Reference Framework Based on a Two-Stage Strategy for Sizing and Operational Management in Electrical Microgrid Planning
Abstract
:1. Introduction
1.1. Background and Motivation
1.2. Literature Review
- Compared to existing studies on microgrid planning, where the determination of resource capacity is based only on demand requirements and on partial and specific analyses of the system, from a technical, economic, or technical-economic point of view, without revealing the influence of other dimensions of impact, this study presents a comprehensive and multi-dimensional approach to the analysis of microgrid solution alternatives, considering technical, economic, environmental, and social aspects.
- The proposed two-stage strategy addresses the strategic planning of microgrids by analyzing and evaluating various solution alternatives under different operating conditions. In each scenario, possible hybrid configurations are modeled, optimized, and compared to make informed decisions on each identified action, considering the expected costs/benefits and resources involved.
- The research approach and results presented align with the initiatives of the National Energy Plan [5] and the United Nations Sustainable Development Goal 7 [4]. Therefore, they can be considered as a preliminary reference point for stakeholders, the energy industry, and policymakers when:
- ○
- Determining the “best” local context hybrid electrification option among a set of feasible alternatives to achieve a modern and sustainable energy service.
- ○
- Creating a priority investment plan to promote the adoption of renewable energies in Colombia through systems such as micro-grids. This planning framework can be adapted and applied in other regions with different generation conditions and energy needs, especially in developing countries with low access to electricity.
2. Framework for Microgrid Planning
2.1. Mathematical Models of Generation Assets
2.2. Two-Stage Planning Strategy
2.3. Multi-Objective Optimization Model
2.4. Operational Management of the Microgrid
- If , the generation from renewable sources is not enough to cover the demand. In this scenario, the storage system acts according to its state of charge conditions (), to cover the deficit. Once the discharge is completed, the is updated. The diesel generator is used if the energy deficit exceeds the available storage capacity. If the diesel generator cannot cover the deficit, we consider it an unmet load.
- If , the generation from renewable sources is sufficient to meet demand fully. In this case, the energy storage system will not operate, nor will the diesel units be used.
- If , the generation from renewable sources exceeds demand. In this scenario, the energy storage system is used to absorb the surplus, provided its reserve capacity is sufficient (). If there is still a surplus of energy left after fully charging the storage system, it is registered as lost energy.
2.5. Dimensions of Analysis and Performance Criteria
2.5.1. Technical Dimension
2.5.2. Economic Dimension
2.5.3. Environmental Dimension
2.5.4. Social Dimension
3. Results
3.1. Case Study
3.2. Technical and Economic Conditions
3.3. Analysis of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comisión Económica para América Latina y el Caribe (CEPAL). La Agenda 2030 para el Desarrollo Sostenible en el Nuevo Contexto Mundial y Regional: Escenarios y Proyecciones en la Presente Crisis; CEPAL: Santiago, Chile, 2020. [Google Scholar]
- International Energy Agency (IEA). World Energy Outlook 2021; IEA: Paris, France, 2021. [Google Scholar]
- Jayachandran, M.; Gatla, R.K.; Rao, K.P.; Rao, G.S.; Mohammed, S.; Milyani, A.H.; Azhari, A.A.; Kalaiarasy, C.; Geetha, S. Challenges in Achieving Sustainable Development Goal 7: Affordable and Clean Energy in Light of Nascent Technologies. Sustain. Energy Technol. Assess. 2022, 53, 102692. [Google Scholar] [CrossRef]
- Naciones Unidas La Agenda. 2030 y Sus Objetivos de Desarrollo Sostenible: Una Oportunidad para América Latina y el Caribe; CEPAL: Santiago, Chile, 2018; ISBN 9789210586436. [Google Scholar]
- Unidad de Planeación Minero-Energética (UPME). Plan Energético Nacional 2020–2050: La Transformación Energética Que Habilita El Desarrollo Sostenible; UPME: Bogotá, Colombia, 2020. [Google Scholar]
- Superintendencia de Servicios Públicos Domiciliarios. Zonas No Interconectadas—ZNI Diagnóstico de la Prestación del Servicio de Energía Eléctrica; Superintendencia de Servicios Públicos Domiciliarios: Bogotá, Colombia, 2018. [Google Scholar]
- IDEAM. Atlas Climatológico de Colombia. Available online: http://atlas.ideam.gov.co/visorAtlasClimatologico.html (accessed on 25 July 2023).
