Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks
Abstract
:1. Introduction
- Introducing the DOA as a powerful tool for optimal allocation of PVDG in DNs, thereby advancing power system optimization techniques.
- Applying the DOA to a practical Ajinde 62-bus Nigerian DN to demonstrate its real-world effectiveness in PVDG allocation.
- Providing empirical evidence of the DOA’s performance in PVDG allocation, thereby contributing to the existing literature on DN optimization.
- Advancing understanding of the PVDG effect on DN performance.
- Establishing a foundation for future research on the application of DOA and other optimization algorithms for PVDG allocation in various DN configurations and scenarios.
- Offering insights and recommendations for optimal location and capacity of PVDG to enhance DN performance and reduce environmental impact.
2. Problem Formulation
2.1. Objective Function
2.2. Equality Constraints
Power Flow Balance and Generation
2.3. Inequality Constraints
2.3.1. Voltage Limits
2.3.2. Photovoltaic Distributed Generation Limits
3. Dingo Optimization Algorithm
3.1. Mathematical Modeling of the Dingo Optimization Algorithm
3.1.1. Encircling
3.1.2. Hunting
3.1.3. Attacking Prey
3.1.4. Searching
3.2. Application of the Dingo Optimization Algorithm for Optimal DG Allocation
- Initialize the population of dingo agents with haphazard locations and velocities within the search area.
- Assess the fitness of each dingo agent by applying a fitness function that takes into account the network’s performance after the DGs have been allocated.
- Identify the dingo agent with the best fitness value as the global best solution.
- Update the position and each dingo agent’s velocity depending on its own knowledge and the global best solution.
- Apply boundary constraints to ensure that the updated positions of the dingo agents remain within the feasible region.
- Evaluate the fitness of each updated dingo agent.
- Compare the fitness values of the updated dingo agents with their previous fitness values and modify the personal best solution for each agent.
- Modify the global best solution if a dingo agent finds a better solution.
- Repeat steps 4–8 until the termination criteria are met.
- Choose the best dingo agent as the final solution and allocate the DGs to the radial DN based on their positions.
- Population Size: A typical population size of around 1000 individuals was chosen to represent potential solutions.
- Maximum Generations: The algorithm was allowed to evolve over a maximum of 100 generations to find optimal solutions.
- Crossover Rate: A moderate crossover rate of 0.7 was used to balance exploration and exploitation.
- Mutation Rate: A typical mutation rate of 0.1 was set to introduce diversity into the population.
- Selection Pressure: The selection pressure, which determines the probability of selecting fitter individuals, was set to a standard value of 2.
- Convergence Criteria: Convergence was typically considered to be achieved when the improvement in the objective function (active power losses) reached a predefined threshold, often set at 1% or lower.
4. Results and Discussion
4.1. IEEE 33-Bus Network
4.1.1. Voltage Profile under Normal, Light, and Heavy Loads
4.1.2. Active Power Loss under Normal, Light, and Heavy Loads
4.1.3. Reactive Power under Normal, Light, and Heavy Loads
4.2. Ajinde 62-Bus Network
4.2.1. Voltage Profile
4.2.2. Active Power Loss
4.2.3. Reactive Power
4.3. Comparison with Other Metaheuristic Optimization Algorithms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Bus No | P (kW) | Q (kVAr) |
---|---|---|
1 | 0 | 0 |
2 | 70.448 | 43.9264 |
3 | 63.648 | 39.6864 |
4 | 0 | 0 |
5 | 52.088 | 32.4784 |
6 | 86.02 | 53.636 |
7 | 0 | 0 |
8 | 4.352 | 2.7136 |
9 | 0 | 0 |
10 | 39.032 | 24.3376 |
11 | 47.668 | 29.7224 |
12 | 0 | 0 |
13 | 72.76 | 45.368 |
14 | 0 | 0 |
15 | 67.524 | 42.1032 |
16 | 65.96 | 41.128 |
17 | 41.004 | 25.5672 |
18 | 75.888 | 47.3184 |
19 | 4.352 | 2.7136 |
20 | 61.2 | 38.16 |
21 | 94.112 | 58.6816 |
22 | 0 | 0 |
23 | 85.204 | 53.1272 |
24 | 19.108 | 11.9144 |
25 | 77.248 | 48.1664 |
26 | 0 | 0 |
27 | 35.36 | 22.048 |
28 | 23.324 | 14.5432 |
29 | 84.116 | 52.4488 |
30 | 13.328 | 8.3104 |
31 | 0 | 0 |
32 | 77.996 | 48.6328 |
33 | 0 | 0 |
34 | 39.848 | 24.8464 |
35 | 7.6704 | 4.782733 |
36 | 46.988 | 29.2984 |
37 | 71.876 | 44.8168 |
38 | 0 | 0 |
39 | 33.456 | 20.8608 |
40 | 24.82 | 15.476 |
41 | 0 | 0 |
42 | 74.528 | 46.4704 |
43 | 0 | 0 |
44 | 75.344 | 46.9792 |
45 | 0 | 0 |
46 | 20.0804 | 12.520733 |
47 | 0 | 0 |
48 | 9.991933 | 6.230267 |
49 | 0.5372 | 0.334967 |
50 | 0 | 0 |
51 | 2.9784 | 1.8571 |
52 | 49.98 | 31.164 |
53 | 0 | 0 |
54 | 30.872 | 19.2496 |
55 | 0 | 0 |
56 | 1.9584 | 1.221133 |
57 | 92.208 | 57.4944 |
58 | 0 | 0 |
59 | 93.908 | 58.5544 |
60 | 68.748 | 42.8664 |
61 | 38.488 | 23.9984 |
62 | 26.18 | 16.324 |
from Bus | to Bus | Length (km) | R (Ω) | X (Ω) | 1/2 B (S) |
---|---|---|---|---|---|
1 | 2 | 1.5 | 0.273750 | 0.471300 | 1.37 × 10−6 |
2 | 3 | 0.3 | 0.054750 | 0.094260 | 2.73 × 10−7 |
3 | 4 | 0.5 | 0.091250 | 0.157100 | 4.56 × 10−7 |
4 | 5 | 0.4 | 0.073000 | 0.125680 | 3.64 × 10−7 |
4 | 6 | 0.4 | 0.073000 | 0.125680 | 3.64 × 10−7 |
6 | 7 | 0.45 | 0.082125 | 0.141390 | 4.10 × 10−7 |
7 | 8 | 0.2 | 0.036500 | 0.062840 | 1.82 × 10−7 |
8 | 9 | 0.35 | 0.063875 | 0.109970 | 3.19 × 10−7 |
9 | 10 | 0.5 | 0.091250 | 0.157100 | 4.56 × 10−7 |
9 | 11 | 0.2 | 0.036500 | 0.062840 | 1.82 × 10−7 |
11 | 12 | 0.21 | 0.038325 | 0.065982 | 1.91 × 10−7 |
12 | 13 | 0.1 | 0.018250 | 0.031420 | 9.11 × 10−8 |
12 | 14 | 0.2 | 0.036500 | 0.062840 | 1.82 × 10−7 |
14 | 15 | 0.32 | 0.058400 | 0.100544 | 2.92 × 10−7 |
14 | 16 | 0.25 | 0.045625 | 0.078550 | 2.28 × 10−7 |
7 | 17 | 0.145 | 0.026463 | 0.045559 | 1.32 × 10−7 |
17 | 18 | 0.28 | 0.051100 | 0.087976 | 2.55 × 10−7 |
18 | 19 | 0.3 | 0.054750 | 0.094260 | 2.73 × 10−7 |
19 | 20 | 1.34 | 0.244550 | 0.421028 | 1.22 × 10−6 |
20 | 21 | 0.5 | 0.091250 | 0.157100 | 4.56 × 10−7 |
21 | 22 | 0.02 | 0.003650 | 0.006284 | 1.82 × 10−8 |
22 | 23 | 0.3 | 0.054750 | 0.094260 | 2.73 × 10−7 |
22 | 24 | 0.31 | 0.056575 | 0.097402 | 2.82 × 10−7 |
24 | 25 | 0.24 | 0.043800 | 0.075408 | 2.19 × 10−7 |
25 | 26 | 0.045 | 0.008213 | 0.014139 | 4.10 × 10−8 |
26 | 27 | 0.35 | 0.063875 | 0.109970 | 3.19 × 10−7 |
26 | 28 | 0.14 | 0.025550 | 0.043988 | 1.28 × 10−7 |
28 | 29 | 0.2 | 0.036500 | 0.062840 | 1.82 × 10−7 |
28 | 30 | 0.05 | 0.009125 | 0.015710 | 4.56 × 10−8 |
28 | 31 | 0.2 | 0.036500 | 0.062840 | 1.82 × 10−7 |
31 | 32 | 0.12 | 0.021900 | 0.037704 | 1.09 × 10−7 |
31 | 33 | 0.3 | 0.054750 | 0.094260 | 2.73 × 10−7 |
33 | 34 | 0.44 | 0.080300 | 0.138248 | 4.01 × 10−7 |
34 | 35 | 0.21 | 0.038325 | 0.065982 | 1.91 × 10−7 |
35 | 36 | 0.2 | 0.036500 | 0.062840 | 1.82 × 10−7 |
36 | 37 | 0.075 | 0.013688 | 0.023565 | 6.83 × 10−8 |
33 | 38 | 0.15 | 0.027375 | 0.047130 | 1.37 × 10−7 |
38 | 39 | 0.19 | 0.034675 | 0.059698 | 1.73 × 10−7 |
38 | 40 | 0.025 | 0.004563 | 0.007855 | 2.28 × 10−8 |
40 | 41 | 0.14 | 0.025550 | 0.043988 | 1.28 × 10−7 |
41 | 42 | 0.2 | 0.036500 | 0.062840 | 1.82 × 10−7 |
41 | 43 | 0.102 | 0.018615 | 0.032048 | 9.29 × 10−8 |
43 | 44 | 0.3 | 0.054750 | 0.094260 | 2.73 × 10−7 |
43 | 45 | 0.15 | 0.027375 | 0.047130 | 1.37 × 10−7 |
45 | 46 | 0.1 | 0.018250 | 0.031420 | 9.11 × 10−8 |
45 | 47 | 0.08 | 0.014600 | 0.025136 | 7.29 × 10−8 |
45 | 48 | 0.06 | 0.010950 | 0.018852 | 5.47 × 10−8 |
47 | 49 | 0.245 | 0.044713 | 0.076979 | 2.23 × 10−7 |
47 | 50 | 0.1 | 0.018250 | 0.031420 | 9.11 × 10−8 |
50 | 51 | 0.04 | 0.007300 | 0.012568 | 3.64 × 10−8 |
51 | 52 | 0.1 | 0.018250 | 0.031420 | 9.11 × 10−8 |
50 | 53 | 0.2 | 0.036500 | 0.062840 | 1.82 × 10−7 |
53 | 54 | 0.15 | 0.027375 | 0.047130 | 1.37 × 10−7 |
53 | 55 | 0.05 | 0.009125 | 0.015710 | 4.56 × 10−8 |
55 | 56 | 0.35 | 0.063875 | 0.109970 | 3.19 × 10−7 |
55 | 57 | 0.25 | 0.045625 | 0.078550 | 4.56 × 10−7 |
57 | 58 | 0.15 | 0.027375 | 0.047130 | 2.73 × 10−7 |
58 | 59 | 0.45 | 0.082125 | 0.141390 | 8.20 × 10−7 |
58 | 60 | 0.65 | 0.118625 | 0.204230 | 1.18 × 10−6 |
60 | 61 | 0.75 | 0.136875 | 0.235650 | 1.37 × 10−6 |
61 | 62 | 0.85 | 0.155125 | 0.267070 | 1.55 × 10−6 |
References
- Ayanlade, S.O.; Komolafe, O.A. Distribution System Voltage Profile Improvement Based on Network Structural Characteristics. In Proceedings of the OAU Faculty of Technology Conference OAUTEKCONF 2019, Obafemi Awolowo University, Ile-Ife, Nigeria, 22–25 September 2019; pp. 75–80. [Google Scholar]
- Mahdavi, E.; Asadpour, S.; Macedo, L.H.; Romero, R. Reconfiguration of Distribution Networks with Simultaneous Allocation of Distributed Generation Using the Whale Optimization Algorithm. Energies 2023, 16, 4560. [Google Scholar] [CrossRef]
- Alanazi, A.; Alanazi, T.I. Multi-Objective Framework for Optimal Placement of Distributed Generations and Switches in Reconfigurable Distribution Networks: An Improved Particle Swarm Optimization Approach. Sustainability 2023, 15, 9034. [Google Scholar] [CrossRef]
- Thang, V.V.; Trung, N.H. Evaluating efficiency of renewable energy sources in planning micro-grids considering uncertainties. J. Energy Syst. 2019, 3, 14–25. [Google Scholar] [CrossRef]
- Reddy, G.H.; Koundinya, A.N.; Gope, S.; Singh, K.M. Optimal Sizing and Allocation of DG and FACTS Device in the Distribution System using Fractional Lévy flight BAT Algorithm. IFAC-PapersOnLine 2022, 55, 168–173. [Google Scholar] [CrossRef]
- Bawazir, R.O.; Cetin, N.S. Comprehensive overview of optimizing PV-DG allocation in power system and solar energy resource potential assessments. Energy Rep. 2020, 6, 173–208. [Google Scholar] [CrossRef]
- Janamala, V.; Radha Rani, K. Optimal Allocation of Solar Photovoltaic Distributed Generation in Electrical Distribution Networks using Archimedes Optimization Algorithm. Clean Energy 2022, 6, 271–287. [Google Scholar] [CrossRef]
- Albadi, M.; Soliman, H.; Thani, M.A.; Al-Alawi, A.; Al-Ismaili, S.; Al-Nabhani, A.; Baalawi, H. Optimal allocation of PV systems to Minimize Losses in Distribution Networks using GA and PSO: Masirah Island Case Study. J. Electr. Syst. 2017, 13, 678–688. [Google Scholar]
- Ali, E.S.; Abd Elazim, S.M.; Hakmi, S.H.; Mosaad, M.I. Optimal Allocation and Size of Renewable Energy Sources as Distributed Generations Using Shark Optimization Algorithm in Radial Distribution Systems. Energies 2023, 16, 3983. [Google Scholar] [CrossRef]
- Khenissi, I.; Sellami, R.; Fakhfakh, M.A.; Neji, R. Power Loss Minimization Using Optimal Placement and Sizing of Photovoltaic Distributed Generation under Daily Load Consumption Profile with PSO and GA Algorithms. J. Control Autom. Electr. Syst. 2021, 32, 1317–1331. [Google Scholar] [CrossRef]
- Albadi, M.H.; Soliman, H.M.; El-Saadany, E.F.; Thani, M.A.; Al-Alawi, A.; Al-Ismaili, S.; Baalawi, H. Optimal allocation of PV systems in distribution networks using PSO. In Proceedings of the 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, United Arab Emirates, 4–6 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Ali, E.S.; Abd Elazim, S.M.; Abdelaziz, A.Y. Optimal Allocation and Sizing of Renewable Distributed Generation using Ant Lion Optimization Algorithm. Electr. Eng. 2018, 100, 99–109. [Google Scholar] [CrossRef]
- Ahmed, I.M.; Kamel, S.; Abdel-Mawgoud, H.; Yu, J. Optimal allocation of PV based DG in distribution networks at different load levels. In Proceedings of the 2018 Twentieth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 18–20 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 649–654. [Google Scholar]
- Ahmadi, M.; Lotfy, M.E.; Shigenobu, R.; Yona, A.; Senjyu, T. Optimal sizing and placement of rooftop solar photovoltaic at kabul city real distribution network. IET Gener. Transm. Distrib. 2018, 12, 303–309. [Google Scholar] [CrossRef]
- Khasanov, M.; Kamel, S.; Halim Houssein, E.; Rahmann, C.; Hashim, F.A. Optimal allocation strategy of photovoltaic-and wind turbine-based distributed generation units in radial distribution networks considering uncertainty. Neur. Comput. Appl. 2023, 35, 2883–2908. [Google Scholar] [CrossRef]
