Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice
Abstract
:1. Introduction
2. Methodology
3. Basic Façade Types, Design Criteria & Material Selection
3.1. Critical Performance Parameters
3.1.1. Thermal Performance
3.1.2. Fire Performance
3.1.3. Acoustic Performance
3.1.4. Weather Tightness
3.1.5. Structural Integrity
4. Recent Technological Development
4.1. Energy Saving Façade Systems
4.1.1. Double Skin Façades (DSF)
4.1.2. Adaptive Façade Systems
Kinetic Façade
Responsive Façade
4.1.3. Green Wall Systems
4.1.4. Photovoltaic Façades
4.2. Sustainable Materials
4.2.1. Timber
4.2.2. Ultra-High-Performance Concrete (UHPC)
4.2.3. Glass Fibre Reinforced Concrete (GRC)
4.2.4. Stone
4.2.5. Phase Changing Material
4.2.6. Insulation Materials
4.2.7. Aluminium Composite Material
4.3. Australian Design and Construction Practice
5. Constraints of Using Technology and Sustainable Materials
5.1. Higher Upfront Cost (Long Payback Periods)
5.2. Complex Preliminary Design Approaches
5.3. Lack of Manufacturing, Installation, and Operation Expertise
5.4. Lack of Standard Criteria for Optimisation
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bannister, P.; Moffitt, S.; Zhang, H.; Johnston, D.; Shen, D.; Robinson, D.; Cooper, P.; Ma, Z.; Gomis, L.L.; Green, L. Building Code Energy Performance Trajectory: Final Technical Report; CRC for Low Carbon Living: Sydney, Australia, 2018. [Google Scholar]
- Yu, J.-S.; Kim, J.-H.; Kim, S.-M.; Kim, J.-T. Thermal and energy performance of a building with PV-applied double-skin façade. Proc. Inst. Civ. Eng.-Eng. Sustain. 2017, 170, 345–353. [Google Scholar] [CrossRef]
- Klee, C.; Love, A. Thermal Performance Of Façades, 2012 AIA Upjhon Grant Research Initiative; Fayette Research: Boston, MA, USA, 2012. [Google Scholar]
- Nadoushani, Z.S.M.; Akbarnezhad, A.; Jornet, J.F.; Xiao, J. Multi-criteria selection of façade systems based on sustainability criteria. Build. Environ. 2017, 121, 67–78. [Google Scholar] [CrossRef]
- Sung, D. A new look at building façades as infrastructure. Engineering 2016, 2, 63–68. [Google Scholar] [CrossRef]
- Hartkopf, V.; Aziz, A.; Loftness, V. Açades and enclosures: Building for sustainability. In Sustainable Built Environments; Springer: Cham, Switzerland, 2020; pp. 295–325. [Google Scholar]
- Tzempelikos, A.; Athienitis, A.K. Simulation for façade options and impact on HVAC system design. In Proceedings of the Eighth International IBPSA Conference, Eindhoven, The Netherlands, 11–14 August 2003; pp. 1301–1308. [Google Scholar]
- Moghtadernejad, S.; Mirza, M.S.; Chouinard, L.E. Façade design stages: Issues and considerations. J. Archit. Eng. 2019, 25, 04018033. [Google Scholar] [CrossRef]
- Aflaki, A.; Mahyuddin, N.; Mahmoud, Z.A.-C.; Baharum, M.R. A review on natural ventilation applications through building façade components and ventilation openings in tropical climates. Energy Build. 2015, 101, 153–162. [Google Scholar] [CrossRef]
- Ding, W.; Hasemi, Y.; Yamada, T. Natural ventilation performance of a double-skin façade with a solar chimney. Energy Build. 2005, 37, 411–418. [Google Scholar] [CrossRef]
- Yi, Y.K. Building Façade multi-objective optimization for daylight and aesthetical perception. Build. Environ. 2019, 156, 178–190. [Google Scholar] [CrossRef]
- Vartiainen, E.; Peippo, K.; Lund, P. Daylight optimization of multifunctional solar Façades. Sol. Energy 2000, 68, 223–235. [Google Scholar] [CrossRef]
- Hassanli, S.; Hu, G.; Kwok, K.C.; Fletcher, D.F. Utilizing cavity flow within double skin façade for wind energy harvesting in buildings. J. Wind Eng. Ind. Aerodyn. 2017, 167, 114–127. [Google Scholar] [CrossRef]
- Bayoumi, M. Impacts of window opening grade on improving the energy efficiency of a façade in hot climates. Build. Environ. 2017, 119, 31–43. [Google Scholar] [CrossRef]
- Loonen, R.C.; Trčka, M.; Cóstola, D.; Hensen, J.L. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [Google Scholar] [CrossRef]
- Attia, S.; Bilir, S.; Safy, T.; Struck, C.; Loonen, R.; Goia, F. Current trends and future challenges in the performance assessment of adaptive façade systems. Energy Build. 2018, 179, 165–182. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and Façades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Akram, M.W.; Hasannuzaman, M.; Cuce, E.; Cuce, P.M. Global technological advancement and challenges of glazed window, Façade system and vertical greenery-based energy savings in buildings: A comprehensive review. Energy Built Environ. 2023, 4, 206–226. [Google Scholar] [CrossRef]
- Junaid, M.F.; ur Rehman, Z.; Čekon, M.; Čurpek, J.; Farooq, R.; Cui, H.; Khan, I. Inorganic phase change materials in thermal energy storage: A review on perspectives and technological advances in building applications. Energy Build. 2021, 252, 111443. [Google Scholar] [CrossRef]
- Balali, A.; Valipour, A. Identification and selection of building façade’s smart materials according to sustainable development goals. Sustain. Mater. Technol. 2020, 26, e00213. [Google Scholar] [CrossRef]
- Di Giuda, G.M.; Giana, P.E.; Masera, G.; Seghezzi, E.; Villa, V. A BIM-based approach to façade cladding optimization: Geometrical, economic, and production-control in a DfMA perspective. In Proceedings of the European Conference on Computing in Construction—EC3 Conference, Chania, Greece, 10–12 July 2019; pp. 324–331. [Google Scholar]
- Al Ka’bi, A.H. Comparison of energy simulation applications used in green building. Ann. Telecommun. 2020, 75, 271–290. [Google Scholar] [CrossRef]
- Gennaro, G.; Lucchino, E.C.; Goia, F.; Favoino, F. Modelling double skin façades (DSFs) in whole-building energy simulation tools: Validation and inter-software comparison of naturally ventilated single-story DSFs. Build. Environ. 2023, 231, 110002. [Google Scholar] [CrossRef]
- Irshad, K.; Habib, K.; Saidur, R.; Kareem, M.; Saha, B.B. Study of thermoelectric and photovoltaic Façade system for energy efficient building development: A review. J. Clean. Prod. 2019, 209, 1376–1395. [Google Scholar] [CrossRef]
- Dewidar, K.; Mahmoud, A.H.; Magdy, N.; Ahmed, S. The role of intelligent façades in energy conservation. In Proceedings of the International Conference on Sustainability and the Future: Future Intermediate Sustainable Cities (FISC 2010), Cairo, Egypt, 23–25 November 2010. [Google Scholar]
- Aelenei, D.; Aelenei, L.; Vieira, C.P. Adaptive Façade: Concept, applications, research questions. Energy Procedia 2016, 91, 269–275. [Google Scholar] [CrossRef]
- Hou, K.; Li, S.; Wang, H. Simulation and experimental verification of energy saving effect of passive preheating natural ventilation double skin façade. Energy Explor. Exploit. 2021, 39, 464–487. [Google Scholar] [CrossRef]
- Karimi, K.; Farrokhzad, M.; Roshan, G.; Aghdasi, M. Evaluation of effects of a green wall as a sustainable approach on reducing energy use in temperate and humid areas. Energy Build. 2022, 262, 112014. [Google Scholar] [CrossRef]
- Tabadkani, A.; Roetzel, A.; Li, H.X.; Tsangrassoulis, A. Design approaches and typologies of adaptive Façades: A review. Autom. Constr. 2021, 121, 103450. [Google Scholar] [CrossRef]
- Efthymiou, M.; Kontonis, P.; Leonidou, A.; Kazanakis, G.; Vassiliades, C. Investigation of Sun Protection Issues via the Active and Passive Building Integration of Active Solar Energy Systems: A Case Study of the Renovation of an Existing Building in Cyprus. IOP Conf. Ser. Earth Environ. Sci. 2020, 410, 012063. [Google Scholar] [CrossRef]
- Năstase, G.; Doboși, I.S.; Brezeanu, A.I.; Taus, D.; Tăbăcaru, M.B.; Vuțoiu, B.G.; Rusu, D.; Bulmez, A.M.; Iordan, N.F. Experimental heat transfer, sound insulation and interior comfort parameters assessment on a box double-skin Façade. Buildings 2022, 12, 730. [Google Scholar] [CrossRef]
