Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile
Abstract
:1. Introduction
1.1. Literature Review
1.2. Contributions
- A novel methodology to find the optimal site and size of PVDG-BES systems is proposed. The proposed methodology is based on an optimal power flow management strategy. In this strategy, the optimal placement and sizing of PVDG-BES are represented by an optimization problem where total real power losses are considered as the objective function. Several equality and inequality constraints, such as power flow equations, node voltage limits, PVDG capacity limits and LPSP constraints are taken into account. Since power flow equations are nonlinear, a Newton–Raphson-based method is adopted in this study for solving the power flow problem.
- Due to the problem’s complexity, a new meta-heuristic optimization method hybridizing the classical genetic algorithm with different chaotic maps is developed and applied for solving this optimization problem. In the proposed optimization method, chaotic maps are used instead of random numbers involved in the population initialization and genetic operators. The performance of this chaos-based optimization method is verified by using various unimodal and multimodal benchmark functions.
- The applicability and robustness of the proposed strategy are also validated using the IEEE 14-bus distribution network under fixed and intermittent load profiles.
1.3. Paper Organization
2. Problem Formulation
2.1. Mathematical Model of PVDG System
2.2. Mathematical Model of BES
2.3. Objective Function
- Power flow equality constraints
- Bus voltages constraints
- PVDG power constraints
- BES power constraints
- LPSP parameter constraint
3. Proposed Optimization Strategy
3.1. Classical Genetic Algorithm
Algorithm 1 Pseudo-Code of the Greedy Selection Mechanism |
if else End |
3.2. Chaos Theory
3.2.1. Logistic Map
3.2.2. Tent Map
3.2.3. Sine Map
3.2.4. Henon Map
3.3. The Proposed Chaotic Genetic Algorithm
Algorithm 2 Pseudo-Code of the New Chaotic Based GA |
|
3.4. Energy Management Strategy (EMS) Based Method
- Mode 1: When the excess of power (dp) is higher than BES system will be fully charged (BES charge mode), and an amount of power will be sent to the bus where the PVDG-BES is connected (injection to the grid).
- Mode 2: In this mode, the excess of power dp is not higher than , which means that this excess of power will be stored in the BES system (BES charge mode).
- Mode 3: This mode occurs when all batteries are completely charged . As a result, the excess power will be sent directly to the point of connection.
- Mode 4: This mode is applied when the power stored in batteries is not enough to compensate the load needs. As a result, the grid intervenes to feed loads (extraction from the grid mode).
- Mode 5: When the power stored in batteries satisfy all load demands, BES units will send power to all the points of consumption connected to the optimal allocations of PVDG-BES systems (BES discharge mode).
- Mode 6: This mode occurs when BES systems are completely discharged ; the grid will intervene to satisfy all load needs (extraction from the grid).
4. Numerical Validation Using Benchmark Functions
5. Simulation Results and Discussions
- Case 1: In this case, the problem is solved for one, two and three PVDG-BES systems. However, the power demand is fixed at its rated value during 24 h.
- Case 2: This case is based on taking into consideration the variable atmospheric conditions during 24 h. In fact, the power produced by the PV system depends on daily weather conditions, namely temperature and irradiation. Moreover, the power demand of each load is considered variable and follows a specific profile of power consumption. To do this, an optimal power flow management strategy is used. In this study, the PV-BES characteristics are presented in Table 5.
PV System | Values | BES System | Value |
---|---|---|---|
1 MW | 1 MW | ||
5 MW 245 W 10 60 | 4 MW 200 W 10% 90% 50% |
5.1. Case 1: Fixed PV Generated Power and Fixed Load Demand Using Variable PV Penetration Level
5.2. Case 2: Variable Atmospheric Conditions and Intermittent Load Demand with a Fixed PV Penetration Level
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nwaigwe, K.N.; Mutabilwa, P.; Dintwa, E. An overview of solar power (PV systems) integration into electricity grids. Mater. Sci. Energy Technol. 2019, 2, 629–633. [Google Scholar] [CrossRef]
- Mahdavi, M.; Alhelou, H.H.; Hatziargyriou, N.D.; Jurado, F. Reconfiguration of electric power distribution systems: Comprehensive review and classification. IEEE Access 2021, 9, 118502–118527. [Google Scholar] [CrossRef]
- Iqbal, F.; Khan, M.T.; Siddiqui, A.S. Optimal placement of DG and DSTATCOM for loss reduction and voltage profile improvement. Alex. Eng. J. 2018, 57, 755–765. [Google Scholar] [CrossRef]
- Kola, S.S. A review on optimal allocation and sizing techniques for DG in distribution systems. Int. J. Renew. Energy Res. 2018, 8, 1236–1256. [Google Scholar]
- Ogunsina, A.A.; Petinrin, M.O.; Petinrin, O.O.; Offornedo, E.N.; Petinrin, J.O.; Asaolu, G.O. Optimal distributed generation location and sizing for loss minimization and voltage profile optimization using ant colony algorithm. SN Appl. Sci. 2021, 3, 248. [Google Scholar] [CrossRef]
- Rosehart, W.; Nowicki, E. Optimal placement of distributed generation. In Proceedings of the 14th Power Systems Computation Conference, Sevilla, Spain, 24–28 June 2002. [Google Scholar]
- Gautam, D.; Mithulananthan, N. Optimal DG placement in deregulated electricity market. Electr. Power Syst. Res. 2007, 77, 1627–1636. [Google Scholar] [CrossRef]
- Tabassum, M.; Mathew, K. A genetic algorithm analysis towards optimization solutions. Int. J. Digit. Inf. Wirel. Commun. 2014, 4, 124–142. [Google Scholar] [CrossRef]
- Khenissi, I.; Sellami, R.; Fakhfakh, M.A.; Neji, R. Power loss minimization using optimal placement and sizing of photovoltaic distributed generation under daily load consumption profile with PSO and GA algorithms. J. Control Autom. Electr. Syst. 2021, 32, 1317–1331. [Google Scholar] [CrossRef]
- Sajeevan, S.; Padmavathy, N. Optimal allocation and sizing of distributed generation using artificial bee colony algorithm. Int. Res. J. Eng. Technol. 2016, 3, 1244–1252. [Google Scholar]
- Othman, M.M.; El-Khattam, W.; Hegazy, Y.G.; Abdelaziz, A.Y. Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm. Int. J. Electr. Power Energy Syst. 2016, 82, 105–113. [Google Scholar] [CrossRef]
- Lekhuleni, T.; Twala, B. Distributed optimal placement generators in a medium voltage radial feeder. Symmetry 2022, 14, 1729. [Google Scholar] [CrossRef]
- Godha, N.R.; Bapat, V.N.; Korachagaon, I. Ant colony optimization technique for integrating renewable DG in distribution system with techno-economic objectives. Evol. Syst. 2022, 13, 485–498. [Google Scholar] [CrossRef]
- Abdul Kadir, A.F.; Mohamed, A.; Shareef, H.; Asrul Ibrahim, A.; Khatib, T.; Elmenreich, W. An improved gravitational search algorithm for optimal placement and sizing of renewable distributed generation units in a distribution system for power quality enhancement. J. Renew. Sustain. Energy 2014, 6, 033112. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Dakic, P.L.; Kotur, D.S. Optimal placement of photovoltaic systems from the aspect of minimal power losses in distribution network based on genetic algorithm. Therm. Sci. 2018, 22, 1157–1170. [Google Scholar] [CrossRef] [Green Version]
- Machava, A.S.; Kaberere, K.K.; Vilanculo, G.A. A method for optimal distributed generation allocation considering load demand uncertainties. Int. J. Elec. Elecn. Eng. Telcomm. 2022, 11, 210–217. [Google Scholar] [CrossRef]
- Alzahrani, A.; Alharthi, H.; Khalid, M. Minimization of power losses through optimal battery placement in a distributed network with high penetration of photovoltaics. Energies 2020, 13, 140. [Google Scholar] [CrossRef] [Green Version]
- Tabak, A.; Özkaymak, M.; Güneser, M.T.; Erkol, H.O. