Impact Analysis of Road Infrastructure and Traffic Control on Injury Severity of Single- and Multi-Vehicle Crashes
Abstract
:1. Introduction
- Driver: age, sex, drug/alcohol impairment, seat belt use.
- Vehicle type.
- Environment: weather, time of day, day of the week, region (urban/rural), land use.
- Accident status: rollover, collision mark of crashed vehicle, airbag activation.
- Road infrastructure: centerline, boundary between sidewalk and roadway, road alignment (curve and slope), number of lanes, etc.
- Traffic control: speed limit, traffic signals, stop signs, zone 30, etc.
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Single-Vehicle Crash
3.2. Multi-Vehicle Crash
4. Discussion
4.1. Comparison of Single- and Multi-Vehicle Crashes at Non-Intersection
4.2. Comparison of Intersection and Non-Intersection of Multi-Vehicle Crashes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- George, Y.; Athanasios, T.; George, P. Investigation of road accident severity per vehicle type. Transp. Res. Procedia 2017, 25, 2076–2083. [Google Scholar] [CrossRef]
- International Transportation Forum. Road Safety Annual Report 2022; OECD: Paris, France, 2023; Available online: https://www.itf-oecd.org/road-safety-annual-report-2022 (accessed on 11 August 2023).
- Wu, Q.; Chen, F.; Zhang, G.; Liu, X.C.; Wang, H.; Bogus, S.M. Mixed logit model-based driver injury severity investigations in single- and multi-vehicle crashes on rural two-lane highways. Accid. Anal. Prev. 2014, 72, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Vajari, M.A.; Aghabayk, K.; Sadeghian, M.; Shiwakoti, N. A multinomial logit model of motorcycle crash severity at Australian intersections. J. Saf. Res. 2020, 73, 17–24. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Farid, A.; Ksaibati, K. A Random Parameters Approach to Investigate Injury Severity of Two-Vehicle Crashes at Intersections. Sustainability 2022, 14, 13821. [Google Scholar] [CrossRef]
- Yuan, R.; Gan, J.; Peng, Z.; Xiang, Q. Injury severity analysis of two-vehicle crashes at unsignalized intersections using mixed logit models. Int. J. Inj. Control. Saf. Promot. 2022, 29, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Chin, H.C. Factors affecting the injury severity of out-of-control single-vehicle crashes in Singapore. Accid. Anal. Prev. 2019, 124, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.U.; Vachal, K. Factors affecting injury severity of single-vehicle rollover crashes in the United States. Traffic Inj. Prev. 2020, 21, 66–71. [Google Scholar] [CrossRef]
- Wang, X.; Abdel-Aty, M. Analysis of left-turn crash injury severity by conflicting pattern using partial proportional odds models. Accid. Anal. Prev. 2008, 40, 1674–1682. [Google Scholar] [CrossRef]
- Liu, P.; Fan, W. Exploring injury severity in head-on crashes using latent class clustering analysis and mixed logit model: A case study of North Carolina. Accid. Anal. Prev. 2020, 135, 105388. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, R.; Yuan, Y.; Blackwelder, G.; Yang, X. Examining driver injury severity in left-turn crashes using hierarchical ordered probit models. Traffic Inj. Prev. 2021, 22, 57–62. [Google Scholar] [CrossRef]
- Yaman, T.T.; Bilgiç, E.; Esen, M.F. Analysis of traffic accidents with fuzzy and crisp data mining techniques to identify factors affecting injury severity. J. Intell. Fuzzy Syst. 2022, 42, 575–592. [Google Scholar] [CrossRef]
- Sharafeldin, M.; Farid, A.; Ksaibati, K. Injury Severity Analysis of Rear-End Crashes at Signalized Intersections. Sustainability 2022, 14, 13858. [Google Scholar] [CrossRef]
- Naik, B.; Tung, L.-W.; Zhao, S.; Khattak, A.J. Weather impacts on single-vehicle truck crash injury severity. J. Saf. Res. 2016, 58, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Park, B.B.; Lambert, J.H. Effect of guardrail on reducing fatal and severe injuries on freeways: Real-world crash data analysis and performance assessment. J. Transp. Saf. Secur. 2018, 10, 455–470. [Google Scholar] [CrossRef]
- Li, Z.; Ci, Y.; Chen, C.; Zhang, G.; Wu, Q.; Qian, Z.; Prevedouros, P.D.; Ma, D.T. Investigation of driver injury severities in rural single-vehicle crashes under rain conditions using mixed logit and latent class models. Accid. Anal. Prev. 2019, 124, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wei, F.; Wang, Z.; Guo, Y.; Chen, L.; Li, X. Modeling of Low Visibility-Related Rural Single-Vehicle Crashes Considering Unobserved Heterogeneity and Spatial Correlation. Sustainability 2021, 13, 7438. [Google Scholar] [CrossRef]
- Mphekgwana, P.M. Influence of Environmental Factors on Injury Severity Using Ordered Logit Regression Model in Limpopo Province, South Africa. J. Environ. Public Health 2022, 2022, 625168. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Wang, X.; Zhang, D. Truck crash severity in New York city: An investigation of the spatial and the time of day effects. Accid. Anal. Prev. 2017, 99 Pt A, 249–261. [Google Scholar] [CrossRef]
- Agrawal, V.; Chatterjee, S.; Mitra, S. Crash Severity Analysis through nonparametric machine learning methods. J. East. Asia Soc. Transp. Stud. 2019, 13, 2614–2629. [Google Scholar]
- Wahab, L.; Jiang, H. A multinomial logit analysis of factors associated with severity of motorcycle crashes in Ghana. Traffic Inj. Prev. 2019, 20, 521–527. [Google Scholar] [CrossRef]
- Yang, J.; Ren, P.; Ando, R. Examining Drivers’ Injury Severity of Two-Vehicle Crashes between Passenger Cars and Trucks Considering Vehicle Types. Asian Transp. Stud. 2019, 5, 720–733. [Google Scholar]
- Champahom, T.; Wisutwattanasak, P.; Chanpariyavatevong, K.; Laddawan, N.; Jomnonkwao, S.; Ratanavaraha, V. Factors affecting severity of motorcycle accidents on Thailand's arterial roads: Multiple correspondence analysis and ordered logistics regression approaches. IATSS Res. 2021, 46, 101–111. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, G.; Zhu, X.; Liu, X.C.; Tarefder, R. Analysis of driver injury severity in single-vehicle crashes on rural and urban roadways. Accid. Anal. Prev. 2016, 94, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Rezapour, M.; Moomen, M.; Ksaibati, K. Ordered logistic models of influencing factors on crash injury severity of single and multiple-vehicle downgrade crashes: A case study in Wyoming. J. Saf. Res. 2018, 68, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ren, G.; Li, H.; Wang, S.; Yu, J. Characterizing the differences of injury severity between single-vehicle and multi-vehicle crashes in China. J. Transp. Saf. Secur. 2022, 15, 314–334. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Wu, Q.; Zhang, G.; Liu, C.; Prevedouros, P.D.; Ma, D.T. Exploring driver injury severity patterns and causes in low visibility related single-vehicle crashes using a finite mixture random parameters model. Anal. Methods Accid. Res. 2018, 20, 1–14. [Google Scholar] [CrossRef]
- Russo, B.J.; Savolainen, P.T. A comparison of freeway median crash frequency, severity, and barrier strike outcomes by median barrier type. Accid. Anal. Prev. 2018, 117, 216–224. [Google Scholar] [CrossRef]
- Molan, A.M.; Rezapour, M.; Ksaibati, K. Modeling the impact of various variables on severity of crashes involving traffic barriers. J. Transp. Saf. Secur. 2019, 12, 800–817. [Google Scholar] [CrossRef]
- Bhuiyan, H.; Ara, J.; Hasib, K.M.; Sourav, I.H.; Karim, F.B.; Sik-Lanyi, C.; Governatori, G.; Rakotonirainy, A.; Yasmin, S. Crash severity analysis and risk factors identification based on an alternate data source: A case study of developing country. Sci. Rep. 2022, 12, 1–22. [Google Scholar] [CrossRef]
- Gong, H.; Fu, T.; Sun, Y.; Guo, Z.; Cong, L.; Hu, W.; Ling, Z. Two-vehicle driver-injury severity: A multivariate random parameters logit approach. Anal. Methods Accid. Res. 2022, 33, 100190. [Google Scholar] [CrossRef]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Kosmidis, I. Bias Reduction in Binomial-Response Generalized Linear Models. 2021. Available online: https://cran.r-project.org/web/packages/brglm/index.html (accessed on 9 April 2023).