- Minenergía Ley 1715 de 2014. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=57353 (accessed on 28 August 2023).
- Henderson, M.; Novosel, D.; Crow, M. Electric Power Grid Modernization Trends, Challenges, and Opportunities; IEEE Technology Trend Paper; IEEE: New York, NY, USA, 2017. [Google Scholar]
- Hirsch, A.; Parag, Y.; Guerrero, J. Microgrids: A Review of Technologies, Key Drivers, and Outstanding Issues. Renew. Sustain. Energy Rev. 2018, 90, 402–411. [Google Scholar] [CrossRef]
- Ghadi, M.J.; Rajabi, A.; Ghavidel, S.; Azizivahed, A.; Li, L.; Zhang, J. From Active Distribution Systems to Decentralized Microgrids: A Review on Regulations and Planning Approaches Based on Operational Factors. Appl. Energy 2019, 253, 113543. [Google Scholar] [CrossRef]
- Stadler, M.; Naslé, A. Planning and Implementation of Bankable Microgrids. Electr. J. 2019, 32, 24–29. [Google Scholar] [CrossRef]
- Parag, Y.; Ainspan, M. Sustainable Microgrids: Economic, Environmental and Social Costs and Benefits of Microgrid Deployment. Energy Sustain. Dev. 2019, 52, 72–81. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J.M. Computational Optimization Techniques Applied to Microgrids Planning: A Review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. [Google Scholar] [CrossRef]
- Fathima, A.H.; Palanisamy, K. Optimization in Microgrids with Hybrid Energy Systems—A Review. Renew. Sustain. Energy Rev. 2015, 45, 431–446. [Google Scholar] [CrossRef]
- Deng, X.; Lv, T. Power System Planning with Increasing Variable Renewable Energy: A Review of Optimization Models. J. Clean. Prod. 2020, 246, 118962. [Google Scholar] [CrossRef]
- Twaha, S.; Ramli, M.A.M. A Review of Optimization Approaches for Hybrid Distributed Energy Generation Systems: Off-Grid and Grid-Connected Systems. Sustain. Cities Soc. 2018, 41, 320–331. [Google Scholar] [CrossRef]
- Khan, F.A.; Pal, N.; Saeed, S.H. Review of Solar Photovoltaic and Wind Hybrid Energy Systems for Sizing Strategies Optimization Techniques and Cost Analysis Methodologies. Renew. Sustain. Energy Rev. 2018, 92, 937–947. [Google Scholar] [CrossRef]
- Ridha, H.M.; Gomes, C.; Hizam, H.; Ahmadipour, M.; Heidari, A.A.; Chen, H. Multi-Objective Optimization and Multi-Criteria Decision-Making Methods for Optimal Design of Standalone Photovoltaic System: A Comprehensive Review. Renew. Sustain. Energy Rev. 2021, 135, 110202. [Google Scholar] [CrossRef]
- Koltsaklis, N.E.; Giannakakis, M.; Georgiadis, M.C. Optimal Energy Planning and Scheduling of Microgrids. Chem. Eng. Res. Des. 2018, 131, 318–332. [Google Scholar] [CrossRef]
- Lamedica, R.; Santini, E.; Ruvio, A.; Palagi, L.; Rossetta, I. A MILP Methodology to Optimize Sizing of PV—Wind Renewable Energy Systems. Energy 2018, 165, 385–398. [Google Scholar] [CrossRef]
- Xiang, Y.; Cai, H.; Gu, C.; Shen, X. Cost-Benefit Analysis of Integrated Energy System Planning Considering Demand Response. Energy 2020, 192, 116632. [Google Scholar] [CrossRef]
