A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency
Abstract
:1. Introduction
- The number of neural network hidden units used to predict SOFC system efficiency is adaptive.
- This method is used to study the heat efficiency (HE) and electrical efficiency (EE) of an SOFC system. Compared with dendrite net (DN), back propagation (BP), support vector machine (SVM), random forest (RF), genetic algorithm-radial basis function (GA-RBF), artificial neural network (ANN), radial basis function (RBF), genetic algorithm-back propagation (GA-BP), and least squares-support vector machine (LS-SVM), the prediction accuracy of the used method is better. In addition, the system efficiency optimization direction is also determined.
- The SOFC system load tracking process is studied. Compared with BP, genetic algorithm-least squares support vector regression (GA-LSSVR), support vector regression (SVR), DN, long short-term memory (LSTM), stacked long-short term memory (S-LSTM), sparse pseudo-input Gaussian process (SPGP), stack-artificial neural network (stk-ANN), and extreme learning machine (ELM), the DAG method has higher prediction accuracy. Based on the results of the two experiments, it is found that in terms of predicting thermoelectric efficiency, the comprehensive MAE and RMSE values are both lower than 0.014, significantly better than other methods. In addition, through SOFC system samples analysis, optimizing the operating point will help improve system thermoelectric efficiency.
2. Problem Formulation and Methodology
2.1. Problem of SOFC System Efficiency Prediction
2.2. DAG Method
2.2.1. Traditional DN Method
2.2.2. AMSG Algorithm
2.2.3. DAG Method Operation Process
2.3. Thermoelectric Data Collection of the SOFC System
3. Results and Discussion
3.1. SOFC System Thermoelectric Efficiency Predictive Modeling Result and Analysis
3.2. Second Verification of Proposed Method Effectiveness for the SOFC System
3.3. Thermoelectric Efficiency Analysis of the SOFC System
3.3.1. Efficiency Analysis
3.3.2. System Efficiency Improvement and Carbon Emission Reduction Measures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AMSG | Adaptive mean square gradient |
LS-SVR | Least squares support vector regression |
ANN | Artificial neural networks |
LSTM | Long short-term memory |
BP | Back propagation |
MAE | Mean absolute error |
DN | Dendrite net |
RBF | Radial basis function |
DAG | Dendrite net based on the AMSG |
RF | Random forest |
EE | Electrical efficiency |
RMSE | Root mean square error |
ELM | Extreme learning machine |
SPGP | Sparse pseudo-input Gaussian process |
GA | Genetic algorithm |
stk-ANN | Stack-artificial neural network |
HE | Heat efficiency |
SVM | Support vector machine |
LS | Least squares |
SVR | Support vector regression |
X | Input value after standardization |
Y | Output value after standardization |
x | Input value before standardization |
y | Output value before standardization |
T | DN input or output |
W | Weight matrix or tuning neural network stability |
k | The number of relative units |
l | The number of relative units |
Z | Transition matrix |
Learning rate | |
Model output predictive value | |
m | The number of set batches in the training process |
Degradation rate | |
t | Iteration times or operate time |
Iteration weight marix | |
Adaptive gradient value | |
Predictive value | |
V | Adaptive gradient parameter or stack voltage |
Setting parameter | |
LHV | Low heat value |
Gas flow rate | |
I | Current |
N | The number of cells |
Volume of water | |
C | Specific heat capacity |
ℑ | Conversion factor |
Change rate | |
Hadamard product |
References
- Shang, Z.; Hossain, M.M.; Wycisk, R.; Pintauro, P.N. Poly (phenylene sulfonic acid)-expanded polytetrafluoroethylene composite membrane for low relative humidity operation in hydrogen fuel cells. J. Power Sources 2022, 535, 231375. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Guan, D.; Xu, M.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Xu, Y.W.; Li, D.; Zheng, Y.; Li, J.; Sorrentino, M.; Yu, Y.; Wan, X.; Hu, L.; Zou, C.; et al. Afterburner temperature safety assessment for solid oxide fuel cell system based on computational fluid dynamics. J. Power Sources 2021, 496, 229837. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.; Abdelkareem, M.A.; Maghrabie, H.M.; Sayed, E.T. Fuzzy Modelling and Optimization of Yeast-MFC for Simultaneous Wastewater Treatment and Electrical Energy Production. Sustainability 2023, 15, 1878. [Google Scholar] [CrossRef]
- Corigliano, O.; Pagnotta, L.; Fragiacomo, P. On the technology of solid oxide fuel cell (SOFC) energy systems for stationary power generation: A review. Sustainability 2022, 14, 15276. [Google Scholar] [CrossRef]
- Wang, Q.; Wei, H.H.; Xu, Q. A solid oxide fuel cell (SOFC)-based biogas-from-waste generation system for residential buildings in China: A feasibility study. Sustainability 2018, 10, 2395. [Google Scholar] [CrossRef]
- Slater, J.; Chronopoulos, T.; Panesar, R.; Fitzgerald, F.; Garcia, M. Review and techno-economic assessment of fuel cell technologies with CO2 capture. Int. J. Greenh. Gas Control 2019, 91, 102818. [Google Scholar] [CrossRef]
- Wang, F.; Deng, S.; Zhang, H.; Wang, J.; Zhao, J.; Miao, H.; Yuan, J.; Yan, J. A comprehensive review on high-temperature fuel cells with carbon capture. Appl. Energy 2020, 275, 115342. [Google Scholar] [CrossRef]
- Huo, H.; Xu, K.; Cui, L.; Zhang, H.; Xu, J.; Kuang, X. Temperature gradient control of the solid oxide fuel cell under variable load. ACS Omega 2021, 6, 27610–27619. [Google Scholar] [CrossRef]
- Wu, Z.; Tan, P.; Chen, B.; Cai, W.; Chen, M.; Xu, X.; Zhang, Z.; Ni, M. Dynamic modeling and operation strategy of an NG-fueled SOFC-WGS-TSA-PEMFC hybrid energy conversion system for fuel cell vehicle by using MATLAB/SIMULINK. Energy 2019, 175, 567–579. [Google Scholar] [CrossRef]
- Huo, W.; Li, W.; Zhang, Z.; Sun, C.; Zhou, F.; Gong, G. Performance prediction of proton-exchange membrane fuel cell based on convolutional neural network and random forest feature selection. Energy Convers. Manag. 2021, 243, 114367. [Google Scholar] [CrossRef]
- Wilberforce, T.; Olabi, A. Proton exchange membrane fuel cell performance prediction using artificial neural network. Int. J. Hydrogen Energy 2021, 46, 6037–6050. [Google Scholar] [CrossRef]
- Chen, K.; Laghrouche, S.; Djerdir, A. Degradation prediction of proton exchange membrane fuel cell based on grey neural network model and particle swarm optimization. Energy Convers. Manag. 2019, 195, 810–818. [Google Scholar] [CrossRef]
- Xie, R.; Ma, R.; Pu, S.; Xu, L.; Zhao, D.; Huangfu, Y. Prognostic for fuel cell based on particle filter and recurrent neural network fusion structure. Energy AI 2020, 2, 100017. [Google Scholar] [CrossRef]
- Buchaniec, S.; Gnatowski, M.; Hasegawa, H.; Brus, G. A Surrogate Model of the Butler-Volmer Equation for the Prediction of Thermodynamic Losses of Solid Oxide Fuel Cell Electrode. Energies 2023, 16, 5651. [Google Scholar] [CrossRef]
- Subotić, V.; Eibl, M.; Hochenauer, C. Artificial intelligence for time-efficient prediction and optimization of solid oxide fuel cell performances. Energy Convers. Manag. 2021, 230, 113764. [Google Scholar] [CrossRef]
- Ba, S.; Xia, D.; Gibbons, E.M. Model identification and strategy application for Solid Oxide Fuel Cell using Rotor Hopfield Neural Network based on a novel optimization method. Int. J. Hydrogen Energy 2020, 45, 27694–27704. [Google Scholar] [CrossRef]
- Gnatowski, M.; Buchaniec, S.; Brus, G. The prediction of the polarization curves of a solid oxide fuel cell anode with an artificial neural network supported numerical simulation. Int. J. Hydrogen Energy 2023, 48, 11823–11830. [Google Scholar] [CrossRef]
- Yan, Z.; He, A.; Hara, S.; Shikazono, N. Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: Microstructure optimization via artificial neural networks and multi-objective genetic algorithms. Energy Convers. Manag. 2019, 198, 111916. [Google Scholar] [CrossRef]
- Brus, G. Overcoming a recent impasse in the application of artificial neural networks as solid oxide fuel cells simulator with computational topology. Energy AI 2023, 14, 100291. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Tan, P.; Chen, B.; Wu, Z.; Zhang, Y.; Wang, H.; Xuan, J.; Ni, M. Towards online optimisation of solid oxide fuel cell performance: Combining deep learning with multi-physics simulation. Energy AI 2020, 1, 100003. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Pham, T.Q.D.; Tanveer, M.; Khan, H.; Park, J.W.; Park, C.W.; Kim, G.M. Deep learning–based optimization of a microfluidic membraneless fuel cell for maximum power density via data-driven three-dimensional multiphysics simulation. Bioresour. Technol. 2022, 348, 126794. [Google Scholar] [CrossRef] [PubMed]
- Liu, G. It may be time to perfect the neuron of artificial neural network. Preprints 2020, 2020060175. [Google Scholar]
- Iiduka, H. Appropriate learning rates of adaptive learning rate optimization algorithms for training deep neural networks. IEEE Trans. Cybern. 2021, 52, 13250–13261. [Google Scholar] [CrossRef] [PubMed]
- Iiduka, H. ε-Approximation of Adaptive Leaning Rate Optimization Algorithms for Constrained Nonconvex Stochastic Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2022; early access. [Google Scholar] [CrossRef]
- Xiao, Y.; Pun, C.M.; Liu, B. Crafting adversarial example with adaptive root mean square gradient on deep neural networks. Neurocomputing 2020, 389, 179–195. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J. Dendrite net: A white-box module for classification, regression, and system identification. IEEE Trans. Cybern. 2021, 52, 13774–13787. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Xu, Y.W.; Xue, T.; Zhao, D.Q.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment. Appl. Energy 2019, 248, 126–140. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.; Yang, Z. Parameter identification of DC–DC converter based on dendrite net under fluctuating input voltages. IET Power Electron. 2023, 16, 2076–2090. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, F. Effective neural network training with a new weighting mechanism-based optimization algorithm. IEEE Access 2019, 7, 72403–72410. [Google Scholar] [CrossRef]
- Han, Y.; Li, J.; Lou, X.; Fan, C.; Geng, Z. Energy saving of buildings for reducing carbon dioxide emissions using novel dendrite net integrated adaptive mean square gradient. Appl. Energy 2022, 309, 118409. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE). Geosci. Model Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar]
- Zhang, L.; Li, X.; Jiang, J.; Li, S.; Yang, J.; Li, J. Dynamic modeling and analysis of a 5-kW solid oxide fuel cell system from the perspectives of cooperative control of thermal safety and high efficiency. Int. J. Hydrogen Energy 2015, 40, 456–476. [Google Scholar] [CrossRef]
- Wu, X.L.; Xu, Y.W.; Zhao, D.Q.; Zhong, X.B.; Li, D.; Jiang, J.; Deng, Z.; Fu, X.; Li, X. Extended-range electric vehicle-oriented thermoelectric surge control of a solid oxide fuel cell system. Appl. Energy 2020, 263, 114628. [Google Scholar] [CrossRef]
