Can Land Transfer Promote Agricultural Green Transformation? The Empirical Evidence from China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
3. Empirical Strategy and Variable Selection
3.1. Measurement Model Construction
3.2. Variable Definitions
3.2.1. Explained Variable
3.2.2. Core Explanatory Variable
3.2.3. Mediating Variable
3.2.4. Control Variable
3.3. Data Sources
4. Empirical Results
4.1. Investigating the Impact of Land Transfer on the Agricultural Green Transformation: An Empirical Test of Hypothesis 1
4.2. Investigating the Role of Energy Consumption in the Impact of Land Transfer on Agricultural Carbon Emissions: An Empirical Test of Hypothesis 2
4.3. Mechanism Test of Agricultural Technology Progress in Land Transfer Affecting Agricultural Green Transformation: An Empirical Test of Hypothesis 3
4.4. Robustness Test
4.5. Regional Heterogeneity Test
4.5.1. Effect of Land Transfer on Both Sides of the “Hu-Huanyong Line” on Agricultural Green Transformation
4.5.2. The Impact of Land Transfer on Agricultural Green Transformation in Economically Differentiated Regions
5. Discussion
6. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.M.S.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Federici, S.; Tubiello, F.N.; Salvatore, M.; Jacobs, H.; Schmidhuber, J. New estimates of CO2 forest emissions and removals: 1990–2015. For. Ecol. Manag. 2015, 352, 89–98. [Google Scholar] [CrossRef]
- Frank, S.; Beach, R.; Havlík, P.; Valin, H.; Herrero, M.; Mosnier, A.; Hasegawa, T.; Creason, J.; Ragnauth, S.; Obersteiner, M. Structural change as a key component for agricultural non-CO2 mitigation efforts. Nat. Commun. 2018, 9, 1060. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Liu, L.; Wang, J.; Ran, Q.; Yang, X.; Shen, J. Assessing the impact of the national sustainable development planning of resource-based cities policy on pollution emission intensity: Evidence from 270 prefecture-level cities in China. Sustainability 2021, 13, 7293. [Google Scholar] [CrossRef]
- Wang, J.; Han, P. The impact of industrial agglomeration on urban green land use efficiency in the Yangtze River Economic Belt. Sci. Rep. 2023, 13, 974. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.H.V. Land fragmentation and household income: First evidence from rural Vietnam. Land Use Policy 2019, 89, 104247. [Google Scholar]
- Huang, K.; Deng, X.; Liu, Y.; Yong, Z.; Xu, D. Does off-farm migration of female laborers inhibit land transfer? evidence from sichuan province, China. Land 2020, 9, 14. [Google Scholar] [CrossRef]
- Li, B.; Shen, Y. Effects of land transfer quality on the application of organic fertilizer by large-scale farmers in China. Land Use Policy 2021, 100, 105124. [Google Scholar] [CrossRef]
- Ren, C.; Liu, S.; Grinsven, H.V.; Reis, S.; Gu, B. The impact of farm size on agricultural sustainability. J. Clean. Prod. 2019, 220, 357–367. [Google Scholar] [CrossRef]
- Aha, B.; Ayitey, J.Z. Biofuels and the hazards of land grabbing: Tenure (in)security and indigenous farmers’ investment decisions in Ghana. Land Use Policy 2017, 60, 48–59. [Google Scholar] [CrossRef]
- Sheng, Y.; Ding, J.; Huang, J. The relationship between farm size and productivity in agriculture: Evidence from maize production in northern China. Am. J. Agric. Econ. 2019, 101, 790–806. [Google Scholar] [CrossRef]
- Feng, S. Land rental, off-farm employment and technical efficiency of farm households in Jiangxi Province, China. NJAS Wagening. J. Life Sci. 2008, 55, 363–378. [Google Scholar] [CrossRef]
- Xu, D.; Deng, X.; Guo, S.; Liu, S. Labor migration and farmland abandonment in rural China: Empirical results and policy implications. J. Environ. Manag. 2018, 232, 738–750. [Google Scholar] [CrossRef] [PubMed]
- You, H. Impact of urbanization on pollution-related agricultural input intensity in Hubei, China. Ecol. Indic. 2016, 62, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Campi, M.; Dueñas, M.; Fagiolo, G. Specialization in food production affects global food security and food systems sustainability. World Dev. 2021, 141, 105411. [Google Scholar] [CrossRef]
- Luo, J.; Huang, M.; Hu, M.; Bai, Y. How does agricultural production agglomeration affect green total factor productivity? Empirical evidence from China. Environ. Sci. Pollut. Res. 2023, 30, 67865–67879. [Google Scholar] [CrossRef]
- Hou, D.; Wang, X. Inhibition or promotion? The effect of agricultural insurance on agricultural green development. Front Public Health 2022, 10, 910534. [Google Scholar] [CrossRef] [PubMed]
- Tomich, S.T.P. Evolution of land tenure institutions and development of agroforestry: Evidence from customary land areas of sumatra. Agric. Econ. 2001, 25, 85–101. [Google Scholar]
- Xu, X.; Li, C.; Guo, J.; Zhang, L. Land transfer-in scale, land operation scale and carbon emissionsfrom crop planting throughout the life cycle: Evidence from China rural development survey. Chin. Rural Econ. 2022, 11, 40–58. [Google Scholar]
- Yiyun, W.; Xican, X.; Xin, T.; Deming, L.; Baojing, G.; Kee, L.S.; Vitousek, P.M.; Deli, C. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar]
- Hu, G.; Wang, J.; Fahad, S.; Li, J. Influencing factors of farmers’ land transfer, subjective well-being, and participation in agri-environment schemes in environmentally fragile areas of China. Environ. Sci. Pollut. Res. 2023, 30, 4448–4461. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yasunaga, N.; Inoue, N. Pathways influencing bearers and abandoned farmlands through farmland intermediate management institutions: Using prefectural data in Japan. Asia-Pac. J. Reg. Sci. 2023, 1–27. [Google Scholar] [CrossRef]
- Li, L.; Han, J.; Zhu, Y. Does farmland inflow improve the green total factor productivity of farmers in China? an empirical analysis based on a propensity score matching method. Heliyon 2023, 9, e13750. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Yu, L.; Xue, R.; Zhuang, S.; Shan, Y. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef] [PubMed]
- Rada, N.E.; Fuglie, K.O. New perspectives on farm size and productivity. Food Policy 2018, 84, 147–152. [Google Scholar] [CrossRef]
- Freire-González, J.; Vivanco, D.F.; Puig-Ventosa, I. Economic structure and energy savings from energy efficiency in households. Ecol. Econ. 2016, 131, 12–20. [Google Scholar] [CrossRef]
- Welsch, H.; Ochsen, C. The determinants of aggregate energy use in West Germany: Factor substitution, technological change, and trade. Energy Econ. 2005, 27, 93–111. [Google Scholar] [CrossRef]
- Fei, X. Does where you are from affect how you land? Evidence from land transactions of Chinese manufacturers. Appl. Econ. Lett. 2019, 27, 525–532. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z. Technology advance and the carbon dioxide emission in China—Empirical research based on the rebound effect. Energy Policy 2017, 101, 150–161. [Google Scholar] [CrossRef]
- Luo, S.; He, K.; Zhang, J. The more grain production, the more fertilizers pollution? empirical evidence from major grain-producing areas in China. China Rural Econ. 2020, 1, 108–131. [Google Scholar]
- Ibrahim, R.L.; Al-Mulali, U.; Solarin, S.A.; Ajide, K.B.; Al-Faryan, M.A.S.; Mohammed, A. Probing environmental sustainability pathways in G7 economies: The role of energy transition, technological innovation, and demographic mobility. Environ. Sci. Pollut. Res. Int. 2023, 30, 75694–75719. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Q.; Zhao, X.; Hao, Y.; Liu, R.; Yang, Z.; Lu, Z. Study of carbon metabolic processes and their spatial distribution in the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 645, 1630–1642. [Google Scholar] [CrossRef] [PubMed]
- Bradfield, T.; Butler, R.; Dillon, E.; Hennessy, T.; Kilgarriff, P. The effect of land fragmentation on the technical inefficiency of dairy farms. J. Agric. Econ. 2021, 72, 486–499. [Google Scholar] [CrossRef]
- Cong, S. The impact of agricultural land rights policy on the pure technical efficiency of farmers’ agricultural production: Evidence from the largest wheat planting environment in China. J. Environ. Public Health 2022, 2022, 3487014. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, H.; Ke, N. Cultivated Land Transfer, Management Scale, and Cultivated Land Green Utilization Efficiency in China: Based on Intermediary and Threshold Models. J. Environ. Public Health 2022, 19, 12786. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, S.; Lu, B.; Nie, X. Overt and covert: The relationship between the transfer of land development rights and carbon emissions. Land Use Policy 2021, 108, 105665. [Google Scholar] [CrossRef]
- Cao, H.; Zhu, X.; Heijman, W.; Zhao, K. The impact of land transfer and farmers’ knowledge of farmland protection policy on pro-environmental agricultural practices: The case of straw return to fields in Ningxia, China. J. Clean. Prod. 2020, 277 Pt 1, 123701. [Google Scholar] [CrossRef]
- Cui, N.; Ba, X.; Dong, J.; Fan, X. Does farmland transfer contribute to reduction of chemical fertilizer use? evidence from Heilongjiang Province, China. Sustainability 2022, 14, 11514. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, X.; Liu, Q.; Chang, C.; Qu, L. The effects of land transfer marketization on the urban land use efficiency: An empirical study based on 285 cities in China. Ecol. Indic. 2021, 132, 108296. [Google Scholar] [CrossRef]
- He, K.; Zhang, J.; Zeng, Y. Households’ willingness to pay for energy utilization of crop straw in rural China:based on an improved UTAUT model. Energy Policy 2020, 140, 111373. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Li, Y.; Ge, D.; Tu, S. How does off-farm work affect chemical fertilizer application? evidence from China’s mountainous and plain areas. Land Use Policy 2020, 99, 104848. [Google Scholar] [CrossRef]
- Wan, D.; Xue, R.; Linnenluecke, M.; Tian, J.; Shan, Y. The impact of investor attention during COVID-19 on investment in clean energy versus fossil fuel firms. Financ. Res. Lett. 2021, 43, 101955. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, B.; Yu, L.; Yang, H.; Yin, S. Social capital, land tenure and the adoption of green control techniques by family farms: Evidence from Shandong and Henan Provinces of China. Land Use Policy 2019, 89, 104250. [Google Scholar] [CrossRef]
- Xu, Q.; Lu, Y.; Zhang, Y. Subsidy to large-scale farming and food quantity-quality security: Evidence from large-scale farmers. Econ. Res. 2022, 57, 121–137. [Google Scholar]
- Lu, H.; Xie, H.; Yao, G. Impact of land fragmentation on marginal productivity of agricultural labor and non-agricultural labor supply: A case study of Jiangsu, China. Habitat Int. 2019, 83, 65–72. [Google Scholar] [CrossRef]
- Li, Y.; Wu, W.; Liu, Y. Land consolidation for rural sustainability in China: Practical reflections and policy implications. Land Use Policy 2018, 74, 137–141. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, J.; Wu, J. The impact of vertical fiscal asymmetry on carbon emissions in China. Environ. Sci. Pollut. Res. 2023, 30, 65963–65975. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xue, R.; Zhang, X.; Cheng, Y.; Shan, Y. Can the marketization of urban land transfer improve energy efficiency? J. Environ. Manag. 2023, 329, 117126. [Google Scholar] [CrossRef]
- Miao, Z.; Guo, A.; Chen, X.; Zhu, P. Network technology, whole-process performance, and variable-specific decomposition analysis: Solutions for energy-economy-environment nexus. IEEE Trans. Eng. Manag. 2022, 1–18. [Google Scholar] [CrossRef]
- He, P.; Zhang, J.; Li, W. The role of agricultural green production technologies in improving low-carbon efficiency in China: Necessary but not effective. J. Environ. Manag. 2021, 293, 112837. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Wang, Y.; Wang, R.; Peng, Y. Rural human capital, agricultural technology progress and agricultural carbon emissions. Sci. Technol. Manag. Res. 2019, 39, 266–274. [Google Scholar]
- Li, Z.; Li, J. The influence mechanism and spatial effect of carbon emission intensity in the agricultural sustainable supply: Evidence from china’s grain production. Environ. Sci. Pollut. Res. 2022, 29, 44442–44460. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, J.B.; Zhang, L. Analysis of carbon emission efficiency of rice in China under different rice planting patterns based on the DEA-SBM model. J. China Agric. Univ. 2018, 23, 177–186. [Google Scholar]
- He, Y.; Cheng, X.; Wang, F. Study on the regional spillover effects of agricultural carbon emission based on the perspective of agricultural technology diffusion. J. Agric. Tech. Econ. 2022, 4, 132–144. [Google Scholar]
- Kuang, Y.; Yang, J. The effect of total factor productivity growth on rural land transfer. Economist 2019, 3, 102–112. [Google Scholar]
- Xu, B.; Wang, H.; Shen, Z. Impact of structural transformation, technological progress choice on agricultural carbon shadow price: An empirical analysis based on BP technology and a mediating effect model. Chin. J. Eco-Agric. 2023, 31, 241–252. [Google Scholar]
- Wang, S.; Zhang, G. The impact of off-farm employment on the agricultural carbon emission behavior of farmers. Resour. Sci. 2013, 35, 1855–1862. [Google Scholar]