- Subramanyam, V.; Jin, T.; Novoa, C. Sizing a Renewable Microgrid for Flow Shop Manufacturing Using Climate Analytics. J. Clean. Prod. 2020, 252, 119829. [Google Scholar] [CrossRef]
- Guo, L.; Hou, R.; Liu, Y.; Wang, C.; Lu, H. A Novel Typical Day Selection Method for the Robust Planning of Stand-Alone Wind-Photovoltaic-Diesel-Battery Microgrid. Appl. Energy 2020, 263, 114606. [Google Scholar] [CrossRef]
- Lorestani, A.; Gharehpetian, G.B.; Nazari, M.H. Optimal Sizing and Techno-Economic Analysis of Energy- and Cost-Efficient Standalone Multi-Carrier Microgrid. Energy 2019, 178, 751–764. [Google Scholar] [CrossRef]
- Ghiasi, M. Detailed Study, Multi-Objective Optimization, and Design of an AC-DC Smart Microgrid with Hybrid Renewable Energy Resources. Energy 2019, 169, 496–507. [Google Scholar] [CrossRef]
- Echeverri, R.; Caicedo, E.; Alfonso, W.; García, J.D. A Bi-Level Multi-Objective Optimization Model for the Planning, Design and Operation of Smart Grid Projects. Case Study: An Islanded Microgrid. Int. J. Energy Econ. Policy 2020, 10, 325–341. [Google Scholar] [CrossRef]
- Xu, X.; Hu, W.; Cao, D.; Huang, Q.; Chen, C.; Chen, Z. Optimized Sizing of a Standalone PV-Wind-Hydropower Station with Pumped-Storage Installation Hybrid Energy System. Renew. Energy 2020, 147, 1418–1431. [Google Scholar] [CrossRef]
- Chen, X.; Dong, W.; Yang, Q. Robust Optimal Capacity Planning of Grid-Connected Microgrid Considering Energy Management under Multi-Dimensional Uncertainties. Appl. Energy 2022, 323, 119642. [Google Scholar] [CrossRef]
- Cardenas, G.A.R.; Khezri, R.; Mahmoudi, A.; Kahourzadeh, S. Optimal Planning of Remote Microgrids with Multi-Size Split-Diesel Generators. Sustainability 2022, 14, 2892. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Huang, Y.; Li, F.; Zeng, M.; Li, J.; Wang, X.; Zhang, F. Planning and Operation Method of the Regional Integrated Energy System Considering Economy and Environment. Energy 2019, 171, 731–750. [Google Scholar] [CrossRef]
- Huy, P.D.; Ramachandaramurthy, V.K.; Yong, J.Y.; Tan, K.M.; Ekanayake, J.B. Optimal Placement, Sizing and Power Factor of Distributed Generation: A Comprehensive Study Spanning from the Planning Stage to the Operation Stage. Energy 2020, 195, 117011. [Google Scholar] [CrossRef]
- Rousis, A.O.; Konstantelos, I.; Strbac, G. A Planning Model for a Hybrid AC-DC Microgrid Using a Novel GA/AC OPF Algorithm. IEEE Trans. Power Syst. 2020, 35, 227–237. [Google Scholar] [CrossRef]
- Bukar, A.L.; Tan, C.W.; Lau, K.Y. Optimal Sizing of an Autonomous Photovoltaic/Wind/Battery/Diesel Generator Microgrid Using Grasshopper Optimization Algorithm. Sol. Energy 2019, 188, 685–696. [Google Scholar] [CrossRef]
- Eteiba, M.B.; Barakat, S.; Samy, M.M.; Wahba, W.I. Optimization of an Off-Grid PV/Biomass Hybrid System with Different Battery Technologies. Sustain. Cities Soc. 2018, 40, 713–727. [Google Scholar] [CrossRef]
