Preserving Raw Oysters with High Hydrostatic Pressure and Irradiation Technology
Abstract
:1. Introduction
2. High Hydrostatic Pressure Treatment
2.1. HHP Operation Steps and Research Findings
2.2. Inactivation of Norovirus, Hepatitis A Virus (HAV), and Microbial Models
2.3. Microbial Resistance and Shelf Life Extension
2.4. Shucking Process and Quality Improvement
3. Irradiation Treatment
3.1. Ionizing Radiation Mechanisms and Global Application
3.2. Gamma Radiation and Vibrio Reduction
3.3. Optimization and Efficacy of X-ray and E-Beam Irradiation
3.4. Microbial Resistance and Shelf Life Extension
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Puértolas, E.; García-Muñoz, S.; Caro, M.; Alvarez-Sabatel, S. Effect of Different Cold Storage Temperatures on the Evolution of Shucking Yield and Quality Properties of Offshore Cultured Japanese Oyster (Magallana gigas) Treated by High Pressure Processing (HPP). Foods 2023, 12, 1156. [Google Scholar] [CrossRef] [PubMed]
- Le Guyader, F.S.; Atmar, R.L.; Le Pendu, J. Transmission of viruses through shellfish: When specific ligands come into play. Curr. Opin. Virol. 2012, 2, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, B.S. Reduction of Vibrio vulnificus in pure culture, half shell and whole shell oysters (Crassostrea virginica) by X-ray. Int. J. Food Microbiol. 2009, 130, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, Z.; Shi, Y.; Ding, H.H. Microbiological analysis and microbiota in oyster: A review. Invert. Surv. J. 2016, 13, 374–388. [Google Scholar]
- Pierce, M.L.; Ward, J.E.; Holohan, B.A.; Zhao, X.; Hicks, R.E. The influence of site and season on the gut and pallial fluid microbial communities of the eastern oyster, Crassostrea virginica (Bivalvia, Ostreidae): Community-level physiological profiling and genetic structure. Hydrobiologia 2016, 765, 97–113. [Google Scholar] [CrossRef]
- Baker, G.L. Food safety impacts from post-harvest processing procedures of molluscan shellfish. Foods 2016, 5, 29. [Google Scholar] [CrossRef]
- Leoni, F.; Talevi, G.; La Rosa, G. Vibrio spp. in raw oysters: Management and analysis of risks linked to consumption. Rev. Fish Sci. Aquac. 2017, 25, 121–130. [Google Scholar]
- Tack, D.M.; Marder, E.P.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Hurd, S.; Scallan, E.; Lathrop, S.; Muse, A.; Ryan, P.; et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne diseases active surveillance network, 10 US Sites, 2015–2018. MMWR 2019, 68, 369. [Google Scholar]
- Mahmoud, B.S.; Burrage, D.D. Inactivation of Vibrio parahaemolyticus in pure culture, whole live and half shell oysters (Crassostrea virginica) by X-ray. Lett. Appl. Microbiol. 2009, 48, 572–578. [Google Scholar] [CrossRef]
- Mahmoud, B.S. Effect of X-ray treatments on inoculated Escherichia coli O157: H7, Salmonella enterica, Shigella flexneri and Vibrio parahaemolyticus in ready-to-eat shrimp. Food Microbiol. 2009, 26, 860–864. [Google Scholar] [CrossRef]
- DePaola, A. Vibrio parahaemolyticus and Vibrio vulnificus in shellfish: User’s perspective. J. Food Prot. 2004, 67, 1067–1078. [Google Scholar]
- Koopmans, M.; Duizer, E. Foodborne viruses: An emerging problem. Int. J. Food Microbiol. 2004, 90, 23–41. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, M.; Ayers, T.; Mahon, B.E.; Swerdlow, D.L. Epidemiology of seafood-associated infections in the United States. Clin. Microbiol. Rev. 2010, 23, 399–411. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Norovirus: About Norovirus. Available online: https://www.cdc.gov/norovirus/about/index.html (accessed on 4 April 2023).
- Richards, G.P. Critical review of norovirus surrogates in food safety research: Rationale for considering volunteer studies. Food Environ. Virol. 2012, 4, 6–13. [Google Scholar] [CrossRef]
- Hall, A.J.; Lopman, B.A.; Payne, D.C.; Patel, M.M.; Gastañaduy, P.A. Norovirus disease in the United States. Emerg. Infect. Dis. 2019, 25, 1379–1381. [Google Scholar] [CrossRef]
- Le Guyader, F.S.; Loisy, F.; Atmar, R.L.; Hutson, A.M.; Estes, M.K.; Ruvoen-Clouet, N. Norwalk virus-specific binding to oyster digestive tissues. Emerg. Infect. Dis. 2012, 18, 685–692. [Google Scholar] [CrossRef]
- Choi, C.; Ko, G. Human norovirus: Detection and quantification in oysters. WJCV 2015, 4, 396–404. [Google Scholar]
- World Health Organization. Hepatitis A. Available online: https://www.who.int/news-room/questions-and-answers/item/hepatitis-a (accessed on 4 April 2023).
- Kontominas, M.G.; Badeka, A.V.; Kosma, I.S.; Nathanailides, C.I. Innovative seafood preservation technologies: Recent developments. Animals 2021, 11, 92. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, S.; Nannapaneni, R.; Zhang, Y.; Coker, R.; Mahmoud, B.S. The effects of X-ray treatments on bioaccumulated murine norovirus-1 (MNV-1) and survivability, inherent microbiota, color, and firmness of Atlantic oysters (Crassostrea virginica) during storage at 5 °C for 20 days. Food Control 2017, 73, 1189–1194. [Google Scholar] [CrossRef]
- Friedman, C.S.; Finley, R.W. Introduction, growth, and survival of microbial pathogens in shellfish: A reappraisal of depuration. J. Shellfish. Res. 2003, 22, 201–211. [Google Scholar]
- Ge, Q.; Chen, G.; Xu, X.; Zhang, L. The potential role of shellfish aquaculture in sequestering carbon dioxide. J. Appl. Phycol. 2013, 25, 1841–1851. [Google Scholar]
- NMFS. Fisheries of the United States, 2014. Fisheries Service, NOAA. 2015. Available online: https://www.st.nmfs.noaa.gov/Assets/commercial/fus/fus15/documents/FUS2015.pdf (accessed on 4 April 2023).
- Ekonomou, S.I.; Boziaris, I.S. Non-thermal methods for ensuring the microbiological quality and safety of seafood. Appl. Sci. 2021, 11, 833. [Google Scholar] [CrossRef]
- Boziaris, I.S. (Ed.) Seafood Processing: Technology, Quality and Safety; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Smiddy, M.; O’Gorman, L.; Sleator, R.D.; Kerry, J.P.; Patterson, M.F.; Kelly, A.L.; Hill, C. Greater high-pressure resistance of bacteria in oysters than in buffer. Innov. Food Sci. Emerg. Technol. 2005, 6, 83–90. [Google Scholar] [CrossRef]
- Kural, A.G.; Shearer, A.E.; Kingsley, D.H.; Chen, H. Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. Int. J. Food Microbiol. 2008, 127, 1–5. [Google Scholar] [CrossRef]
- Munir, M.T.; Federighi, M. Control of foodborne biological hazards by ionizing radiations. Foods 2020, 9, 878. [Google Scholar] [CrossRef]
- Ye, M. Inactivation of Vibrio parahaemolyticus, Vibrio vulnificus and Noroviruses in Oysters by High-Hydrostatic Pressure, Mild Heat and Cold Storage. Ph.D. Thesis, University of Delaware, Ann Arbor, MI, USA, 2013. [Google Scholar]
- Pou, K.J.; Raghavan, V. Recent advances in the application of high pressure processing-based hurdle approach for enhancement of food safety and quality. J. Biosyst. Eng. 2020, 45, 175–187. [Google Scholar] [CrossRef]