- Fuchs, R.; Brown, C.; Rounsevell, M. Europe’s green deal offshores environmental damage to other nations. Nature 2020, 586, 671–673. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.U.; Jie, D.; Jun-Feng, Z.; Lu, L.I. System simulation and policy optimization of agricultural carbon emissions in Hubei Province based on SD model. Resour. Dev. Mark. 2017, 33, 1031–1035. [Google Scholar]
- Cheng, M.; Yao, W. Trend prediction of carbon peak in China’s animal husbandry based on the empirical analysis of 31 provinces in China. Environ. Dev. Sustain. 2022, 1–18. [Google Scholar] [CrossRef]
- Kuang, Y.; Peng, D. The Mechanism and Empirical Study on the Influence of Farmland Transfer on Factor Market Development—Demonstration Based on Panel Intermediary Effect Model. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 250–258. [Google Scholar]
- Zhang, H.; Zhang, J.; Song, J. Analysis of the threshold effect of agricultural industrial agglomeration and industrial structure upgrading on sustainable agricultural development in China. J. Clean. Prod. 2022, 341, 130818. [Google Scholar] [CrossRef]
- Wong, H.L.; Wei, X.; Kahsay, H.B.; Gebreegziabher, Z.; Diro, R. Effects of input vouchers and rainfall insurance on agricultural production and household welfare: Experimental evidence from northern Ethiopia. World Dev. 2020, 135, 105074. [Google Scholar] [CrossRef]
- He, D.; Zhang, G.; You, K.; Wu, J.; Guo, S. Property rights and market participation: Evidence from the land titling program in rural China. J. Chin. Gov. 2023, 8, 110–133. [Google Scholar] [CrossRef]
- Sun, D.; Cai, S.; Yuan, X.; Zhao, C.; Gu, J.; Chen, Z.; Sun, H. Decomposition and decoupling analysis of carbon emissions from agricultural economic growth in China’s Yangtze River economic belt. Environ. Geochem. Health 2022, 44, 2987–3006. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wu, M.; Ma, L.; Wang, N. Rural finance, scale management and rural industrial integration. China Agric. Econ. Rev. 2020, 12, 349–365. [Google Scholar] [CrossRef]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Geng, P.; Luo, B. Has the land titling promoted the modernization of rural governance? Manag. World 2022, 38, 59–76. [Google Scholar]
Energy Type | Conversion Coefficient | Energy Type | Conversion Coefficient | Energy Type | Conversion Coefficient |
---|---|---|---|---|---|
Raw coal | 0.7143 | Other gas | 3.5701 | Other coking products | 1.3000 |
Cleaned coal | 0.9000 | Fuel oil | 1.4286 | Liquefied petroleum gas | 1.7143 |
Briquettes | 0.6000 | Crude oil | 1.4286 | Other washed coal | 0.2850 |
Refinery gas | 1.5714 | Gasoline | 1.4714 | Other petroleum products | 1.2000 |
Coke | 0.9714 | Kerosene | 1.4714 | Natural gas | 13.3000 |
Coke oven gas | 6.1430 | Diesel oil | 1.4571 |
Carbon Source | Carbon Emission Coefficient | Reference Source |
---|---|---|
Chemical fertilizer | 0.8956 kg C·kg−1 | Oak Ridge National Laboratory |
Pesticide | 4.9341 kg C·kg−1 | Oak Ridge National Laboratory |
Agricultural film | 5.1800 kg C·kg−1 | Institute of Resource, Ecosystem, and Environment of Agriculture |
Diesel | 0.5927 kg C·kg−1 | Intergovernmental Panel on Climate Change |
Land tilling | 312.60 kg C·hm−2 | College of Agronomy and Biotechnology, China Agricultural University |
Irrigation | 266.48 kg C·hm−2 | He et al. (2022) [54] |
Variable Type | Variable Name | Code | N | Mean | Sd | Min | Max |
---|---|---|---|---|---|---|---|
Explained variable | Agricultural energy consumption | ei | 480 | 0.028 | 0.049 | 0.003 | 0.380 |
Agricultural carbon emission | ac | 480 | 0.008 | 0.012 | 0.001 | 0.070 | |
Core explanatory variable | Land transfer | ft | 480 | 0.236 | 0.179 | 0.014 | 0.911 |
Mediating variable | Agricultural technology progress | tc | 480 | 3.938 | 6.676 | 0.036 | 78.068 |
Control variable | Urbanization | urb | 480 | 0.549 | 0.141 | 0.195 | 0.896 |
Trade dependency | tra | 480 | 0.300 | 0.360 | 0.016 | 1.696 | |
Educational attainment | edu | 480 | 7.678 | 0.652 | 5.459 | 9.838 | |
Industrial structure adjustment | ins | 480 | 0.654 | 0.132 | 0.328 | 0.971 |
ei | ac | ft | tc | urb | tra | edu | ins | |
---|---|---|---|---|---|---|---|---|
ei | 1.000 | |||||||
ac | 0.836 | 1.000 | ||||||
ft | 0.039 | 0.213 | 1.000 | |||||
tc | 0.349 | 0.452 | 0.433 | 1.000 | ||||
urb | 0.142 | 0.393 | 0.693 | 0.500 | 1.000 | |||
tra | 0.096 | 0.357 | 0.364 | 0.080 | 0.673 | 1.000 | ||
edu | −0.110 | 0.068 | 0.506 | 0.429 | 0.668 | 0.375 | 1.000 | |
ins | −0.231 | −0.261 | −0.050 | 0.099 | −0.044 | −0.276 | 0.073 | 1.000 |
ei | ac | |||
---|---|---|---|---|
Coef. | Std. Err. | Coef. | Std. Err. | |
ft | 0.106 *** | 0.022 | 0.013 *** | 0.002 |
urb | −0.026 | 0.036 | −0.009 ** | 0.004 |
tra | −0.049 *** | 0.012 | −0.012 *** | 0.001 |
edu | −0.002 | 0.008 | 0.001 * | 0.001 |
ins | 0.106 *** | 0.066 | 0.015 ** | 0.007 |
_cons | 0.193 *** | 0.022 | 0.013 *** | 0.002 |
Time effect | YES | YES | ||
Regional effect | YES | YES | ||
N | 480 | 480 | ||
R-sq | 0.182 | 0.385 |
Coef. | Std. Err. | |
---|---|---|
ft | 0.005 *** | 0.001 |
ei | 0.082 *** | 0.003 |
urb | −0.007 *** | 0.002 |
tra | −0.008 *** | 0.001 |
edu | 0.002 *** | 0.000 |
ins | 0.003 * | 0.002 |
_cons | −0.001 | 0.004 |
Time effect | YES | |
Regional effect | YES | |
N | 480 | |
R-sq | 0.806 |
Regression1 | Regression2 | Regression3 | ||||
---|---|---|---|---|---|---|
tc | ei | ac | ||||
Coef. | Std. Err. | Coef. | Std. Err. | Coef. | Std. Err. | |
ft | 7.234 ** | 3.444 | 0.092 *** | 0.021 | 0.011 *** | 0.002 |
tc | 0.002 *** | 0.000 | 0.003 *** | 0.000 | ||
urb | −7.913 | 5.515 | −0.011 | 0.034 | −0.006 ** | 0.003 |
tra | −12.869 *** | 1.906 | −0.025 ** | 0.012 | −0.008 *** | 0.001 |
edu | 0.769 | 1.242 | −0.003 | 0.008 | 0.001 * | 0.001 |
ins | 7.911 * | 4.781 | −0.203 *** | 0.030 | −0.015 *** | 0.003 |
_cons | −2.079 | 10.189 | 0.197 *** | 0.063 | 0.015 *** | 0.006 |
Time effect | YES | YES | YES | |||
Regional effect | YES | YES | YES | |||
N | 480 | 480 | 480 | |||
R-sq | 0.553 | 0.250 | 0.545 |
Winsorize Treatment | Partial Sample Rejection | The Independent Variable Lags One Stage | ||||
---|---|---|---|---|---|---|
ei | ac | ei | ac | ei | ac | |
ft | 0.106 *** | 0.013 *** | 0.098 *** | 0.012 *** | 0.112 *** | 0.013 *** |
(0.022) | (0.002) | (0.025) | (0.002) | (0.022) | (0.002) | |
urb | −0.026 | −0.009 ** | −0.317 *** | −0.057 *** | −0.031 | −0.007 ** |
(0.036) | (0.004) | (0.075) | (0.007) | (0.035) | (0.003) | |
tra | −0.049 *** | −0.012 *** | −0.012 | −0.007 *** | −0.060 *** | −0.013 *** |
(0.012) | (0.001) | (0.016) | (0.001) | (0.012) | (0.001) | |
edu | −0.002 | 0.001 * | 0.001 | 0.002 * | 0.002 | 0.002 ** |
(0.008) | (0.001) | (0.009) | (0.001) | (0.008) | (0.001) | |
ins | −0.188 *** | −0.012 *** | −0.198 *** | −0.013 *** | −0.213 *** | −0.012 *** |
(0.031) | (0.003) | (0.033) | (0.003) | (0.031) | (0.003) | |
_cons | 0.193 *** | 0.015 ** | 0.311 *** | 0.035 *** | 0.184 *** | 0.013 ** |
(0.066) | (0.007) | (0.080) | (0.007) | (0.064) | (0.006) | |
Time effect | YES | YES | YES | YES | YES | YES |
Regional effect | YES | YES | YES | YES | YES | YES |
N | 480 | 480 | 390 | 390 | 450 | 450 |
R-sq | 0.182 | 0.385 | 0.232 | 0.495 | 0.230 | 0.417 |
Southeast | Northwest | |||
---|---|---|---|---|
ei | ac | ei | ac | |
ft | 0.132 *** | 0.015 *** | −0.057 | −0.003 |
(0.025) | (0.003) | (0.054) | (0.004) | |
urb | −0.039 | −0.011 *** | 0.022 | 0.003 |
(0.039) | (0.004) | (0.084) | (0.007) | |
tra | −0.041 *** | −0.011 *** | 0.076 | 0.006 |
(0.012) | (0.001) | (0.079) | (0.006) | |
edu | 0.002 | 0.002 * | −0.022 | −0.001 |
(0.009) | (0.001) | (0.016) | (0.001) | |
ins | −0.257 *** | −0.017 *** | 0.084 | 0.010 * |
(0.035) | (0.004) | (0.065) | (0.005) | |
_cons | 0.200 ** | 0.016 * | 0.136 | 0.009 |
(0.080) | (0.009) | (0.120) | (0.010) | |
Time effect | YES | YES | YES | YES |
Regional effect | YES | YES | YES | YES |
N | 320 | 320 | 160 | 160 |
R-sq | 0.276 | 0.463 | 0.204 | 0.331 |
Economically Developed Areas | Economically Less-Developed Areas | Economically Underdeveloped Areas | ||||
---|---|---|---|---|---|---|
ei | ac | ei | ac | ei | ac | |
ft | 0.136 ** | 0.018 *** | 0.005 | 0.001 *** | −0.007 | 0.002 |
(0.058) | (0.006) | (0.010) | (0.000) | (0.060) | (0.005) | |
urb | −0.065 | −0.023 ** | 0.033 | 0.001 | −0.002 | −0.001 |
(0.095) | (0.010) | (0.022) | (0.001) | (0.059) | (0.005) | |
tra | −0.000 | −0.011 *** | −0.009 | −0.000 | 0.057 | 0.003 |
(0.034) | (0.004) | (0.009) | (0.000) | (0.093) | (0.007) | |
edu | 0.004 | 0.004 | 0.001 | 0.000 | −0.012 | 0.000 |
(0.024) | (0.003) | (0.004) | (0.000) | (0.016) | (0.001) | |
ins | −0.483 *** | −0.026 *** | −0.006 | 0.001 *** | −0.010 | 0.002 |
(0.082) | (0.009) | (0.015) | (0.000) | (0.069) | (0.005) | |
_cons | 0.291 | 0.025 | 0.001 | 0.002 ** | 0.150 | 0.009 |
(0.208) | (0.023) | (0.030) | (0.001) | (0.122) | (0.010) | |
Time effect | YES | YES | YES | YES | YES | YES |
Regional effect | YES | YES | YES | YES | YES | YES |
N | 112 | 112 | 208 | 208 | 160 | 160 |
R-sq | 0.443 | 0.585 | 0.057 | 0.583 | 0.192 | 0.384 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, G.; Lv, D.; Jiang, T.; Luo, Y. Can Land Transfer Promote Agricultural Green Transformation? The Empirical Evidence from China. Sustainability 2023, 15, 13570. https://doi.org/10.3390/su151813570
Ma G, Lv D, Jiang T, Luo Y. Can Land Transfer Promote Agricultural Green Transformation? The Empirical Evidence from China. Sustainability. 2023; 15(18):13570. https://doi.org/10.3390/su151813570
Chicago/Turabian StyleMa, Guoqun, Danyang Lv, Tuanbiao Jiang, and Yuxi Luo. 2023. "Can Land Transfer Promote Agricultural Green Transformation? The Empirical Evidence from China" Sustainability 15, no. 18: 13570. https://doi.org/10.3390/su151813570
APA StyleMa, G., Lv, D., Jiang, T., & Luo, Y. (2023). Can Land Transfer Promote Agricultural Green Transformation? The Empirical Evidence from China. Sustainability, 15(18), 13570. https://doi.org/10.3390/su151813570