- Tanishita, M.; Sekiguchi, Y.; Sunaga, D. Impact analysis of road infrastructure and traffic control on severity of pedestrian–vehicle crashes at intersections and non-intersections using bias-reduced logistic regression. IATSS Res. 2023, 47, 233–239. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Tanishita, M.; Sunaga, D. Characteristics of Cyclist Crashes Using Polytomous Latent Class Analysis and Bias-Reduced Logistic Regression. Sustainability 2022, 14, 5497. [Google Scholar] [CrossRef]
- Pan, F.; Wu, Q.; Wang, Z.; Wang, L.; Zhang, L.; Li, M. Effectiveness Evaluation of Optical Illusion Deceleration Markings for a V-Shaped Undersea Tunnel Based on the Set Pair Analysis Method and the Technique for Order Preference by Similarity to Ideal Solution Theory. Transp. Res. Rec. J. Transp. Res. Board 2022, 2677. [Google Scholar] [CrossRef]
- Computational Illusion Team (Team Leader, Kokichi Sugihara). Alliance for Breakthrough between Mathematics and Sciences, Japan Science and Technology Agency CREST Project. Optical Illusions on Roads and Measures for Their Reduction. 2013. Available online: http://compillusion.mims.meiji.ac.jp/pdf/roadillusions_eng.pdf (accessed on 15 April 2023).
- Chiou, Y.-C.; Fu, C.; Ke, C.-Y. Modelling two-vehicle crash severity by generalized estimating equations. Accid. Anal. Prev. 2020, 148, 105841. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Das, D.K.; Stević, Z.; Subotić, M.; Alrasheedi, A.F.; Sun, S. Trapezoidal Interval Type-2 Fuzzy PIPRECIA-MARCOS Model for Management Efficiency of Traffic Flow on Observed Road Sections. Mathematics 2023, 11, 2652. [Google Scholar] [CrossRef]
- Behnood, A.; Mannering, F.L. The temporal stability of factors affecting driver-injury severities in single-vehicle crashes: Some empirical evidence. Anal. Methods Accid. Res. 2015, 8, 7–32. [Google Scholar] [CrossRef]
Conditions | Single-Vehicle | Multi(Two)-Vehicle |
---|---|---|
Intersection | Sharafeldin et al. (2022a) [5] Yuan et al. (2022) [6] | |
Accident type | Zhou and Chin (2019) [7] Khan and Vachal (2020) [8] | Wang and Abdel-Aty (2008) [9] Liu and Fan (2020) [10] Zhang et al. (2021) [11] Yaman et al. (2022) [12] Sharafeldin et al. (2022b) [13] |
Weather (Visibility) | Naik et al. (2016) [14] Li et al. (2018) [15] Li et al. (2019) [16] Cai et al. (2021) [17] | Mphekgwana (2022) [18] |
Vehicle type | Zou et al. (2017) [19] Agrawal et al. (2019) [20] Wahab and Jiang (2019) [21] Yang et al.(2019) [22] Champahom et al. (2022) [23] | |
Region (Urban/rural) | Wu et al. (2016) [24] | |
Comparison | Wu et al. (2014) [25], Rezapour et al. (2018) [26], Ma et al. (2023) [27] | |
Road barrier | Li et al. (2018) [26], Russo & Savolainen (2018) [28], Molan et al. (2020) [29] |
Crash Type | Single | Two | Single | Two | |||||
---|---|---|---|---|---|---|---|---|---|
Variable and Category | N | % | N | % | Variable and Category | N | % | N | % |
Road infrastructure | Environment | ||||||||
Centerline | Weather | ||||||||
No | 3356 | 29.9 | 140,462 | 25.3 | Clear | 7401 | 62.3 | 361,933 | 65.3 |
Paint | 6435 | 54.2 | 294,000 | 53.0 | Cloudy | 2634 | 22.2 | 113,893 | 20.5 |
Median | 1699 | 16.2 | 112,458 | 20.3 | Bad | 1847 | 15.5 | 78,539 | 14.2 |
Other (a) | 192 | 1.4 | 7445 | 1.3 | Time period | ||||
Boundary between sidewalk and roadway | After dawn | 447 | 2.5 | 19,431 | 3.5 | ||||
Curb | 5735 | 48.3 | 370,920 | 66.9 | Daytime | 6774 | 54.2 | 361,971 | 65.3 |
Guard rail | 1311 | 11.0 | 46,302 | 8.4 | Before dusk | 561 | 40.5 | 36,643 | 6.6 |
White line | 2438 | 20.5 | 79,742 | 14.4 | After dusk | 592 | 7.5 | 41,678 | 7.5 |
No | 2398 | 20.2 | 57,401 | 10.4 | Nighttime | 3206 | 40.5 | 87,912 | 15.9 |
Road alignment- Curve | Before dawn | 302 | 2.8 | 6730 | 1.2 | ||||
Straight | 8725 | 73.5 | 531,416 | 95.9 | Day type | ||||
Inside | 1845 | 15.5 | 10,611 | 1.9 | Weekday | 3901 | 32.8 | 151,176 | 27.3 |
Outside | 1312 | 11.0 | 12,338 | 2.2 | Holiday, weekend | 7981 | 67.2 | 403,189 | 72.7 |
Road alignment- Slope | Vehicle and driver | ||||||||
Flat | 9254 | 77.9 | 507,036 | 91.5 | Vehicle type | ||||
Up | 1022 | 8.6 | 20,102 | 3.6 | Cars | 4107 | 34.6 | - | - |
Down | 1606 | 13.5 | 27,227 | 4.9 | Kei cars | 2341 | 19.7 | - | - |
Traffic control | Large truck | 337 | 2.8 | - | - | ||||
Stop sign | Small/Medium truck | 1035 | 8.7 | - | - | ||||
Yes | 57,874 | 10.4 | Motorcycle 126+ cc | 1383 | 11.6 | - | - | ||
No | 150,386 | 27.1 | Motorcycle −125 cc | 2679 | 22.5 | - | - | ||
Not applicable (b) | 346,105 | 62.4 | Driver age | ||||||
Speed limit (km/h) | 16–24 | 2284 | 19.2 | - | - | ||||
20,30 | 1683 | 14.2 | 43,656 | 7.9 | 25–34 | 1376 | 11.6 | - | - |
40 | 3349 | 28.2 | 170,695 | 30.8 | 35–44 | 1401 | 11.8 | - | - |
50 | 2587 | 21.8 | 153,493 | 27.7 | 45–54 | 1862 | 15.7 | - | - |
60 | 4263 | 35.9 | 186,521 | 33.6 | 55–64 | 1768 | 14.9 | - | - |
Traffic signal | 65–74 | 1884 | 15.9 | - | - | ||||
Three-light | 760 | 6.4 | 145,607 | 26.3 | 75– | 1307 | 11.0 | - | - |
Pedestrian-controlled (c) | 41 | 0.3 | 6525 | 1.2 | Accident type | ||||
Pedestrian-vehicle separated | 20 | 0.2 | 2711 | 0.5 | Airbag | ||||
Flashing | 9 | 0.1 | 4582 | 0.8 | Activated | 2740 | 23.1 | 154,396 | 27.9 |
None | 11,052 | 93.0 | 394,940 | 71.2 | Non-activated/Unsupported | 9142 | 76.9 | 399,969 | 72.1 |
Zone-30-policy | Collision marks of a crashed car | ||||||||
Yes | 97 | 0.8 | 4381 | 0.8 | Front | 4596 | 38.7 | 246,896 | 44.5 |
No | 11,785 | 99.2 | 549,984 | 99.2 | Right | 1245 | 10.5 | 29,366 | 5.3 |
Environment | Rear | 437 | 3.7 | 107,615 | 19.4 | ||||
Land uses | Left | 1467 | 12.3 | 37,839 | 6.8 | ||||
Urban- DID | 4780 | 40.2 | 251,700 | 45.4 | diagonally right front | 841 | 7.1 | 66,243 | 11.9 |
Urban- nonDID | 2669 | 22.5 | 177,870 | 32.1 | diagonally left front | 1887 | 15.9 | 58,712 | 10.6 |
Rural | 4433 | 37.3 | 124,795 | 22.5 | No | 1409 | 11.9 | 7694 | 1.4 |
Crash location | |||||||||
Population density | Mean | s.d, | Mean | s.d. | Non-intersections | 11,882 | 100.0 | 346,105 | 62.4 |
Population within 500 m radius | 3929 | 5698 | 4050 | 3829 | Intersections | 0 | 0 | 208,260 | 37.6 |
Variable and Category | N | % | Variable and Category | N | % |
---|---|---|---|---|---|
Driverage combination | Vehicle type combination | ||||
16–24 × 16–24 | 9716 | 1.8 | (C-C) Passenger car × Passenger car | 304,732 | 55.0 |
16–24 × 25–64 | 57,532 | 10.4 | (C-M) Passenger car × Motorcycle | 86,652 | 15.6 |
16–24 × 65– | 2727 | 0.5 | (C-ST) Passenger car × Small/Medium truck | 78,516 | 14.2 |
25–64 × 16–24 | 63,005 | 11.4 | (LT-C) Large truck × Passenger car | 30,426 | 5.5 |
25–64 × 25–64 | 362,344 | 65.4 | (ST-M) Small/Medium truck × Motorcycle | 14,700 | 2.7 |
25–64 × 65– | 24,420 | 4.4 | (ST-C) Small/Medium truck × Passenger car | 11,428 | 2.1 |
65– × 16–24 | 3864 | 0.7 | (ST-ST) Small/Medium truck × Small/Medium truck | 8680 | 1.6 |
65– × 25–64 | 28,470 | 5.1 | (LT-ST) Large truck × Small/Medium truck | 6308 | 1.1 |
65– × 65– | 2287 | 0.4 | (LT-M) Large truck × Motorcycle | 5386 | 1.0 |
(M-M) Motorcycle × Motorcycle | 4913 | 0.9 | |||
(LT-LT) Large truck × Large truck | 2624 | 0.5 |
Bias-Reduced Binomial Logit (Fatality or ) | Orderd Logit (Fatality, Injury, Non-Injury) | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Category | Coef. | t Value | Coef. | t Value | Fatality | N | |
Road alignment- Curve | (ref) Straight | 418 | 8725 | |||||
Insi0de | 0.57 *** | 6.77 | 0.23 *** | 3.70 | 209 | 1845 | ||
Outside | 0.65 *** | 7.13 | 0.29 *** | 4.12 | 161 | 1312 | ||
Boundary between sidewalk and roadway | (ref) Curb | 353 | 5735 | |||||
Guardrail | 0.20 | 1.87 | 0.18 *** | 2.58 | 97 | 1311 | ||
White line | −0.08 | −0.09 | 0.23 *** | 4.06 | 184 | 2438 | ||
No | −0.09 | −0.10 | 0.15 *** | 2.69 | 154 | 2398 | ||
Speed limit (km/h) | (ref) 20,30 | 53 | 1734 | |||||
40 | 0.36 * | 2.99 | 193 | 3220 | ||||
50 | 0.44 ** | 2.99 | 179 | 2491 | ||||
60 | 0.75 *** | 5.59 | 387 | 4437 | ||||
Time period | (ref) After dawn | 37 | 447 | |||||
Daytime | −0.58 ** | −2.52 | −0.32 *** | −2.91 | 384 | 6774 | ||
Before dusk | −0.64 *** | −3.91 | −0.44 *** | −3.06 | 25 | 561 | ||
After dusk | −0.18 | −0.90 | −0.25 | −1.78 | 29 | 592 | ||
Nighttime | 0.25 | 1.32–7 | 0.06 | 0.50 | 287 | 3206 | ||
Before dawn | 0.21 | 1.13 | −0.06 | −0.34 | 26 | 302 | ||
Population density | In logarithm | −0.14 *** | −10.31 | - | - | |||
Airbag | (ref) Activated | 313 | 2740 | |||||
Non-activated/Unsupported | −1.08 *** | −12.36 | −0.99 *** | −17.32 | 475 | 9142 | ||
Primary collision mark | (ref) Front | 472 | 4596 | |||||
Right | −0.75 *** | −5.77 | −0.17 *** | −2.22 | 52 | 1245 | ||
Rear | −0.24 | −11.8 | −1.01 *** | −8.08 | 21 | 437 | ||
Left | −0.66 *** | −5.41 | −0.26 *** | −3.58 | 85 | 1467 | ||
Diagonally right front | −0.15 | −1.30 | −0.17 *** | −1.99 | 72 | 841 | ||
Diagonally left front | −0.82 *** | −7.18 | −0.71 *** | −11.17 | 75 | 1887 | ||
No | −1.06 *** | −5.25 | −1.39 *** | −15.82 | 11 | 1409 | ||
Vehicle type | (ref) Cars | 158 | 4107 | |||||
Kei cars | 3.45 *** | 3.06 | 1.01 *** | 16.73 | 183 | 2341 | ||
Large truck | 3.54 *** | 2.50 | 0.73 *** | 5.67 | 41 | 337 | ||
Small/Medium truck | 3.82 ** | 2.70 | 1.10 *** | 13.67 | 108 | 1035 | ||
Motorcycle 126+ cc | 4.40 *** | 3.06 | 2.59 *** | 15.11 | 168 | 1383 | ||
Motorcycle −125 cc | 4.14 *** | 2.87 | 2.30 *** | 12.85 | 130 | 2679 | ||
(ref) 16–24 | 114 | 2284 | ||||||
25–34 | 0.34 *** | 2.45 | 0.52 *** | 6.70 | 76 | 1376 | ||
35–44 | 0.68 *** | 5.01 | 0.62 *** | 7.86 | 85 | 1401 | ||
Driver age | 45–54 | 0.84 *** | 6.95 | 0.67 *** | 9.07 | 126 | 1862 | |
55–64 | 0.96 *** | 7.70 | 0.60 *** | 7.99 | 115 | 1768 | ||
65–74 | 1.01 *** | 8.16 | 0.72 *** | 9.73 | 113 | 1884 | ||
75– | 1.70 *** | 13.71 | 1.22 *** | 14.55 | 159 | 1307 | ||
Interaction term | Vehicle type: ”Motorcycle” × Population density (in logarithm) | 0.09 *** | 4.21 | 0.10 *** | 4.44 | |||
Intercept | Fatality|Injury | −1.64 | −1.13 | −0.96 *** | −5.90 | |||
Injury|No injury | 3.23 *** | 19.19 | ||||||
BIC | 7512 | 15,989 | ||||||
BIC (null) | 8383 | 20,698 | ||||||
Number of observations | 11,882 |
Crash Location (Fatality Rate) | Intersections (0.4%) | Non-Intersections (0.2%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Category | Coef. | Z Value | Fatality | N | Coef. | Z Value | Fatality | n |
Centreline | (ref) No | 426 | 96,560 | 50 | 43,902 | ||||
Paint | −0.57 *** | −7.06 | 272 | 88,239 | 1.17 *** | 7.62 | 640 | 205,761 | |
Median | −1.05 *** | −7.46 | 62 | 21,751 | 0.78 *** | 4.38 | 113 | 90,707 | |
Other | −0.96 *** | −2.03 | 4 | 1710 | 1.35 *** | 5.07 | 23 | 5735 | |
Road alignment- curve | (ref) Straight | - | - | - | - | 533 | 328,059 | ||
Inside | - | - | - | - | 0.54 *** | 3.88 | 68 | 8019 | |
Outside | - | - | - | - | 1.04 *** | 9.11 | 225 | 10,027 | |
Boundary between sidewalk and roadway | (ref) Curb | 456 | 125,566 | - | - | - | - | ||
Guardrail | 1.07 *** | 11.04 | 154 | 14,075 | - | - | - | - | |
White line | −0.50 *** | −4.13 | 88 | 38,578 | - | - | - | - | |
No | −0.86 *** | −6.19 | 66 | 30,041 | - | - | - | - | |
Stop sign | (ref) Yes | 103 | 57,874 | - | - | - | - | ||
No | 0.51 *** | 4.55 | 661 | 150,386 | - | - | - | - | |
Speed limit (km/h) | (ref) 20,30 | 37 | 27,306 | 13 | 16,350 | ||||
40 | 0.44 *** | 2.41 | 192 | 61,068 | 0.59 *** | 2.09 | 190 | 109,627 | |
50 | 0.78 *** | 4.25 | 205 | 37,583 | 0.92 *** | 3.26 | 328 | 115,910 | |
60 | 0.85 *** | 4.84 | 330 | 82,303 | 1.02 *** | 3.61 | 295 | 104,218 | |
Time period | (ref) After dawn | 39 | 7817 | 43 | 11,614 | ||||
Daytime | −0.62 *** | 3.63 | 396 | 135,390 | −0.42 *** | −2.50 | 477 | 226,581 | |
Before dusk | −0.51 *** | −2.19 | 34 | 13,868 | −0.29 | −1.24 | 37 | 22,775 | |
After dusk | −0.43 | −1.95 | 42 | 14,174 | −0.35 | −1.50 | 35 | 27,504 | |
Night-time | 0.37 *** | 2.10 | 227 | 34,171 | 0.51 *** | 2.83 | 198 | 53,741 | |
Before dawn | 0.30 | 1.16 | 26 | 2840 | 0.73 *** | 3.07 | 36 | 3890 | |
Day type | (ref) Weekday Weekends/Holiday | 527 | 150,614 | - | - | - | - | ||
0.26 *** | 3.23 | 237 | 57,646 | - | - | - | - | ||
Population density | in logarithm | −0.38 *** | −16.75 | - | - | −0.28 *** | −14.86 | - | - |
Airbag | (ref) Activated | 670 | 87,255 | 692 | 67,141 | ||||
Non-activated/Unsupported | −1.73 *** | −12.59 | 94 | 121,005 | −2.34 *** | −21.06 | 134 | 278,964 | |
Primary collision mark | (ref) Front | - | - | - | - | 482 | 105,635 | ||
Right | - | - | - | - | −0.56 *** | −4.04 | 67 | 18,213 | |
Rear | - | - | - | - | −1.49 *** | −10.43 | 60 | 178,370 | |
Left | - | - | - | - | −0.38 *** | −2.03 | 33 | 11,433 | |
Diagonally right front | - | - | - | - | 0.20 | 1.86 | 158 | 18,313 | |
Diagonally left front | - | - | - | - | −0.77 *** | −3.07 | 17 | 11,587 | |