- Cortês, A.; Almeida, J.; Santos, M.I.; Tadeu, A.; de Brito, J.; Silva, C.M. Environmental performance of a cork-based modular living wall from a life-cycle perspective. Build. Environ. 2021, 191, 107614. [Google Scholar] [CrossRef]
- Pomponi, F.; Piroozfar, P.A.; Southall, R.; Ashton, P.; Farr, E.R. Energy performance of Double-Skin Façades in temperate climates: A systematic review and meta-analysis. Renew. Sustain. Energy Rev. 2016, 54, 1525–1536. [Google Scholar] [CrossRef]
- Soudian, S.; Berardi, U. Development of a performance-based design framework for multifunctional climate-responsive façades. Energy Build. 2021, 231, 110589. [Google Scholar] [CrossRef]
- Hartman, P.; Čeheľová, D.; Bielek, B. Principal solutions for sustainable adaptive Façades providing suitable indoor environment for inhabitants. Appl. Mech. Mater. 2019, 887, 435–442. [Google Scholar] [CrossRef]
- Zolfagharpour, A.; Shafaei, M.; Saeidi, P. Responsive Architecture Solutions to Reduce Energy Consumption of High-Rise Buildings. Iran Univ. Sci. Technol. 2022, 32, 1–17. [Google Scholar]
- Shi, X.; Abel, T.; Wang, L. Influence of two motion types on solar transmittance and daylight performance of dynamic façades. Sol. Energy 2020, 201, 561–580. [Google Scholar] [CrossRef]
- Assoa, Y.B.; Thony, P.; Messaoudi, P.; Schmitt, E.; Bizzini, O.; Gelibert, S.; Therme, D.; Rudy, J.; Chabuel, F. Study of a building integrated bifacial photovoltaic Façade. Sol. Energy 2021, 227, 497–515. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Su, X.; Liu, Z.; Lian, J.; Luo, Y. Improved thermal-electrical-optical model and performance assessment of a PV-blind embedded glazing façade system with complex shading effects. Appl. Energy 2019, 255, 113896. [Google Scholar] [CrossRef]
- Valladares-Rendón, L.; Schmid, G.; Lo, S.-L. Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of façade shading systems. Energy Build. 2017, 140, 458–479. [Google Scholar] [CrossRef]
- Meggers, F.; Baldini, L.; Leibundgut, H. An innovative use of renewable ground heat for insulation in low exergy building systems. Energies 2012, 5, 3149–3166. [Google Scholar] [CrossRef]
- Prieto, A.; Knaack, U.; Auer, T.; Klein, T. COOLFAÇADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration. Renew. Sustain. Energy Rev. 2019, 101, 395–414. [Google Scholar] [CrossRef]
- Attia, S.; Lioure, R.; Declaude, Q. Future trends and main concepts of adaptive Façade systems. Energy Sci. Eng. 2020, 8, 3255–3272. [Google Scholar] [CrossRef]
- Saretta, E.; Caputo, P.; Frontini, F. A review study about energy renovation of building Façades with BIPV in urban environment. Sustain. Cities Soc. 2019, 44, 343–355. [Google Scholar] [CrossRef]
- Radić, M.; Brković Dodig, M.; Auer, T. Green Façades and living walls—A review establishing the classification of construction types and mapping the benefits. Sustainability 2019, 11, 4579. [Google Scholar] [CrossRef]
- CWCT. Technical Note No. 15 Curtain Wall Types; Centre for Window & Cladding Technology, University of Bath: Bath, UK, 2000. [Google Scholar]
- Barbosa, A.R.; Fahnestock, L.A.; Fick, D.R.; Gautam, D.; Soti, R.; Wood, R.; Moaveni, B.; Stavridis, A.; Olsen, M.J.; Rodrigues, H. Performance of medium-to-high rise reinforced concrete frame buildings with masonry infill in the 2015 Gorkha, Nepal, earthquake. Earthq. Spectra 2017, 33, 197–218. [Google Scholar] [CrossRef]
- Finken, G.R.; Bjarløv, S.P.; Peuhkuri, R.H. Effect of façade impregnation on feasibility of capillary active thermal internal insulation for a historic dormitory–A hygrothermal simulation study. Constr. Build. Mater. 2016, 113, 202–214. [Google Scholar] [CrossRef]
- Hendry, A.W.; Khalaf, F.M. Masonry Wall Construction; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Watts, A. Profiled Metal Cladding. In Modern Construction Envelopes; Springer: Cham, Switzerland, 2011; pp. 24–33. [Google Scholar]
- Roque, E.; Santos, P. The effectiveness of thermal insulation in lightweight steel-framed walls with respect to its position. Buildings 2017, 7, 13. [Google Scholar] [CrossRef]
- Gross, R. Modest masterpiece. Sanctuary Mod. Green Homes 2022, 58, 34–39. [Google Scholar]
- White, N.; Delichatsios, M.; White, N.; Delichatsios, M. Combustible exterior wall systems in common use. In Fire Hazards of Exterior Wall Assemblies Containing Combustible Components; Springer: Cham, Switzerland, 2015; pp. 3–10. [Google Scholar]
- Mohaney, P.; Soni, E.G. Aluminium composite panel as a Façade material. Int. J. Eng. Trends Technol. 2018, 55, 75–80. [Google Scholar] [CrossRef]
- Silvestre, J.D.; De Brito, J. Ceramic tiling in building façades: Inspection and pathological characterization using an expert system. Constr. Build. Mater. 2011, 25, 1560–1571. [Google Scholar] [CrossRef]
- Chen, D.; Deng, J.; Cheng, B.; Wang, Q.; Zhao, B. New anticracking glass-fiber-reinforced cement material and integrated composite technology with lightweight concrete panels. Adv. Civ. Eng. 2021, 2021, 7447066. [Google Scholar] [CrossRef]
- Sukontasukkul, P. Use of crumb rubber to improve thermal and sound properties of pre-cast concrete panel. Constr. Build. Mater. 2009, 23, 1084–1092. [Google Scholar] [CrossRef]
- Pastor, J.; García, L.; Quintana, S.; Peña, J. Glass reinforced concrete panels containing recycled tyres: Evaluation of the acoustic properties of for their use as sound barriers. Constr. Build. Mater. 2014, 54, 541–549. [Google Scholar] [CrossRef]
- Donà, M.; Overend, M. Fatigue performance of a connection for GRC cladding panels. In Proceedings of the 8th International Conference on Advanced Composites in Construction (ACIC 2017), Sheffield, UK, 5–7 September 2017. [Google Scholar]
- Aboulnaga, M.M. Towards green buildings: Glass as a building element—The use and misuse in the gulf region. Renew. Energy 2006, 31, 631–653. [Google Scholar] [CrossRef]
- Naqash, M.T.; Formisano, A.; De Matteis, G. Aluminium framing members in Façades. Key Eng. Mater. 2016, 710, 327–332. [Google Scholar] [CrossRef]
- Leśniak, A.; Górka, M. Evaluation of selected lightweight curtain wall solutions using multi criteria analysis. AIP Conf. Proc. 2018, 1978, 240003. [Google Scholar]
- Boafo, F.E.; Kim, J.-H.; Kim, J.-T. Numerical study of slim curtain wall spandrel with integrated vacuum insulation panel: Concept, performance evaluation and challenges. Energy Build. 2019, 183, 139–150. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, T.; Zhang, Q.; Yang, B. Wind-induced response of an L-shaped cable support glass curtain wall. Shock Vib. 2017, 2017, 4163045. [Google Scholar] [CrossRef]
- Rapone, G.; Saro, O. Optimisation of curtain wall façades for office buildings by means of PSO algorithm. Energy Build. 2012, 45, 189–196. [Google Scholar] [CrossRef]
- Baniotopoulos, C.C.; Nikolaidis, T.N.; Moutsanidis, G. Optimal structural design of glass curtain-wall systems. Proc. Inst. Civ. Eng.-Struct. Build. 2016, 169, 450–457. [Google Scholar] [CrossRef]
- Galli, U. Seismic Behaviour of Curtain Wall Façades: A Comparison between Experimental Mock up Test and Finite Element Method Analysis; Politecnico di Milano: Milan, Italy, 2012. [Google Scholar]
- Yoshino, M.; Nakada, N.; Mori, T.; Yamagishi, K.; Yoshida, S.; Higashi, Y.; Shirasawa, K. Photovoltaic modules integrated with a metal curtain wall. In Proceedings of the IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), Waikoloa, HI, USA, 5–9 December 1994; pp. 969–972. [Google Scholar]
- Forster, K.W. “The New Museum In New York: A Whitewash?” Log, no. 12, 2008, pp. 5–12. JSTOR. Available online: http://www.jstor.org/stable/41765605 (accessed on 25 September 2023).
- Watts, A. Sheet metal. In Modern Construction Envelopes; Springer: Cham, Switzerland, 2011; pp. 14–23. [Google Scholar]
- Muhammad, L.B. Systematic Evaluation of Curtain Wall Types. Master’s Thesis, Eastern Mediterranean University (EMU), Famagusta, Cyprus, 2010. [Google Scholar]
- Punjabi, S.A. Development of an integrated building design information interface. In Proceedings of the Ninth International IBPSA Conference, Montreal, QC, Canada, 15–18 August 2005. [Google Scholar]
- Kanniyapan, G.; Nesan, L.J.; Mohammad, I.S.; Keat, T.S.; Ponniah, V. Selection criteria of building material for optimising maintainability. Constr. Build. Mater. 2019, 221, 651–660. [Google Scholar] [CrossRef]
- Juaristi, M.; Gómez-Acebo, T.; Monge-Barrio, A. Qualitative analysis of promising materials and technologies for the design and evaluation of Climate Adaptive Opaque Façades. Build. Environ. 2018, 144, 482–501. [Google Scholar] [CrossRef]
- Korsgaard, H.; Hansen, N.B.; Basballe, D.; Dalsgaard, P.; Halskov, K. Odenplan: A media façade design process. In Proceedings of the 4th Media Architecture Biennale Conference: Participation, Aarhus, Denmark, 15–17 November 2012; pp. 23–32. [Google Scholar]
- Cheng, C.; Cheung, K.K.; Chu, L. Thermal performance of a vegetated cladding system on Façade walls. Build. Environ. 2010, 45, 1779–1787. [Google Scholar] [CrossRef]
- Saarinen, A. Reduction of external noise by building Façades: Tolerance of standard EN 12354-3. Appl. Acoust. 2002, 63, 529–545. [Google Scholar] [CrossRef]
- Berardi, U.; Naldi, M. The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance. Energy Build. 2017, 144, 262–275. [Google Scholar] [CrossRef]
- Aksamija, A.; Peters, T. Heat transfer in Façade systems and energy use: Comparative study of different exterior wall types. J. Archit. Eng. 2017, 23, C5016002. [Google Scholar] [CrossRef]
- Liping, W.; Hien, W.N. The impacts of ventilation strategies and Façade on indoor thermal environment for naturally ventilated residential buildings in Singapore. Build. Environ. 2007, 42, 4006–4015. [Google Scholar] [CrossRef]
- Charles Sturt University. Guidelines for Managing Issues Relating to Indoor Thermal Comfort (Hot Conditions); Charles Sturt University: Bathurst, Australia, 2010. [Google Scholar]
- Lies, K.M.; Faith, B.A. Window detailing considerations for leakage prevention. ASTM Spec. Tech. Publ. 1998, 1314, 33–46. [Google Scholar]
- Dhima, D.; Duny, M.; Garo, J.-P.; Wang, H.-Y.; Jullien, Q. Experimental study on vertical wooden façade combustion. Procedia Eng. 2017, 210, 520–527. [Google Scholar]
- Alekhin, V.; Sharovarova, E.; Budarin, A. Façade structures for energy-efficient buildings. IOP Conf. Ser. Mater. Sci. Eng. 2018, 463, 042051. [Google Scholar] [CrossRef]
- McKenna, S.T.; Jones, N.; Peck, G.; Dickens, K.; Pawelec, W.; Oradei, S.; Harris, S.; Stec, A.A.; Hull, T.R. Fire behaviour of modern façade materials—Understanding the Grenfell Tower fire. J. Hazard. Mater. 2019, 368, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M.; Abel-Rahman, A.K.; Ali, A.H.H.; Suzuki, M. Double skin façade: The state of art on building energy efficiency. J. Clean Energy Technol. 2016, 4, 84–89. [Google Scholar] [CrossRef]
- Kültür, S.; Türkeri, N.; Knaack, U. A holistic decision support tool for Façade design. Buildings 2019, 9, 186. [Google Scholar] [CrossRef]
- CWCT. Technical Note No. 38 Acoustic Performance of Windows; Centre for Window & Cladding Technology, University of Bath: Bath, UK, 2003. [Google Scholar]
- Busa, L.; Secchi, S.; Baldini, S. Effect of façade shape for the acoustic protection of buildings. Build. Acoust. 2010, 17, 317–338. [Google Scholar] [CrossRef]
- Blasco, M.; Belis, J.; De Bleecker, H. Acoustic failure analysis of windows in buildings. Eng. Fail. Anal. 2011, 18, 1761–1774. [Google Scholar] [CrossRef]
- Pérez-Bella, J.M.; Domínguez-Hernández, J.; Rodríguez-Soria, B.; Del Coz-Díaz, J.J.; Cano-Suñén, E. Optimised method for estimating directional driving rain from synoptic observation data. J. Wind Eng. Ind. Aerodyn. 2013, 113, 1–11. [Google Scholar] [CrossRef]
- Beasley, K.J. Building Façade failures in the urban environment. Proc. Inst. Civ. Eng.-Forensic Eng. 2016, 170, 8–13. [Google Scholar] [CrossRef]
- Beasley, K.J. Latent building Façade failures. In Forensic Engineering 2012: Gateway to a Safer Tomorrow; ASCE: Reston, VA, USA, 2013; pp. 918–927. [Google Scholar]
- Sivanerupan, S.; Wilson, J.L.; Gad, E.; Lam, N. Seismic assessment of glazed Façade systems. In Proceedings of the Annual Technical Conference of the Australian Earthquake Engineering Society, Newcastle, Australia, 29 November–1 December 2019. [Google Scholar]
- Tabatabaee, S.; Weil, B.S.; Aksamija, A. Negative life-cycle emissions growth rate through retrofit of existing institutional buildings: Energy analysis and life cycle assessment of a case study of University Dormitory Renovation. In Proceedings of the Architectural Research Centers Consortium (ARCC), Chicago, IL, USA, 6–9 April 2015. [Google Scholar]
- Nguyen, Q.; Ngo, T.; Mendis, P.; Tran, P. Composite materials for next generation building Façade systems. Civ. Eng. Archit. 2013, 1, 88–95. [Google Scholar] [CrossRef]
- Krstić-Furundžić, A.; Vujošević, M.; Petrovski, A. Energy and environmental performance of the office building Façade scenarios. Energy 2019, 183, 437–447. [Google Scholar] [CrossRef]
- Bauer, E.; Pavon, E.; Barreira, E.; De Castro, E.K. Analysis of building Façade defects using infrared thermography: Laboratory studies. J. Build. Eng. 2016, 6, 93–104. [Google Scholar] [CrossRef]
- Panagiotidou, M.; Fuller, R.J. Progress in ZEBs—A review of definitions, policies and construction activity. Energy Policy 2013, 62, 196–206. [Google Scholar] [CrossRef]
- Yang, B.; Wei, Z.; Li, Q.; Li, J. Semiautomated building Façade footprint extraction from mobile LiDAR point clouds. IEEE Geosci. Remote Sens. Lett. 2012, 10, 766–770. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Chàfer, M. Technological options and strategies towards zero energy buildings contributing to climate change mitigation: A systematic review. Energy Build. 2020, 219, 110009. [Google Scholar] [CrossRef]
- Rahiminejad, M.; Khovalyg, D. Numerical and experimental study of the dynamic thermal resistance of ventilated air-spaces behind passive and active façades. Build. Environ. 2022, 225, 109616. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J. Green wall systems: A review of their characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Berardi, U.; Tookey, J.; Li, D.H.W.; Kariminia, S. Exploring the advantages and challenges of double-skin façades (DSFs). Renew. Sustain. Energy Rev. 2016, 60, 1052–1065. [Google Scholar] [CrossRef]
- Noaman, D.S.; Moneer, S.A.; Megahed, N.A.; El-Ghafour, S.A. Integration of active solar cooling technology into passively designed Façade in hot climates. J. Build. Eng. 2022, 56, 104658. [Google Scholar] [CrossRef]
- Özdemir, H.; Çakmak, B.Y. Evaluation of Daylight and Glare Quality of Office Spaces with Flat and Dynamic Shading System Façades in Hot Arid Climate. J. Daylighting 2022, 9, 197–208. [Google Scholar] [CrossRef]
- Böke, J.; Denz, P.-R.; Suwannapruk, N.; Vongsingha, P. Active, Passive and Cyber-Physical Adaptive Façade Strategies: A Comparative Analysis Through Case Studies. J. Façade Des. Eng. 2022, 10, 1–18. [Google Scholar] [CrossRef]
- Fuliotto, R.; Cambuli, F.; Mandas, N.; Bacchin, N.; Manara, G.; Chen, Q. Experimental and numerical analysis of heat transfer and airflow on an interactive building Façade. Energy Build. 2010, 42, 23–28. [Google Scholar] [CrossRef]
- Joe, J.; Choi, W.; Kwak, Y.; Huh, J.-H. Optimal design of a multi-story double skin Façade. Energy Build. 2014, 76, 143–150. [Google Scholar] [CrossRef]
- Halawa, E.; Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Trombley, J.; Hassan, N.; Baig, M.; Yusoff, S.Y.; Ismail, M.A. A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin. Renew. Sustain. Energy Rev. 2018, 82, 2147–2161. [Google Scholar] [CrossRef]
- Pomponi, F.; Barbosa, S.; Piroozfar, P.A. On the intrinsic flexibility of the double skin façade: A comparative thermal comfort investigation in tropical and temperate climates. Energy Procedia 2017, 111, 530–539. [Google Scholar] [CrossRef]
- De Gracia, A.; Castell, A.; Navarro, L.; Oró, E.; Cabeza, L.F. Numerical modelling of ventilated Façades: A review. Renew. Sustain. Energy Rev. 2013, 22, 539–549. [Google Scholar] [CrossRef]
- Barbosa, S.; Ip, K. Perspectives of double skin façades for naturally ventilated buildings: A review. Renew. Sustain. Energy Rev. 2014, 40, 1019–1029. [Google Scholar] [CrossRef]
- Bostancioglu, E. Double skin façade assessment by fuzzy AHP and comparison with AHP. Archit. Eng. Des. Manag. 2021, 17, 110–130. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; de Rossi, F.; Iovane, T.; Mauro, G.M. Are transparent double-skin Façades effective for energy retrofit? Answers for an office building-with and without photovoltaic integration. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 257–271. [Google Scholar] [CrossRef]
- Aldawoud, A.; Salameh, T.; Ki Kim, Y. Double skin façade: Energy performance in the United Arab Emirates. Energy Sources Part B Econ. Plan. Policy 2021, 16, 387–405. [Google Scholar] [CrossRef]
- Attia, S.; Favoino, F.; Loonen, R.; Petrovski, A.; Monge-Barrio, A. Adaptive façades system assessment: An initial review. In Proceedings of the 10th Conference on Advanced Building Skins, Bern, Switzerland, 3–4 November 2015. [Google Scholar]
- Romano, R.; Aelenei, L.; Aelenei, D.; Mazzucchelli, E.S. What is an adaptive façade? Analysis of Recent Terms and definitions from an international perspective. J. Façade Des. Eng. 2018, 6, 65–76. [Google Scholar]
- Bianco, L.; Lo Verso, V.R.; Serra, V.; Perino, M. Monitoring energy and comfort performance of transparent adaptive façades. In Proceedings of the 10th Conference on Advanced Building Skins—Energy Forum, Bern, Switzerland, 3–4 November 2015; pp. 1234–1243. [Google Scholar]
- Ibrahim, J.A.; Alibaba, H.Z. Kinetic Façade as a Tool for energy Efficiency. Int. J. Eng. Res. Rev 2019, 7, 1–7. [Google Scholar]
- Kensek, K.; Hansanuwat, R. Environment control systems for sustainable design: A methodology for testing, simulating and comparing kinetic Façade systems. J. Creat. Sustain. Archit. Built Environ. 2011, 1, 27–46. [Google Scholar]
- Kim, H.-J.; Yang, C.-S.; Moon, H.J. A study on multi-objective parametric design tool for surround-type movable shading device. Sustainability 2019, 11, 7096. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Bozlar, M.; Liu, Z.; Guo, H.; Meggers, F. Active building envelope systems toward renewable and sustainable energy. Renew. Sustain. Energy Rev. 2019, 104, 470–491. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mohammadi, M.; Rosemann, A.; Schröder, T.; Lichtenberg, J. A morphological approach for kinetic façade design process to improve visual and thermal comfort. Build. Environ. 2019, 153, 186–204. [Google Scholar] [CrossRef]
- Yoon, J. SMP prototype design and fabrication for thermo-responsive façade elements. J. Façade Des. Eng. 2019, 7, 41–62. [Google Scholar]
- Lampert, C.M. Large-area smart glass and integrated photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76, 489–499. [Google Scholar] [CrossRef]
- Carlucci, F. A review of smart and responsive building technologies and their classifications. Future Cities Environ. 2021, 7, 10. [Google Scholar] [CrossRef]
- Taveres-Cachat, E.; Grynning, S.; Thomsen, J.; Selkowitz, S. Responsive building envelope concepts in zero emission neighborhoods and smart cities-A roadmap to implementation. Build. Environ. 2019, 149, 446–457. [Google Scholar] [CrossRef]
- Karanouh, A.; Kerber, E. Innovations in dynamic architecture. J. Façade Des. Eng. 2015, 3, 185–221. [Google Scholar] [CrossRef]
- Elsadek, M.; Liu, B.; Lian, Z. Green façades: Their contribution to stress recovery and well-being in high-density cities. Urban For. Urban Green. 2019, 46, 126446. [Google Scholar] [CrossRef]
- Dungca, D.M.R.; Larioza, M.D.M.; Mondoñedo, P.M.M.; Orence, H.F.A.; Sigue, A.-L.F.; Medina, O.A.; Soriano, A.J.; Mandayo, E.A. Innovating Green Wall: A Sustainable Way of Enhancing the Vertical Planting System. In Proceedings of the IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–6. [Google Scholar]
- Feng, H.; Hewage, K. Lifecycle assessment of living walls: Air purification and energy performance. J. Clean. Prod. 2014, 69, 91–99. [Google Scholar] [CrossRef]
- Kim, J.-H.; Choi, W.-J.; Yoon, Y.-H. A Study on verifying the effect of thermal environment control of Street Canyons based on application of green wall system. J. Environ. Sci. Int. 2016, 25, 311–322. [Google Scholar] [CrossRef]
- Francis, R.A.; Lorimer, J. Urban reconciliation ecology: The potential of living roofs and walls. J. Environ. Manag. 2011, 92, 1429–1437. [Google Scholar] [CrossRef]
- Wong, I.; Baldwin, A.N. Investigating the potential of applying vertical green walls to high-rise residential buildings for energy-saving in sub-tropical region. Build. Environ. 2016, 97, 34–39. [Google Scholar] [CrossRef]
- Lai, C.-M.; Hokoi, S. Solar façades: A review. Build. Environ. 2015, 91, 152–165. [Google Scholar] [CrossRef]
- Spanos, I.; Duckers, L. Expected cost benefits of building-integrated PVs in UK, through a quantitative economic analysis of PVs in connection with buildings, focused on UK and Greece. Renew. Energy 2004, 29, 1289–1303. [Google Scholar] [CrossRef]
- Qiu, Z.; Chow, T.; Li, P.; Li, C.; Ren, J.; Wang, W. Performance evaluation of the photovoltaic double-skin Façade. In Proceedings of the 11th International IBPSA Conference—Building Simulation (BS 2009), Glasgow, UK, 27–30 July 2009; pp. 2251–2257. [Google Scholar]
- Ng, P.K.; Mithraratne, N. Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics. Renew. Sustain. Energy Rev. 2014, 31, 736–745. [Google Scholar] [CrossRef]
- Quesada, G.; Rousse, D.; Dutil, Y.; Badache, M.; Hallé, S. A comprehensive review of solar Façades. Transparent and translucent solar Façades. Renew. Sustain. Energy Rev. 2012, 16, 2643–2651. [Google Scholar] [CrossRef]
- Radhi, H. Energy analysis of façade-integrated photovoltaic systems applied to UAE commercial buildings. Sol. Energy 2010, 84, 2009–2021. [Google Scholar] [CrossRef]
- Frontini, F.; Bonomo, P.; Moser, D.; Maturi, L. 8—Building integrated photovoltaic Façades: Challenges, opportunities and innovations. In Rethinking Building Skins; Gasparri, E., Brambilla, A., Lobaccaro, G., Goia, F., Andaloro, A., Sangiorgio, A., Eds.; Woodhead Publishing: Sawston, UK, 2022; pp. 201–229. [Google Scholar] [CrossRef]
- Almusaed, A.; Yitmen, I.; Almsaad, A.; Akiner, İ.; Akiner, M.E. Coherent investigation on a smart kinetic wooden façade based on material passport concepts and environmental profile inquiry. Materials 2021, 14, 3771. [Google Scholar] [CrossRef]
- Xu, H.; Li, J.; Wu, J.; Kang, J. Evaluation of wood coverage on building Façades towards sustainability. Sustainability 2019, 11, 1407. [Google Scholar] [CrossRef]
- Schoof, J. Timber construction returns to the city. Detail 2018, 1–2. Available online: https://www.detail.de/de_en/detail-1-2-2018 (accessed on 25 September 2023).
- Kukk, V.; Kaljula, L.; Kers, J.; Kalamees, T. Designing highly insulated cross-laminated timber external walls in terms of hygrothermal performance: Field measurements and simulations. Build. Environ. 2022, 212, 108805. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M.; Radziszewska-Zielina, E.; Orlik-Kożdoń, B.; Steidl, T.; Tatara, T. Analysis of the thermal retrofitting potential of the external walls of podhale’s historical timber buildings in the aspect of the non-deterioration of their technical condition. Energies 2020, 13, 4610. [Google Scholar] [CrossRef]
- Bader Eddin, M.; Vardaxis, N.-G.; Ménard, S.; Bard Hagberg, D.; Kouyoumji, J.-L. Prediction of Sound Insulation Using Artificial Neural Networks—Part II: Lightweight Wooden Façade Structures. Appl. Sci. 2022, 12, 6983. [Google Scholar] [CrossRef]
- Gasparri, E.; Lucchini, A.; Mantegazza, G.; Mazzucchelli, E.S. Construction management for tall CLT buildings: From partial to total prefabrication of façade elements. Wood Mater. Sci. Eng. 2015, 10, 256–275. [Google Scholar] [CrossRef]
- Ivanović-Šekularac, J.; Šekularac, N. Impacts of traditional architecture on the use of wood as an element of Façade covering in Serbian contemporary architecture. Spatium 2011, 57–62. [Google Scholar] [CrossRef]
- Maniak-Huesser, M.; Tellnes, L.G.; Zea Escamilla, E. Mind the gap: A policy gap analysis of programmes promoting timber construction in nordic countries. Sustainability 2021, 13, 11876. [Google Scholar] [CrossRef]
- Davies, I. Development of performance-based standards for external timber cladding. Energy Procedia 2015, 78, 183–188. [Google Scholar] [CrossRef]
- Brzezicki, M. Glass protected timber façades–new sustainable façade typology. Tech. Trans. 2019, 116, 5–22. [Google Scholar] [CrossRef]
- Lehmann, S. Sustainable construction for urban infill development using engineered massive wood panel systems. Sustainability 2012, 4, 2707–2742. [Google Scholar] [CrossRef]
- Schmid, J.; Werther, N.; Klippel, M.; Frangi, A. Structural fire design-statement on the design of cross-laminated timber (CLT). Civ. Eng. Res. J. 2019, 7, 113–117. [Google Scholar] [CrossRef]
- Nunes, G.; de Melo Moura, J.D.; Güths, S.; Atem, C.; Giglio, T. Thermo-energetic performance of wooden dwellings: Benefits of cross-laminated timber in Brazilian climates. J. Build. Eng. 2020, 32, 101468. [Google Scholar] [CrossRef]
- Di Bella, A.; Mitrovic, M. Acoustic characteristics of cross-laminated timber systems. Sustainability 2020, 12, 5612. [Google Scholar] [CrossRef]
- Younis, A.; Dodoo, A. Cross-laminated timber for building construction: A life-cycle-assessment overview. J. Build. Eng. 2022, 52, 104482. [Google Scholar] [CrossRef]
- Eliassen, A.; Faanes, S.; Bohne, R. Comparative LCA of a concrete and steel apartment building and a cross laminated timber apartment building. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012017. [Google Scholar] [CrossRef]
- Game, D.; Noorvand, H.; Arce, G.; Hassan, M.M. Evaluation of Cementitious Matrices for the Development of Ultra-High Performance Engineered Cementitious Composites. In Proceedings of the Tran-SET 2021 Conference, Online, 3–4 June 2021; American Society of Civil Engineers: Reston, VA, USA, 2021; pp. 188–198. [Google Scholar]
- Sidodikromo, E.P.; Chen, Z.; Habib, M. Review of the cement-based composite ultra-high-performance concrete (UHPC). Open Civ. Eng. J. 2019, 13, 147–162. [Google Scholar] [CrossRef]
- Kishore, M.V.; Yadav, H.; Garg, A. Architectural Use of Precast Ultra High Performance Concrete. Int. J. Sci. Res. 2015, 4, 4–5. [Google Scholar]
- Von Werder, J.; Fontana, P.; Hoppe, J.; Bilgin, S.; Meng, B. Composite Façade Elements with Self-Cleaning Surface made of Ultra-High-Performance Concrete (UHPC). In Current Topics and Trends on Durability of Building Materials and Components, Proceedings of the XV Edition of the International Conference on Durability of Building Materials and Components (DBMC 2020), Barcelona, Spain, 20–23 October 2020; International Center for Numerical Methods in Engineering: Barcelona, Spain, 2020; pp. 1289–1297. [Google Scholar]
- Novotná, M.; Kostelecká, M.; Hodková, J.; Vokáč, M. Use of textile reinforced concrete–especially for Façade panels. Adv. Mater. Res. 2014, 923, 142–145. [Google Scholar] [CrossRef]
- O’Hegarty, R.; Kinnane, O.; Newell, J.; West, R. High performance, low carbon concrete for building cladding applications. J. Build. Eng. 2021, 43, 102566. [Google Scholar] [CrossRef]
- Shah, H.A.; Yuan, Q.; Photwichai, N. Use of materials to lower the cost of ultra-high-performance concrete—A review. Constr. Build. Mater. 2022, 327, 127045. [Google Scholar] [CrossRef]
- Buitelaar, P.; ApS, C. Ultra high performance concrete: Developments and applications during 25 years. In Proceedings of the Plenary Session International Symposium on UHPC, Kassel, Germany, 13–15 September 2004. [Google Scholar]
- Onyszkiewicz, J.; Sadowski, K. Proposals for the revitalization of prefabricated building Façades in terms of the principles of sustainable development and social participation. J. Build. Eng. 2022, 46, 103713. [Google Scholar] [CrossRef]
- Vahidi, E.; Malekabadi, M. GRC and sustainable building design. In Proceedings of the GRCA 2011 Congress, Istanbul, Turkey, 4–8 September 2011. [Google Scholar]
- Blackman, L. Glass fibre-reinforced cement: A progress report. Composites 1979, 10, 69–72. [Google Scholar] [CrossRef]
- Bijen, J. Glass fibre reinforced cement: Improvements by polymer addition. In Proceedings of the Materials Research Society. Annual Meeting, Boston, MA, USA, 17–18 November 1980; pp. 239–249. [Google Scholar]
- Ball, H. 25 years of forton polymer modified GRC: Reasons for its use. In Proceedings of the GRCA 2005 Congress, Hong Kong, China, 14–16 November 2005. Chapter 11. [Google Scholar]
- Bijen, J. Improved mechanical properties of glass fibre reinforced cement by polymer modification. Cem. Concr. Compos. 1990, 12, 95–101. [Google Scholar] [CrossRef]
- Sturm, M.T.; Horn, H.; Schuhen, K. Removal of microplastics from waters through agglomeration-fixation using organosilanes—Effects of polymer types, water composition and temperature. Water 2021, 13, 675. [Google Scholar] [CrossRef]
- Lello, J.C.; Camposinhos, R.S. Natural stone panels—An innovative façade system. In Proceedings of the Global Stone Congress, Alicante, Spain, 2–5 March 2010. [Google Scholar]