- Song, S.; Xiong, X.; Wu, X.; Xue, Z. Modeling the SOFC by BP neural network algorithm. Int. J. Hydrogen Energy 2021, 46, 20065–20077. [Google Scholar] [CrossRef]
- Wu, X.J.; Zhu, X.J.; Cao, G.Y.; Tu, H.Y. Predictive control of SOFC based on a GA-RBF neural network model. J. Power Sources 2008, 179, 232–239. [Google Scholar] [CrossRef]
- Wang, Y.; Qing, D. Model predictive control of nonlinear system based on GA-RBP neural network and improved gradient descent method. Complexity 2021, 2021, 6622149. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, J.; Qin, H.; Li, X.; Li, J. Machine learning based soft sensor and long-term calibration scheme: A solid oxide fuel cell system case. Int. J. Hydrogen Energy 2021, 46, 17322–17342. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, X.L.; Zhao, D.; Xu, Y.W.; Wang, B.; Zu, Y.; Li, D.; Jiang, J.; Jiang, C.; Fu, X.; et al. Data-driven fault diagnosis method for the safe and stable operation of solid oxide fuel cells system. J. Power Sources 2021, 490, 229561. [Google Scholar] [CrossRef]
- Yang, B.; Guo, Z.; Yang, Y.; Chen, Y.; Zhang, R.; Su, K.; Shu, H.; Yu, T.; Zhang, X. Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells. Appl. Energy 2021, 303, 117630. [Google Scholar] [CrossRef]
- Huo, H.B.; Ji, Y.; Zhu, X.J.; Kuang, X.H.; Liu, Y.Q. Control-oriented dynamic identification modeling of a planar SOFC stack based on genetic algorithm-least squares support vector regression. J. Zhejiang Univ. Sci. A 2014, 15, 829–839. [Google Scholar] [CrossRef]
- Legala, A.; Zhao, J.; Li, X. Machine Learning Modeling for Proton Exchange Membrane Fuel Cell Performance. Energy AI 2022, 10, 100183. [Google Scholar] [CrossRef]
- Wang, F.K.; Cheng, X.B.; Hsiao, K.C. Stacked long short-term memory model for proton exchange membrane fuel cell systems degradation. J. Power Sources 2020, 448, 227591. [Google Scholar] [CrossRef]
- Deng, H.; Hu, W.; Cao, D.; Chen, W.; Huang, Q.; Chen, Z.; Blaabjerg, F. Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression. Energy 2022, 244, 122569. [Google Scholar] [CrossRef]
- Fisher, O.; Watson, N.J.; Porcu, L.; Bacon, D.; Rigley, M.; Gomes, R.L. Data-driven modelling of bioprocesses: Data volume, variability, and visualisation for an industrial bioprocess. Biochem. Eng. J. 2022, 185, 108499. [Google Scholar] [CrossRef]
Key Parameters | ||
---|---|---|
Model parameters | Number of inputs | 4 |
Number of outputs | 2 | |
0.9 | ||
0.999 | ||
0.01 | ||
0.0001 | ||
ℑ | 0.278 L·(mol·min−1) | |
C | 4.2 KJ/(kg·°C) | |
Experimental parameters | The number of cells | 24 |
Effictive working area | 169 cm2 | |
Actual size | 225 cm2 | |
Duration of operation (Time 1) | 682 h | |
Duration of operation (Time 2) | 1099 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wu, X.; Xu, Y.; Cheng, Y.; Li, X. A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency. Sustainability 2023, 15, 14402. https://doi.org/10.3390/su151914402
Wu Y, Wu X, Xu Y, Cheng Y, Li X. A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency. Sustainability. 2023; 15(19):14402. https://doi.org/10.3390/su151914402
Chicago/Turabian StyleWu, Yaping, Xiaolong Wu, Yuanwu Xu, Yongjun Cheng, and Xi Li. 2023. "A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency" Sustainability 15, no. 19: 14402. https://doi.org/10.3390/su151914402
APA StyleWu, Y., Wu, X., Xu, Y., Cheng, Y., & Li, X. (2023). A Novel Adaptive Neural Network-Based Thermoelectric Parameter Prediction Method for Enhancing Solid Oxide Fuel Cell System Efficiency. Sustainability, 15(19), 14402. https://doi.org/10.3390/su151914402