No | - | - | - | - | −0.28 | −0.85 | 9 | 2554 | |
Vehicle type combination | (ref) (C-C) | 89 | 104,980 | 154 | 199,752 | ||||
(C-M) | 1.41 *** | 10.76 | 355 | 49,760 | 0.34 *** | 2.49 | 168 | 36,892 | |
(C-ST) | 0.85 *** | 4.61 | 46 | 24,664 | 0.47 *** | 3.18 | 70 | 53,852 | |
(LT-C) | 1.91 *** | 11.26 | 62 | 8015 | 1.86 *** | 15.84 | 174 | 22,411 | |
(ST-M) | 1.86 *** | 11.55 | 88 | 8262 | 0.79 *** | −4.20 | 4 | 6438 | |
(ST-C) | 0.79 | 1.93 | 6 | 3327 | −0.28 | −0.63 | 5 | 8101 | |
(ST-ST) | 1.09 *** | 2.47 | 5 | 2365 | 0.54 | 1.41 | 7 | 6315 | |
(LT-ST) | 2.73 *** | 10.45 | 19 | 1496 | 2.77 *** | 17.73 | 75 | 4812 | |
(LT-M) | 3.02 *** | 18.09 | 85 | 2276 | 2.24 *** | −14.21 | 97 | 3110 | |
(M-M) | 0.40 | 0.99 | 6 | 2712 | −0.09 | −0.23 | 7 | 2201 | |
(LT-LT) | 2.41 *** | 4.30 | 3 | 403 | 2.37 *** | 10.14 | 25 | 2221 | |
Driver’s age combination | (ref) 16–24 × 16–24 | 18 | 3746 | 27 | 5970 | ||||
16–24 × 25–64 | 0.23 | 0.87 | 63 | 19,175 | −0.07 | −0.23 | 1424 | 38,357 | |
16–24 × 65– | 1.75 *** | 4.82 | 14 | 1239 | 1.68 *** | 4.05 | 12 | 1488 | |
25–64 × 16–24 | −0.20 | −0.79 | 104 | 25,673 | −0.33 | −1.08 | 91 | 37,332 | |
25–64 × 25–64 | −0.01 | −0.05 | 388 | 130,856 | 0.08 | 0.27 | 495 | 231,488 | |
25–64 × 65– | 1.50 *** | 5.77 | 120 | 11,103 | 1.31 *** | 4.26 | 119 | 13,317 | |
65– × 16–24 | 0.29 | −0.60 | 5 | 2049 | 2.03 | 1.42 | 0 | 1815 | |
65– × 25–64 | 0.40 | 1.39 | 41 | 13,243 | 0.66 *** | 1.98 | 29 | 15,227 | |
65– × 65– | 1.45 *** | 3.77 | 11 | 1176 | 1.99 *** | 4.91 | 20 | 1111 | |
Interaction term | Curve: “Outside” × Vehicle type: “Motorcycle” | 0.69 *** | 3.82 | 73 | 1642 | ||||
Intercept | −3.66 *** | −9.14 | - | - | −5.10 *** | −10.78 | - | - | |
BIC | 8628 | 8456 | |||||||
BIC (null) | 10,106 | 11,637 | |||||||
Number of observatios | 208,260 | 346,105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanishita, M.; Sekiguchi, Y. Impact Analysis of Road Infrastructure and Traffic Control on Injury Severity of Single- and Multi-Vehicle Crashes. Sustainability 2023, 15, 13191. https://doi.org/10.3390/su151713191
Tanishita M, Sekiguchi Y. Impact Analysis of Road Infrastructure and Traffic Control on Injury Severity of Single- and Multi-Vehicle Crashes. Sustainability. 2023; 15(17):13191. https://doi.org/10.3390/su151713191
Chicago/Turabian StyleTanishita, Masayoshi, and Yuta Sekiguchi. 2023. "Impact Analysis of Road Infrastructure and Traffic Control on Injury Severity of Single- and Multi-Vehicle Crashes" Sustainability 15, no. 17: 13191. https://doi.org/10.3390/su151713191