- Dadakhanov, F.; Sharopov, B.; Umarov, I.; Mukhtoraliyeva, M.; Hakimov, S.; Abdunazarov, A.; Kazadayev, A. Prospects of Innovative Materials Production in the Building Materials Industry. J. New Century Innov. 2022, 18, 162–167. [Google Scholar]
- Albu, D.; Lesan, A. Opportunities for rehabilitation of Façades of historic buildings in Moldova with limestone elements. Conf. Ser. Mater. Sci. Eng. 2021, 1209, 012008. [Google Scholar] [CrossRef]
- Dabous, S.A.; Ibrahim, T.; Shareef, S.; Mushtaha, E.; Alsyouf, I. Sustainable façade cladding selection for buildings in hot climates based on thermal performance and energy consumption. Results Eng. 2022, 16, 100643. [Google Scholar] [CrossRef]
- Ozkahraman, H.T.; Bolatturk, A. The use of tuff stone cladding in buildings for energy conservation. Constr. Build. Mater. 2006, 20, 435–440. [Google Scholar] [CrossRef]
- AlizadehKharazi, B.; Alvanchi, A.; Taghaddos, H. A novel building information modeling-based method for improving cost and energy performance of the building envelope. Int. J. Eng. 2020, 33, 2162–2173. [Google Scholar]
- Ferreira, C.; Silva, A.; De Brito, J.; Dias, I.; Flores-Colen, I. Definition of a condition-based model for natural stone claddings. J. Build. Eng. 2021, 33, 101643. [Google Scholar] [CrossRef]
- Vigna, I.; Bianco, L.; Goia, F.; Serra, V. Phase change materials in transparent building envelopes: A Strengths, Weakness, Opportunities and Threats (SWOT) analysis. Energies 2018, 11, 111. [Google Scholar] [CrossRef]
- Karthick, A.; Murugavel, K.K.; Ramanan, P. Performance enhancement of a building-integrated photovoltaic module using phase change material. Energy 2018, 142, 803–812. [Google Scholar] [CrossRef]
- Madhumathi, A.; Sundarraja, B. Experimental study of passive cooling of building Façade using phase change materials to increase thermal comfort in buildings in hot humid areas. Int. J. Energy Environ. 2012, 3, 739–748. [Google Scholar]
- Balocco, C.; Petrone, G. Numerical modelling for the thermal performance assessment of a semi-opaque façade with a multilayer of nano-structured and phase change materials. Buildings 2017, 7, 90. [Google Scholar] [CrossRef]
- Li, D.; Yang, R.; Arıcı, M.; Wang, B.; Tunçbilek, E.; Wu, Y.; Liu, C.; Ma, Z.; Ma, Y. Incorporating phase change materials into glazing units for building applications: Current progress and challenges. Appl. Therm. Eng. 2022, 210, 118374. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, X.; Ji, J. Hygroscopic phase change composite material—A review. J. Energy Storage 2021, 36, 102395. [Google Scholar] [CrossRef]
- Souayfane, F.; Fardoun, F.; Biwole, P.-H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016, 129, 396–431. [Google Scholar] [CrossRef]
- Gangåssæter, H.F.; Jelle, B.P.; Mofid, S.A.; Gao, T. Air-filled nanopore based high-performance thermal insulation materials. Energy Procedia 2017, 132, 231–236. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S.B. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings. Energy Build. 2014, 77, 28–39. [Google Scholar] [CrossRef]
- Simões, N.; Gonçalves, M.; Serra, C.; Resalati, S. Can vacuum insulation panels be cost-effective when applied in building façades? Build. Environ. 2021, 191, 107602. [Google Scholar] [CrossRef]
- Campbell, C.L. Durability Characterization of a High Performance Building Envelope with Vacuum Insulation Panels and Energy Recovery Ventilation. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2021. [Google Scholar]
- Boafo, F.E.; Kim, J.-H.; Ahn, J.-G.; Kim, S.-M.; Kim, J.-T.; Zhang, L. Study on thermal characteristics and electrical performance of a hybrid building integrated photovoltaic (BIPV) system combined with vacuum insulation panel (VIP). Energy Build. 2022, 277, 112574. [Google Scholar] [CrossRef]
- Peter, A.E.K.; Balasubramanian, M.; Arul Jayakumar, A.; Mukilan, P.; Aishwarya, S. A.E.K.; Balasubramanian, M.; Arul Jayakumar, A.; Mukilan, P.; Aishwarya, S. A partial replacement of cement using extract powder form of silica aerogel. In Sustainable Construction Materials: Select Proceedings of ACMM 2021; Springer: Cham, Switzerland, 2021; pp. 61–73. [Google Scholar]
- Khan, A.A.; Lin, S.; Huang, X.; Usmani, A. Façade fire hazards of bench-scale aluminum composite panel with flame-retardant core. Fire Technol. 2021, 59, 5–28. [Google Scholar] [CrossRef]
- Yılmaz, E.; Aykanat, B.; Çomak, B. Environmental life cycle assessment of rockwool filled aluminum sandwich Façade panels in Turkey. J. Build. Eng. 2022, 50, 104234. [Google Scholar] [CrossRef]
- Luong, D.L.; Truong, N.-S.; Ngo, N.-T.; Nguyen, Q.T. Enhancing Building Energy Efficiency with Aluminum Composite Material Façade: A Performance Simulation Study using Building Energy Modeling and Building Information Modeling. IOP Conf. Ser. Mater. Sci. Eng. 2023, 1289, 012040. [Google Scholar] [CrossRef]
- Kumar, N.; Soni, K.; Agarwal, R. Design and development of sodar antenna structure. Mapan 2021, 36, 785–793. [Google Scholar] [CrossRef]
- Almarzooqi, A.; Alzubaidi, A.; Alkatheeri, S. Fire hazards by aluminum composite cladding in high-rise buildings. In Proceedings of the 5th European International Conference on Industrial Engineering and Operations Management, Rome, Italy, 26–28 July 2022. [Google Scholar]
- Kamatchi, R.M.; Muraliraja, R.; Vijay, J.; Bharathi, C.S.; Eswar, M.K.; Padmanabhan, S. Synthesis of Newly Formulated Aluminium Composite through Powder Metallurgy using Waste Bone Material. E3S Web Conf. 2023, 399, 03016. [Google Scholar] [CrossRef]
- Sharma, A.K.; Bhattacharya, B. Engineering design of sustainable aluminium composite material with rice husk core. Int. J. Sustain. Eng. 2021, 14, 1372–1385. [Google Scholar] [CrossRef]
- Australian Building Code Board. National Construction Code; Australian Building Code Board: Canbera, Australia, 2020. [Google Scholar]
- AS/NZS 4859-2018; Thermal Insulation Materials for Buildings Design. Standards Australia: Sydney, Australia, 2018.
- Ambrose, M.; James, M.; Law, A.; Osman, P.; White, S. The Evaluation of the 5-Star Energy Efficiency Standard for Residential Buildings; Commonwealth of Australia: Canberra, Australia, 2013. [Google Scholar]
- Stephan, A.; Jensen, C.A.; Crawford, R.H. Improving the life cycle energy performance of apartment units through façade design. Procedia Eng. 2017, 196, 1003–1010. [Google Scholar] [CrossRef]
- AS/NZS 4284:2008; Testing of Building Facades. Standards Australia: Sydney, Australia, 2008.