- Mohseni, S.; Brent, A.C. A Metaheuristic-Based Micro-Grid Sizing Model with Integrated Arbitrage-Aware Multi-Day Battery Dispatching. Sustainability 2022, 14, 12941. [Google Scholar] [CrossRef]
- Dufo-López, R.; Cristóbal-Monreal, I.R.; Yusta, J.M. Optimisation of PV-Wind-Diesel-Battery Stand-Alone Systems to Minimise Cost and Maximise Human Development Index and Job Creation. Renew. Energy 2016, 94, 280–293. [Google Scholar] [CrossRef]
- Rad, M.A.V.; Ghasempour, R.; Rahdan, P.; Mousavi, S.; Arastounia, M. Techno-Economic Analysis of a Hybrid Power System Based on the Cost-Effective Hydrogen Production Method for Rural Electrification, a Case Study in Iran. Energy 2020, 190, 116421. [Google Scholar] [CrossRef]
- Zitzler, E.; Laumanns, M.; Bleuler, S. A Tutorial on Evolutionary Multi-objective Optimization. In Metaheuristics for Multiobjective Optimisation; Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 535, pp. 3–37. [Google Scholar]
- Kumar, A.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A Novel Methodological Framework for the Design of Sustainable Rural Microgrid for Developing Nations. IEEE Access 2018, 6, 24925–24951. [Google Scholar] [CrossRef]
- López-González, A.; Domenech, B.; Ferrer-Martí, L. Sustainability and Design Assessment of Rural Hybrid Microgrids in Venezuela. Energy 2018, 159, 229–242. [Google Scholar] [CrossRef]
- Adefarati, T.; Bansal, R.C. Reliability, Economic and Environmental Analysis of a Microgrid System in the Presence of Renewable Energy Resources. Appl. Energy 2019, 236, 1089–1114. [Google Scholar] [CrossRef]
- Ramezanzade, M.; Saebi, J.; Karimi, H.; Mostafaeipour, A. A New Hybrid Decision-Making Framework to Rank Power Supply Systems for Government Organizations: A Real Case Study. Sustain. Energy Technol. Assess. 2020, 41, 100779. [Google Scholar] [CrossRef]
- Ullah, Z.; Elkadeem, M.R.; Kotb, K.M.; Taha, I.B.M.; Wang, S. Multi-Criteria Decision-Making Model for Optimal Planning of on/off Grid Hybrid Solar, Wind, Hydro, Biomass Clean Electricity Supply. Renew. Energy 2021, 179, 885–910. [Google Scholar] [CrossRef]
- Sedghiyan, D.; Ashouri, A.; Maftouni, N.; Xiong, Q.; Rezaee, E.; Sadeghi, S. Prioritization of Renewable Energy Resources in Five Climate Zones in Iran Using AHP, Hybrid AHP-TOPSIS and AHP-SAW Methods. Sustain. Energy Technol. Assess. 2021, 44, 101045. [Google Scholar] [CrossRef]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A Review of Multi-Criteria Decision Making Applications for Renewable Energy Site Selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. Integrated Assessment of a Sustainable Microgrid for a Remote Village in Hilly Region. Energy Convers. Manag. 2019, 180, 442–472. [Google Scholar] [CrossRef]
- Portal Único del Estado Colombiano Municipio de Taraira—Departamento Del Vaupés. Available online: https://www.vaupes.gov.co/territorios/municipio-de-taraira-643178 (accessed on 18 July 2023).
- XM Históricos de Demanda. Available online: https://www.xm.com.co/consumo/historicos-de-demanda (accessed on 28 August 2023).
