]
- Apaydin, Ö.; Arslankaya, E.; Avşar, Y.; Gönüllü, M.T. GIS supported optimization of solid waste collection in Trabzon. Sigma J. Eng. Nat. Sci. 2004, 22, 249–254. [Google Scholar]
- Apaydin, Ö.; Gönüllü, M.T. Emission control with route optimization in solid waste collection process: A case study. Sadhana-Acad. Proc. Eng. Sci. 2008, 33, 71–82. [Google Scholar] [CrossRef]
- Rodrigues, S.; Martinho, G.; Pires, A. Waste collection systems. Part A: A taxonomy. J. Clean. Prod. 2016, 113, 374–387. [Google Scholar] [CrossRef]
- Yadav, V.; Karmakar, S. Sustainable collection and transportation of municipal solid waste in urban centers. Sustain. Cities Soc. 2020, 53, 101937. [Google Scholar] [CrossRef]
- Amal, L.; Chabchoub, H. SGA: Spatial GIS-based genetic algorithm for route optimization of municipal solid waste collection. Environ. Sci. Pollut. Res. 2018, 25, 27569–27582. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, A.; El-Fadel, M. Effect of a food waste disposer policy on solid waste and wastewater management with economic implications of environmental externalities. Waste Manag. 2017, 69, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Menikpura, S.N.M.; Gheewala, S.H.; Bonnet, S.; Chiemchaisri, C. Evaluation of the effect of recycling on sustainability of municipal solid waste management in Thailand. Waste Biomass Valoriz. 2013, 4, 237–257. [Google Scholar] [CrossRef]
- TUIK (Turkish Statistical Institute). Data Portal for Statistics. 2023. Available online: https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr (accessed on 10 August 2023).
- Ayvaz-Cavdaroglu, N.; Coban, A.; Firtina-Ertis, İ. Municipal solid waste management via mathematical modeling: A case study in İstanbul, Turkey. J. Environ. Manag. 2019, 244, 362–369. [Google Scholar] [CrossRef]
- Kanat, G. Municipal solid waste management in Istanbul. Waste Manag. 2010, 30, 1737–1745. [Google Scholar] [CrossRef]
- Amal, L.; Son, L.H.; Chabchoub, H.; Lahiani, H. Analysis of municipal solid waste collection using GIS and multi-criteria decision aid. Appl. Geomat. 2020, 12, 193–208. [Google Scholar] [CrossRef]
- Hannan, M.A.; Begum, R.A.; Al-Shetwi, A.Q.; Ker, P.J.; Al Mamun, M.A.; Hussain, A.; Basri, H.; Mahlia, T.M.I. Waste collection route optimisation model for linking cost saving and emission reduction to achieve sustainable development goals. Sustain. Cities Soc. 2020, 62, 102393. [Google Scholar] [CrossRef]
Separation Scenarios 1 | Municipal Solid Waste Treatment or Disposal Methods | ||||
---|---|---|---|---|---|
Material Recovery Facility (MRF) | Composting Process (CP) | Biometanization Process (BMP) | Thermal Process (TP) | Sanitary Landfill (SLF) | |
Scenario 1 | + | + | + | + | + |
Scenario 2 | + | + | + | + | + |
Scenario 3 | + | + | + | + | + |
Scenario 4 | + | - | - | - | + |
Scenario 5 | - | - | - | - | - |
MRF | CP | BMP | TP | SLF | |
---|---|---|---|---|---|
MRF | 1 | 3 | 3 | 9 | 9 |
CP | 1/3 | 1 | 1 | 8 | 8 |
BMP | 1/3 | 1 | 1 | 8 | 8 |
TP | 1/9 | 1/8 | 1/8 | 1 | 2 |
SLF | 1/9 | 1/8 | 1/8 | 1/2 | 1 |
Sum | 1.89 | 5.25 | 5.25 | 26.50 | 28.00 |
MRF | CP | BMP | TP | SLF | Priority Vector | |
---|---|---|---|---|---|---|
MRF | 0.53 | 0.57 | 0.57 | 0.34 | 0.32 | 0.466664 |
CP | 0.18 | 0.19 | 0.19 | 0.30 | 0.29 | 0.229005 |
BMP | 0.18 | 0.19 | 0.19 | 0.30 | 0.29 | 0.229005 |
TP | 0.06 | 0.02 | 0.02 | 0.04 | 0.07 | 0.043121 |
SLF | 0.06 | 0.02 | 0.02 | 0.02 | 0.04 | 0.032205 |
Σ = 1.00 |
MRF (0.467) | CP (0.229) | BMP (0.229) | TP (0.043) | SLF (0.032) | Overall Priority Vector | |
---|---|---|---|---|---|---|
Scenario 1 | 0.3883349 | 0.312509 | 0.312509 | 0.262412 | 0.352445 | 0.347 |
Scenario 2 | 0.3079550 | 0.269651 | 0.269651 | 0.262412 | 0.228916 | 0.286 |
Scenario 3 | 0.1614122 | 0.238072 | 0.238072 | 0.232412 | 0.181269 | 0.200 |
Scenario 4 | 0.1073456 | 0.089884 | 0.089884 | 0.108626 | 0.155182 | 0.101 |
Scenario 5 | 0.0349523 | 0.089884 | 0.089884 | 0.134137 | 0.082188 | 0.066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apaydin, Ö.; Akçay Han, G.S. Analysis of Municipal Solid Waste Collection Methods Focusing on Zero-Waste Management Using an Analytical Hierarchy Process. Sustainability 2023, 15, 13184. https://doi.org/10.3390/su151713184
Apaydin Ö, Akçay Han GS. Analysis of Municipal Solid Waste Collection Methods Focusing on Zero-Waste Management Using an Analytical Hierarchy Process. Sustainability. 2023; 15(17):13184. https://doi.org/10.3390/su151713184
Chicago/Turabian StyleApaydin, Ömer, and Gül Sümeyra Akçay Han. 2023. "Analysis of Municipal Solid Waste Collection Methods Focusing on Zero-Waste Management Using an Analytical Hierarchy Process" Sustainability 15, no. 17: 13184. https://doi.org/10.3390/su151713184
APA StyleApaydin, Ö., & Akçay Han, G. S. (2023). Analysis of Municipal Solid Waste Collection Methods Focusing on Zero-Waste Management Using an Analytical Hierarchy Process. Sustainability, 15(17), 13184. https://doi.org/10.3390/su151713184