- Wang, Y.; He, F.; Lv, Z.; Yang, W.; Wang, Q. Experimental investigations on thermal performance of spray cooling double skin façade in hot humid climate region. Energy Build. 2022, 277, 112605. [Google Scholar] [CrossRef]
- Yang, S.; Cannavale, A.; Di Carlo, A.; Prasad, D.; Sproul, A.; Fiorito, F. Performance assessment of BIPV/T double-skin façade for various climate zones in Australia: Effects on energy consumption. Sol. Energy 2020, 199, 377–399. [Google Scholar] [CrossRef]
- Shan, R.; Junghans, L. “Adaptive radiation” optimization for climate adaptive building Façade design strategy. Build. Simul. 2018, 11, 269–279. [Google Scholar] [CrossRef]
- Kuru, A.; Fiorito, F.; Oldfield, P.; Bonser, S.P. Multi-functional biomimetic adaptive façades: A case study. In Proceedings of the FAÇADE 2018—Final Conference of COST TU1403 “Adaptive Façades Network”, Lucerne, Switzerland, 26–27 November 2018. [Google Scholar]
- Biloria, N.; Makki, M.; Abdollahzadeh, N. Multi-performative façade systems: The case of real-time adaptive BIPV shading systems to enhance energy generation potential and visual comfort. Front. Built Environ. 2023, 9, 1119696. [Google Scholar] [CrossRef]
- Hasan, M.M.; Karim, A.; Brown, R.; Perkins, M.; Joyce, D. Estimation of energy saving of commercial building by living wall and green Façade in sub-tropical climate of Australia. In Proceedings of the 7th International Green Energy Conference and the 1st DNL Conference on Clean Energy (IGEC-DCCE), Dalian, China, 28–30 May 2012; pp. 672–686. [Google Scholar]
- Giordano, R.; Montacchini, E.; Tedesco, S.; Perone, A. Living wall systems: A technical standard proposal. Energy Procedia 2017, 111, 298–307. [Google Scholar] [CrossRef]
- Alam, M.; Jamil, H.; Sanjayan, J.; Wilson, J. Energy saving potential of phase change materials in major Australian cities. Energy Build. 2014, 78, 192–201. [Google Scholar] [CrossRef]
- Acuña-Díaz, O.; Al-Halawani, N.; Alonso-Barneto, M.; Ashirbekov, A.; Ruiz-Flores, C.; Rojas-Solórzano, L. Economic viability of phase-changing materials in residential buildings–A case study in Alice Springs, Australia. Energy Build. 2022, 254, 111612. [Google Scholar] [CrossRef]
- Lehmann, S. Developing a prefabricated low-carbon construction system using cross-laminated timber (CLT) panels for multistorey inner-city infill housing in Australia. J. Green Build. 2012, 7, 131–150. [Google Scholar] [CrossRef]
- Wasim, M.; Oliveira, O.; Ngo, T.D. Structural performance of prefabricated glass fibre concrete floor panel versus compressed fibre cement floor panel for an optimised volumetric module—A case study. J. Build. Eng. 2022, 48, 103819. [Google Scholar] [CrossRef]
- Rickard, C. GRC developments in Australia. In Proceedings of the GRCA Congress 2015, Dubai, United Arab Emirates, 19–21 April 2015. [Google Scholar]
- Jalali, Z.; Noorzai, E.; Heidari, S. Design and optimization of form and Façade of an office building using the genetic algorithm. Sci. Technol. Built Environ. 2020, 26, 128–140. [Google Scholar] [CrossRef]
- Perini, K.; Ottelé, M.; Haas, E.; Raiteri, R. Vertical greening systems, a process tree for green façades and living walls. Urban Ecosyst. 2013, 16, 265–277. [Google Scholar] [CrossRef]
- Sandberg, K.; Orskaug, T.; Andersson, A. Prefabricated wood elements for sustainable renovation of residential building façades. Energy Procedia 2016, 96, 756–767. [Google Scholar] [CrossRef]
- Shi, L.; Pouramini, S. Adaptive façade for building energy efficiency improvement by arithmetical optimization algorithm. Concurr. Comput. Pract. Exp. 2022, 34, e7152. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Iovane, T.; Mastellone, M.; Mauro, G.M. The evolution of building energy retrofit via double-skin and responsive façades: A review. Sol. Energy 2021, 224, 703–717. [Google Scholar] [CrossRef]
- Theodosiou, T.; Tsikaloudaki, K.; Tsoka, S.; Chastas, P. Thermal bridging problems on advanced cladding systems and smart building Façades. J. Clean. Prod. 2019, 214, 62–69. [Google Scholar] [CrossRef]
- Silva, A.; De Brito, J.; Gaspar, P.L. Methodologies for Service Life Prediction of Buildings: With a Focus on Façade Claddings; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Prieto, A.; Knaack, U.; Auer, T.; Klein, T. Solar façades-Main barriers for widespread façade integration of solar technologies. J. Façade Des. Eng. 2017, 5, 51–62. [Google Scholar]
- Wang, P.; Liu, Z.; Zhang, L. Sustainability of compact cities: A review of Inter-Building Effect on building energy and solar energy use. Sustain. Cities Soc. 2021, 72, 103035. [Google Scholar] [CrossRef]
- Attia, S. Evaluation of adaptive Façades: The case study of Al Bahr Towers in the UAE. QScience Connect 2017, 2017, 6. [Google Scholar]
- Oral, G.K.; Yener, A.K.; Bayazit, N.T. Building envelope design with the objective to ensure thermal, visual and acoustic comfort conditions. Build. Environ. 2004, 39, 281–287. [Google Scholar] [CrossRef]
- Aksamija, A. Design methods for sustainable, high-performance building Façades. Adv. Build. Energy Res. 2016, 10, 240–262. [Google Scholar] [CrossRef]
- Moon, K.S. Structural design of double skin Façades as damping devices for tall buildings. Procedia Eng. 2011, 14, 1351–1358. [Google Scholar] [CrossRef]
- Ngo, T.; Ding, C.; Lumantarna, R.; Ghazlan, A.; Zobec, M. Structural performance of double-skin façade systems subjected to blast pressures. J. Struct. Eng. 2015, 141, 04015064. [Google Scholar] [CrossRef]
- Poirazis, H. Double Skin Façades for Office Buildings; Report EBD; Lund Institute of Technology: Lund, Sweeden, 2004. [Google Scholar]
- Zhou, J.; Chen, Y. A review on applying ventilated double-skin Façade to buildings in hot-summer and cold-winter zone in China. Renew. Sustain. Energy Rev. 2010, 14, 1321–1328. [Google Scholar] [CrossRef]
- Shameri, M.; Alghoul, M.; Sopian, K.; Zain, M.F.M.; Elayeb, O. Perspectives of double skin façade systems in buildings and energy saving. Renew. Sustain. Energy Rev. 2011, 15, 1468–1475. [Google Scholar] [CrossRef]
- Hensen, J.; Bartak, M.; Drkal, F. Modeling and simulation of a double-skin Façade system. ASHRAE Trans. 2002, 108, 1251–1259. [Google Scholar]
- Hay, R.; Ostertag, C.P. Life cycle assessment (LCA) of double-skin façade (DSF) system with fiber-reinforced concrete for sustainable and energy-efficient buildings in the tropics. Build. Environ. 2018, 142, 327–341. [Google Scholar] [CrossRef]
- Zomorodian, Z.S.; Tahsildoost, M. Energy and carbon analysis of double skin façades in the hot and dry climate. J. Clean. Prod. 2018, 197, 85–96. [Google Scholar] [CrossRef]
- Yellamraju, V. Evaluation and Design of Double-Skin Façades for Office Buildings in Hot Climates. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2004. [Google Scholar]
- Addo-Bankas, O.; Zhao, Y.; Vymazal, J.; Yuan, Y.; Fu, J.; Wei, T. Green walls: A form of constructed wetland in green buildings. Ecol. Eng. 2021, 169, 106321. [Google Scholar] [CrossRef]
- Medl, A.; Stangl, R.; Florineth, F. Vertical greening systems—A review on recent technologies and research advancement. Build. Environ. 2017, 125, 227–239. [Google Scholar] [CrossRef]
- Ikudayisi, A.E.; Chan, A.P.; Darko, A.; Adegun, O.B. Integrated design process of green building projects: A review towards assessment metrics and conceptual framework. J. Build. Eng. 2022, 50, 104180. [Google Scholar] [CrossRef]
- Rakhshandehroo, M.; Mohd Yusof, M.J.; Arabi, R. Living wall (vertical greening): Benefits and Threats. Appl. Mech. Mater. 2015, 747, 16–19. [Google Scholar] [CrossRef]
- Teotónio, I.; Silva, C.M.; Cruz, C.O. Economics of green roofs and green walls: A literature review. Sustain. Cities Soc. 2021, 69, 102781. [Google Scholar] [CrossRef]
- Natarajan, M.; Rahimi, M.; Sen, S.; Mackenzie, N.; Imanbayev, Y. Living wall systems: Evaluating life-cycle energy, water and carbon impacts. Urban Ecosyst. 2015, 18, 1–11. [Google Scholar] [CrossRef]
- Olusoga, O.; Adegun, O. Professionals’ perception studies of vertical greening systems in Lagos, Nigeria. Int. J. Build. Pathol. Adapt. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Voigt, M.; Roth, D.; Binz, H. Challenges with adaptive Façades-a life cycle perspective. In Proceedings of the 16th Advanced Building Skins Conference & Expo, Bern, Switzerland, 21–22 October 2021; pp. 459–468. [Google Scholar]
- Borschewski, D.; Voigt, M.P.; Albrecht, S.; Roth, D.; Kreimeyer, M.; Leistner, P. Why are adaptive Façades not widely used in practice? Identifying ecological and economical benefits with life cycle assessment. Build. Environ. 2023, 232, 110069. [Google Scholar] [CrossRef]