- Silva, F.V.M. Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens. Appl. Sci. 2023, 13, 1193. [Google Scholar] [CrossRef]
- Ma, L.; Su, Y.C. Validation of high pressure processing for inactivating Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas). Int. J. Food Microbiol. 2011, 144, 469–474. [Google Scholar] [CrossRef]
- Koo, J.; Jahncke, M.L.; Reno, P.W.; Hu, X.; Mallikarjunan, P. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in phosphate-buffered saline and in inoculated whole oysters by high-pressure processing. J. Food Prot. 2006, 69, 596–601. [Google Scholar] [CrossRef]
- Hu, X.; Mallikarjunan, P.; Koo, J.; Andrews, L.S.; Jahncke, M.L. Comparison of kinetic models to describe high pressure and gamma irradiation used to inactivate Vibrio vulnificus and Vibrio parahaemolyticus prepared in buffer solution and in whole oysters. J. Food Prot. 2005, 68, 292–295. [Google Scholar] [CrossRef]
- Ye, M.; Huang, Y.; Gurtler, J.B.; Niemira, B.A.; Sites, J.E.; Chen, H. Effects of pre-or post-processing storage conditions on high-hydrostatic pressure inactivation of Vibrio parahaemolyticus and V. vulnificus in oysters. Int. J. Food Microbiol. 2013, 163, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, D.H.; Holliman, D.R.; Calci, K.R.; Chen, H.; Flick, G.J. Inactivation of a norovirus by high-pressure processing. Appl. Environ. Microbiol. 2007, 73, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Koseki, S.; Yamamoto, K. A novel approach to predicting microbial inactivation kinetics during high pressure processing. Int. J. Food Microbiol. 2007, 116, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Leon, J.S.; Kingsley, D.H.; Montes, J.S.; Richards, G.P.; Lyon, G.M.; Abdulhafid, G.M.; Seitz, S.R.; Fernandez, M.L.; Teunis, P.F.; Flick, G.J.; et al. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Appl. Environ. Microbiol. 2011, 77, 5476–5482. [Google Scholar] [CrossRef]
- Kingsley, D.H.; Calci, K.; Holliman, S.; Dancho, B.; Flick, G. High pressure inactivation of HAV within oysters: Comparison of shucked oysters with whole-in-shell meats. Food Environ. Virol. 2009, 1, 137. [Google Scholar] [CrossRef]
- Lopez-Caballero, M.E.; Pérez-Mateos, M.; Montero, P.; Borderías, A.J. Oyster preservation by high-pressure treatment. J. Food Prot. 2000, 63, 196–201. [Google Scholar] [CrossRef]
- Cruz-Romero, M.; Kerry, J.P.; Kelly, A.L. Changes in the microbiological and physicochemical quality of high-pressure-treated oysters (Crassostrea gigas) during chilled storage. Food Control 2008, 19, 1139–1147. [Google Scholar] [CrossRef]
- Prapaiwong, N.; Wallace, R.K.; Arias, C.R. Bacterial loads and microbial composition in high pressure treated oysters during storage. Int. J. Food Microbiol. 2009, 131, 145–150. [Google Scholar] [CrossRef]
- Cruz-Romero, M.; Kelly, A.L.; Kerry, J.P. Effects of high-pressure treatment on the microflora of oysters (Crassostrea gigas) during chilled storage. Innov. Food Sci. Emerg. Technol. 2008, 9, 441–447. [Google Scholar] [CrossRef]
- Stroud, G.D. Handling and Processing Oysters; Ministry of Agriculture, Fisheries and Food, Torry Research Station: Aberdeen, UK, 1981; pp. 1–7.
- He, H.; Adams, R.M.; Farkas, D.F.; Morrissey, M.T. Use of high-pressure processing for oyster shucking and shelf-life extension. J. Food Sci. 2002, 67, 640–645. [Google Scholar] [CrossRef]
- Hsu, K.C.; Hwang, J.S.; Chi, H.Y.; Lai, K.M. Effect of different high pressure treatments on shucking, biochemical, physical and sensory characteristics of oysters to elaborate a traditional Taiwanese oyster omelette. J. Sci. Food Agric. 2010, 90, 530–535. [Google Scholar] [CrossRef]
- Cruz-Romero, M.; Smiddy, M.; Hill, C.; Kerry, J.P.; Kelly, A.L. Effects of high pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas). Innov. Food Sci. Emerg. Technol. 2004, 5, 161–169. [Google Scholar] [CrossRef]
- Kitts, D.D.; Shum, M.L.P.; Smith, D.S. Species identification of shellfish using SDS-Page electrophoresis. In Seafood Safety, Processing, and Biotechnology; CRC Press: Boca Raton, FL, USA, 2020; pp. 235–241. [Google Scholar]
- Shahbaz, H.M.; Akram, K.; Ahn, J.J.; Kwon, J.H. Worldwide status of fresh fruits irradiation and concerns about quality, safety, and consumer acceptance. Crit. Rev. Food Sci. Nutr. 2016, 56, 1790–1807. [Google Scholar] [CrossRef] [PubMed]
- Kume, T.; Furuta, M.; Todoriki, S.; Uenoyama, N.; Kobayashi, Y. Status of food irradiation in the world. Radiat. Phys. Chem. 2009, 78, 222–226. [Google Scholar] [CrossRef]
- Prakash, A. Particular applications of food irradiation fresh produce. Radiat. Phys. Chem. 2016, 129, 50–52. [Google Scholar] [CrossRef]
- Ehlermann, D.A. Particular applications of food irradiation: Meat, fish and others. Radiat. Phys. Chem. 2016, 129, 53–57. [Google Scholar] [CrossRef]
- Su, Y.-C.; Lee, C.-Y.; Goforth, H.; Richards, G.P. Reduction of Vibrio vulnificus in oysters after treatment with high hydrostatic pressure and low-dose gamma irradiation. J. Food Sci. 2005, 70, M128–M133. [Google Scholar]
- Jakabi, M.; Gelli, D.S.; Torre, J.C.; Rodas, M.A.; Franco, B.D.; Destro, M.T.; Landgraf, M. Inactivation by ionizing radiation of Salmonella enteritidis, Salmonella infantis, and Vibrio parahaemolyticus in oysters (Crassostrea brasiliana). J. Food Prot. 2003, 66, 1025–1029. [Google Scholar] [CrossRef]
- Thupila, N.; Ratana-Arporn, P.; Wilaipun, P. Radiation resistances and decontamination of common pathogenic bacteria contaminated in white scar oyster (Crassostrea belcheri) in Thailand. Radiat. Phys. Chem. 2011, 80, 828–832. [Google Scholar] [CrossRef]
- Andrews, L.; Jahncke, M.; Mallikarjunan, K. Low dose gamma irradiation to reduce pathogenic vibrios in live oysters (Crassostrea virginica). J. Aquat. Food Prod. Technol. 2003, 12, 71–82. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, S.C. The efficacy of X-ray doses on Vibrio vulnificus in pure culture and Vibrio parahaemolyticus in pure culture and inoculated farm raised live oysters (Crassostrea virginica) with different acceleration voltages. Food Control 2020, 115, 107277. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, S.; Nannapaneni, R.; Coker, R.; Haque, Z.; Mahmoud, B.S. The efficacy of X-ray doses on murine norovirus-1 (MNV-1) in pure culture, half-shell oyster, salmon sushi, and tuna salad. Food Control 2016, 64, 77–80. [Google Scholar] [CrossRef]
- Praveen, C.; Dancho, B.A.; Kingsley, D.H.; Calci, K.R.; Meade, G.K.; Mena, K.D.; Pillai, S.D. Susceptibility of murine norovirus and hepatitis A virus to electron beam irradiation in oysters and quantifying the reduction in potential infection risks. Appl. Environ. Microbiol. 2013, 79, 3796–3801. [Google Scholar] [CrossRef] [PubMed]
- Ratana-Arporn, P.; Wilaipun, P. Process Development of Safe and Ready-to-eat Raw Oyster Meat by Irradiation Technology. Int. J. Nutr. Food Eng. 2012, 6, 282–286. [Google Scholar]
- Kim, D.J.; Choe, W.; Kim, J.H.; Kang, D.H.; Kim, Y.J.; Oh, S.W.; Jo, C. Inactivation of Salmonella enteritidis and Escherichia coli O157: H7 on cantaloupe rind using X-ray irradiation. Food Control 2020, 108, 106858. [Google Scholar]
- Vilar, M.J.; López-Pedemonte, T.J.; Sánchez-Moreno, C.; Olarte, C.; Torres, J.A.; Rodrigo, D. Electron beam processing as a suitable alternative to thermal treatments for microbial decontamination of fruits and vegetables. Food Control 2018, 84, 385–393. [Google Scholar]
- Ravindran, R.; Jaiswal, A.K. Wholesomeness and safety aspects of irradiated foods. Food Chem. 2019, 285, 363–368. [Google Scholar] [CrossRef]
Pathogen | Species/Region | HHP Condition | Results | Reference |
---|---|---|---|---|
V. parahaemolyticus | Pacific oysters/ Oregon | 293 MPa for 90, 120, 150, 180, or 210 s at 8 ± 1 °C | 3.52-log reductions at 120 s | [30] |
V. vulnificus and V. parahaemolyticus | Eastern oysters/ Virginia | 241, 276, 310, 345, 379, and 586 MPa for 0 to 10 min at 5–10 °C | D-values; linear regression | [31] |
V. vulnificus and V. parahaemolyticus | Eastern oysters/ Mississippi | from 207 to 379 MPa for 1 to 20 min | Weibull distribution provided the best fit for vibrio’s inactivation. | [32] |
V. vulnificus and V. parahaemolyticus | Eastern oysters/ Delaware | from 225 to 300 MPa for 2 min at 4, 21, or 35 °C | 5-log MPN/g reduction of V. parahaemolyticus and complete inactivation V. vulnificus | [33] |
MNV-1 | Eastern oysters/ Alabama | from 350 to 450 MPa for 5 min at 20 °C | 450-MPa treatment sufficient to inactivate 6.85 log10 PFU of MNV-1 | [34] |
HuNoV | Eastern oysters/ Rhode Island | 400 MPa at 25 °C, 600 MPa at 6 °C, or 400 MPa at 6 °C for 5 min | complete inactivation of HuNoV at 600 MPa in seeded oysters | [36] |
HAV | Eastern oysters/ Alabama | 400 MPa for 5 min at 17–22 °C | 2.56 log10 inactivation of HAV | [37] |
Microbiological Quality | Species/Region | HHP Condition | Results | Reference |
---|---|---|---|---|
microbial flora, total volatile bases, pH, and texture | European flat oyster/Spain | 400 MPa for 10 min at 7 °C | reduced from 3.13 to 2.72 | [38] |
bacterial loads during storage | Eastern oysters/Louisiana | from 250 to 400 MPa for 1–3 min | bacterial loads of treated oysters reached 108 CFU/g at 14 days | [40] |
total microflora during storage (2 °C) | Pacific oysters/Ireland | 260, 400, and 600 MPa for 5 min at 20 °C | reduced to below the detection limit after treatment at 400 and 600 MPa | [41] |
total microflora during storage (2 °C) | Pacific oysters/Ireland | 260 MPa for 3 min at 20 °C | reduced to <200/g | [39] |
500 and 800 MPa for 5 min at 20 °C | reduced to below the detection limit | |||
total microflora during storage in ice | Pacific oysters/Oregon | 293 MPa for 90, 120, 150, 180, or 210 s at 8 ± 1 °C | processed oysters had a shelf life of 8 days at 5 °C, shorter than the 18-day shelf life of live oysters stored under the same conditions | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Liu, C. Preserving Raw Oysters with High Hydrostatic Pressure and Irradiation Technology. Sustainability 2023, 15, 14557. https://doi.org/10.3390/su151914557
Tian H, Liu C. Preserving Raw Oysters with High Hydrostatic Pressure and Irradiation Technology. Sustainability. 2023; 15(19):14557. https://doi.org/10.3390/su151914557
Chicago/Turabian StyleTian, Haijuan, and Changjiao Liu. 2023. "Preserving Raw Oysters with High Hydrostatic Pressure and Irradiation Technology" Sustainability 15, no. 19: 14557. https://doi.org/10.3390/su151914557
APA StyleTian, H., & Liu, C. (2023). Preserving Raw Oysters with High Hydrostatic Pressure and Irradiation Technology. Sustainability, 15(19), 14557. https://doi.org/10.3390/su151914557