- Purlu, M.; Turkay, B.E. Optimal allocation of renewable distributed generations using heuristic methods to minimize annual energy losses and voltage deviation index. IEEE Access 2022, 10, 21455–21474. [Google Scholar] [CrossRef]
- Tukkee, A.S.; Alali, M.J.; Zarkani, M.K. Applying a firefly algorithm for optimum allocation of solar photovoltaic units in a distribution system. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 012042. [Google Scholar] [CrossRef]
- Mubarak, H.; Mansor, N.N.; Mokhlis, H.; Mohamad, M.; Mohamad, H.; Muhammad, M.A.; Samman, M.A.; Afzal, S. Optimum distribution system expansion planning incorporating DG based on N-1 criterion for sustainable system. Sustainability 2021, 13, 6708. [Google Scholar] [CrossRef]
- Khan, M.H.; Ulasyar, A.; Khattak, A.; Zad, H.S.; Alsharef, M.; Alahmadi, A.A.; Ullah, N. Optimal sizing and allocation of distributed generation in the radial power distribution system using honey badger algorithm. Energies 2022, 15, 5891. [Google Scholar] [CrossRef]
- Jamil Mahfoud, R.; Sun, Y.; Faisal Alkayem, N.; Haes Alhelou, H.; Siano, P.; Shafie-khah, M. A Novel Combined Evolutionary Algorithm for Optimal Planning of Distributed Generators in Radial Distribution Systems. Appl. Sci. 2019, 9, 3394. [Google Scholar] [CrossRef]
- Nowdeh, S.A.; Davoudkhani, I.F.; Moghaddam, M.H.; Najmi, E.S.; Abdelaziz, A.Y.; Ahmadi, A.; Razavi, S.E.; Gandoman, F.H. Fuzzy multi-objective placement of renewable energy sources in distribution system with objective of loss reduction and reliability improvement using a novel hybrid method. Appl. Soft Comput. 2019, 77, 761–779. [Google Scholar] [CrossRef]
- Bairwa, A.K.; Joshi, S.; Singh, D. Dingo optimizer: A nature-inspired metaheuristic approach for engineering problems. Math. Probl. Eng. 2021, 2021, 2571863. [Google Scholar] [CrossRef]
- Ayanlade, S.O.; Jimoh, A.; Ezekiel, S.O.; Babatunde, A.A. Voltage Profile Improvement and Active Power Loss Reduction Through Network Reconfiguration Using Dingo Optimizer. In ICACIn 2022 Advances on Intelligent Computing and Data Science; Saeed, F., Mohammed, F., Mohammed, E., Al-Hadhrami, T., Al-Sarem, M., Eds.; Lecture Notes on Data Engineering and Communications Technologies; Springer: Cham, Switzerland, 2023; Volume 179. [Google Scholar] [CrossRef]
- Ayanlade, S.O.; Jimoh, A.; Ogunwole, E.I.; Aremu, A.; Jimoh, A.B.; Owolabi, D.E. Simultaneous network reconfiguration and capacitor allocations using a novel dingo optimization algorithm. Int. J. Electr. Comput. Eng. (IJECE) 2023, 13, 2384–2395. [Google Scholar] [CrossRef]
- Duong, M.Q.; Pham, T.D.; Nguyen, T.T.; Doan, A.T.; Tran, H.V. Determination of Optimal Location and Sizing of Solar Photovoltaic Distribution Generation Units in Radial Distribution Systems. Energies 2019, 12, 174. [Google Scholar] [CrossRef]
- Lalitha, M.P.; Reddy, N.S.; Reddy, V.C.V. Optimal DG placement for maximum loss reduction in radial distribution system using abc algorithm. Int. J. Rev. Comput. 2010, 3, 44–52. [Google Scholar]
- Kamel, S.; Selim, A.; Jurado, F.; Yu, J.; Xie, K.; Yu, C. Multi-objective whale optimization algorithm for optimal integration of multiple DGs into distribution systems. In Proceedings of the 2019 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Chengdu, China, 21–24 May 2019; pp. 1312–1317. [Google Scholar] [CrossRef]
- Moradi, M.H.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74. [Google Scholar] [CrossRef]
- Kowsalya, M. Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization. Swarm Evol. Comput. 2013, 15, 58–65. [Google Scholar] [CrossRef]
- Injeti, S.K.; Kumar, N.P. A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large-scale radial distribution systems. Int. J. Electr. Power Energy Syst. 2013, 45, 142–151. [Google Scholar] [CrossRef]
- Sudabattula, S.K.; Kowsalya, M. Optimal allocation of multiple distributed generators in distribution system using firefly algorithm. J. Electr. Eng. 2017, 17, 12. [Google Scholar]
PVDG Size (kW) | Location |
---|---|
532 | 25 |
866 | 33 |
833 | 13 |
PVDG Size (kW) | Location |
---|---|
757 | 17 |
150 | 27 |
1097 | 33 |
Method | Optimal Location | DG Size (MW) | Loss Reduction (kW) | Loss Reduction (%) |
---|---|---|---|---|
ABC [26] | 6, 15, 25 | 1.75, 0.57, 0.78 | 79.25 | 61.13 |
WAO [27] | 14, 24, 31 | 1.02, 1.20, 1.20 | 79.72 | 60.67 |
GA/PSO [28] | 32, 16, 11 | 1.20, 0.86, 0.93 | 99.33 | 50.99 |
BFOA [29] | 14, 18, 32 | 0.65, 0.19, 0.11 | 86.38 | 57.38 |
PSO [28] | 13, 32, 8 | 0.98, 0.83, 1.18 | 101.21 | 50.06 |
LSFSA [30] | 6, 18, 30 | 1.11, 0.49, 0.87 | 82.03 | 61.10 |
GA [28] | 11, 29, 30 | 1.50, 0.42, 1.07 | 104.6 | 49.60 |
FA [31] | 13, 17, 31 | 0.62, 0.26, 0.10 | 87.83 | 58.37 |
DOA | 13, 25, 33 | 0.53, 0.87, 0.83 | 78.62 | 61.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayanlade, S.O.; Ariyo, F.K.; Jimoh, A.; Akindeji, K.T.; Adetunji, A.O.; Ogunwole, E.I.; Owolabi, D.E. Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks. Sustainability 2023, 15, 13933. https://doi.org/10.3390/su151813933
Ayanlade SO, Ariyo FK, Jimoh A, Akindeji KT, Adetunji AO, Ogunwole EI, Owolabi DE. Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks. Sustainability. 2023; 15(18):13933. https://doi.org/10.3390/su151813933
Chicago/Turabian StyleAyanlade, Samson Oladayo, Funso Kehinde Ariyo, Abdulrasaq Jimoh, Kayode Timothy Akindeji, Adeleye Oluwaseye Adetunji, Emmanuel Idowu Ogunwole, and Dolapo Eniola Owolabi. 2023. "Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks" Sustainability 15, no. 18: 13933. https://doi.org/10.3390/su151813933
APA StyleAyanlade, S. O., Ariyo, F. K., Jimoh, A., Akindeji, K. T., Adetunji, A. O., Ogunwole, E. I., & Owolabi, D. E. (2023). Optimal Allocation of Photovoltaic Distributed Generations in Radial Distribution Networks. Sustainability, 15(18), 13933. https://doi.org/10.3390/su151813933