- Casini, M. Smart windows for energy efficiency of buildings. In Proceedings of the Second International Conference on Advances in Civil, Structural, and Environmental Engineering, Zurich, Switzerland, 25–26 October 2014. [Google Scholar]
- Borkowski, E.; Luna-Navarro, A.; Michael, M.; Overend, M.; Rovas, D.; Raslan, R. Empirical validation of co-simulation models for adaptive building envelopes. J. Façade Des. Eng. 2022, 10, 119–154. [Google Scholar] [CrossRef]
- Sultan, S.M.; Efzan, M.E. Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications. Sol. Energy 2018, 173, 939–954. [Google Scholar] [CrossRef]
- Orhon, A.V. 0171—A review on adaptive photovoltaic Façades. In Proceedings of the Solar TR2016 International Solar Conference & Exhibition, Istanbul, Turkey, 6–8 December 2016. [Google Scholar]
- Fiorito, F.; Sauchelli, M.; Arroyo, D.; Pesenti, M.; Imperadori, M.; Masera, G.; Ranzi, G. Shape morphing solar shadings: A review. Renew. Sustain. Energy Rev. 2016, 55, 863–884. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Recent advancement in BIPV product technologies: A review. Energy Build. 2017, 140, 188–195. [Google Scholar] [CrossRef]
- Abdelhakim, M.; Kandar, M.Z.; Lim, Y.-W. Experimental investigation of overall energy performance in Algerian office building integrated photovoltaic window under semi-arid climate. J. Daylighting 2019, 6, 23–41. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, X.; Shen, J.; Wu, Y.; Connelly, K.; Yang, T.; Tang, L.; Xiao, M.; Wei, Y.; Jiang, K. A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules. Renew. Sustain. Energy Rev. 2017, 75, 839–854. [Google Scholar] [CrossRef]
- Attoye, D.E.; Tabet Aoul, K.A.; Hassan, A. A review on building integrated photovoltaic façade customization potentials. Sustainability 2017, 9, 2287. [Google Scholar] [CrossRef]
Keyword Combinations | Sources | |||
---|---|---|---|---|
Science Direct | ICE | ASCE | Springer | |
‘façade system AND energy conservation’ | 4668 | 87 | 215 | 4041 |
‘façade system AND weather tightness’ | 1145 | 53 | 104 | 438 |
‘façade system AND efficiency improvement’ | 8329 | 298 | 856 | 3058 |
‘façade system AND performance’ | 18,117 | 497 | 1678 | 8579 |
‘façade system AND location AND environmental conditions’ | 9208 | 329 | 1051 | 4395 |
‘façade system AND structural design’ | 8523 | 477 | 1617 | 6200 |
‘façade system AND constructability’ | 10,044 | 611 | 1756 | 116 |
‘façade system AND deformation AND deterioration’ | 812 | 35 | 107 | 560 |
‘façade system AND natural hazard AND resistance’ | 893 | 48 | 241 | 1084 |
‘façade material AND limitations’ | 8518 | 529 | 1369 | 5191 |
‘façade system AND sustainable material’ | 9621 | 299 | 712 | 4216 |
‘photovoltaic façade material’ | 4099 | 41 | 117 | 910 |
‘responsive shading AND geometry façade material’ | 447 | 18 | 37 | 415 |
‘façade system AND cost AND economic’ | 7294 | 258 | 592 | 5751 |
‘façade system AND inspection AND maintenance’ | 1441 | 157 | 429 | 1384 |
‘façade system AND green concept’ | 4856 | 140 | 307 | 4328 |
‘adaptive façade system’ | 9531 | 246 | 567 | 2056 |
‘façade system AND building energy system’ | 16,679 | 333 | 1012 | 6935 |
‘façade system AND building information modelling’ | 12,969 | 355 | 1096 | 8676 |
‘façade system AND building monitoring system’ | 8676 | 278 | 663 | 4944 |
Façades | Application | Properties | Construction Methods | Materials |
---|---|---|---|---|
Masonry Brick Façade in Sunshine, Australia (Photo courtesy of D.F) | It is commonly used in low-cost industrial buildings and prestige structures [47]. | Economic and require minimum repair costs [46], withstand various weather conditions [48], Variety of textures, colours and patterns [49], and used for both load-bearing and non-load-bearing applications [46]. | Composite construction method with individual units (bricks, stones) overlapping in horizontal layers bonded with mortar [46]. | Bricks-Clay, Calcium Silicate, Concrete [46], Blocks-Concrete, Stone [49] |
Profiled Metal Systems Colorbond Façade in Epping, Australia (Photo courtesy of D.F) | It is traditionally employed in agricultural and industrial structures. It has been extended to retail, commercial, and school buildings [46]. | Wider choice of features and colours [46], different profile shapes [50], lightweight compared with other Façades [51] It is a relatively cheap form of cladding compared with others [52]. | Installed on battens or studs spanning on structural columns [53]. Panels will be fixed only on the edges. Composite panels can be achieved with an insulation layer separating two cladding layers. Thermal movement between the panels should be allowed in joints [46]. | Aluminium or galvanised steel single skins, double skin of metal sheeting with insulation, and composite metal panels with polyurethane or polyisocyanurate foams [46]. |
Small Cladding Panels Fiber cement sheet Façade in Sunshine, Australia (Photo courtesy of D.F) | Commonly used in commercial structures [46]. | Cost-effective and less maintenance requirements [54], lightweight and achieve complex colours or textures [55]. It can be used with sealed joints or as rainscreen panels. | The panels will be built on supporting rails with a backing wall. Panels will be fixed to the rails using screws, reverts or structural adhesive [46]. | Fibre cement sheets including cellulose and glass fibres, fibre-reinforced calcium silicate, resin laminate, glass-reinforced polyester Aluminium and steel panels, polyethylene-coated composite aluminium panels, thin stone panels made of granites, marbles, hard limestones, tiles [46]. |
Large Cladding Panels GRC façade in Werribee, Australia (Photo courtesy of D.F) | Mainly in public and institutional buildings [56]. | Panels have the strength to bridge between separate places on the main building structure panels [57]. Have higher acoustic performance [58]. | Panels are typically supported by main structural members with brackets or cleats inserted into the panel [59]. Packing shims can be used to provide vertical adjustment, while horizontal adjustment will be achieved through adjustable bolts. Panel-to-panel connections are either weather sealed with wet applied sealants or left exposed [46], | Glass fibre-reinforced polyester, glass fibre-reinforced cement, composite metal panels and reinforced precast concrete panels [46]. |
Curtain Walling Curtain Wall Façade in Burwood, Australia (Photo courtesy of D.F) | They are typically used in high-rise construction—shopping centres, office buildings and educational centres [60,61]. | They are used in high-end commercial structures [46], Lightweight [62], smaller wall footprint [63], structural flexibility [64] | Panels are fixed to the metal framing and typically span between floors [65]. The curtain walls are supported with brackets fixed to the metal framing and the main structure [66]. Adjustments are typically provided in the brackets for vertical and horizontal movement [67]. | Aluminium or steel framing, stone, glass, metal, or thin stone panels [68] |
Fully Supported Metal Sheeting Copper sheet Façade in Christchurch, New Zealand | Normally used on prestige buildings [69]. | Expensive [46], extremely durable façades [70]. | Sheets are typically required to support plywood boards [46] entirely. | Copper and lead sheets [46]. |
Technological Advancement | Structural Design and Construction | Performance | Economic Aspects | Environmental Aspects | Social Aspects |
---|---|---|---|---|---|
Double Skin Façade | |||||
Green Wall Systems |
|
|
| ||
Adaptive Façade | |||||
Photovoltaic Façade |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernando, D.; Navaratnam, S.; Rajeev, P.; Sanjayan, J. Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice. Sustainability 2023, 15, 14319. https://doi.org/10.3390/su151914319
Fernando D, Navaratnam S, Rajeev P, Sanjayan J. Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice. Sustainability. 2023; 15(19):14319. https://doi.org/10.3390/su151914319
Chicago/Turabian StyleFernando, Dushan, Satheeskumar Navaratnam, Pathmanathan Rajeev, and Jay Sanjayan. 2023. "Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice" Sustainability 15, no. 19: 14319. https://doi.org/10.3390/su151914319
APA StyleFernando, D., Navaratnam, S., Rajeev, P., & Sanjayan, J. (2023). Study of Technological Advancement and Challenges of Façade System for Sustainable Building: Current Design Practice. Sustainability, 15(19), 14319. https://doi.org/10.3390/su151914319