- Unidad de Planeación Minero-Energética (UPME). Proyección Demanda Energía Eléctrica y Gas Natural 2021–2035; UPME: Bogotá, Colombia, 2020. [Google Scholar]
- NASA POWER|DAVe. Available online: https://power.larc.nasa.gov/beta/data-access-viewer/ (accessed on 25 July 2023).
- Servir Global ClimateSERV—Map. Available online: https://climateserv.servirglobal.net/map (accessed on 25 July 2023).
Location | Vaupés, Colombia (−0.5644, −69.6341) |
---|---|
Urban area | 58,671 m2 |
Population | Total: 1015 inhabitants Urban area: 500 Inhabitants |
Economic activity | Artisanal mining |
Effective electricity generation | 68 kW |
Customers with electricity supply | 111 |
Technology | Parameter | Value | Unit |
---|---|---|---|
Photovoltaic panel | 0.40 | ||
0.23 | - | ||
1.87 | |||
25 | |||
0.005 | |||
252.90 | |||
4 | |||
25 | |||
Wind turbine | 2 | ||
11 | |||
25 | |||
3 | |||
11.34 | |||
3600 | |||
60 | |||
25 | |||
Diesel generator | 80 | ||
0.0815 | |||
0.2461 | |||
0.0081 | |||
24,000 | |||
125 | |||
0.595 | |||
2.63 | |||
Batteries | 20 | % | |
100 | % | ||
0.8—In charged state | - | ||
1—In discharged state | - | ||
3 | |||
1.6 | |||
0.14 | |||
400 | |||
4 | |||
10 | |||
Inverter | 0.95 | - | |
1.75 | |||
15 | |||
525 |
Alternatives | ||||
---|---|---|---|---|
A1 | 226 | 0 | 1 | 35 |
A2 | 254 | 0 | 1 | 100 |
A3 | 218 | 0 | 2 | 33 |
A4 | 257 | 0 | 2 | 70 |
A5 | 267 | 4 | 1 | 100 |
A6 | 223 | 0 | 1 | 32 |
A7 | 219 | 0 | 2 | 33 |
A8 | 267 | 8 | 1 | 100 |
A9 | 198 | 26 | 1 | 66 |
A10 | 244 | 14 | 2 | 100 |
A11 | 254 | 1 | 1 | 100 |
A12 | 267 | 7 | 1 | 100 |
A14 | 253 | 0 | 2 | 96 |
A15 | 245 | 13 | 2 | 100 |
A16 | 265 | 9 | 1 | 100 |
A17 | 209 | 19 | 2 | 72 |
A18 | 214 | 24 | 2 | 85 |
A19 | 230 | 23 | 1 | 74 |
A20 | 214 | 27 | 1 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuñiga-Cortes, F.; Caicedo-Bravo, E.; Garcia-Racines, J.D. Reference Framework Based on a Two-Stage Strategy for Sizing and Operational Management in Electrical Microgrid Planning. Sustainability 2023, 15, 14449. https://doi.org/10.3390/su151914449
Zuñiga-Cortes F, Caicedo-Bravo E, Garcia-Racines JD. Reference Framework Based on a Two-Stage Strategy for Sizing and Operational Management in Electrical Microgrid Planning. Sustainability. 2023; 15(19):14449. https://doi.org/10.3390/su151914449
Chicago/Turabian StyleZuñiga-Cortes, Fabian, Eduardo Caicedo-Bravo, and Juan D. Garcia-Racines. 2023. "Reference Framework Based on a Two-Stage Strategy for Sizing and Operational Management in Electrical Microgrid Planning" Sustainability 15, no. 19: 14449. https://doi.org/10.3390/su151914449
APA StyleZuñiga-Cortes, F., Caicedo-Bravo, E., & Garcia-Racines, J. D. (2023). Reference Framework Based on a Two-Stage Strategy for Sizing and Operational Management in Electrical Microgrid Planning. Sustainability, 15(19), 14449. https://doi.org/10.3390/su151914449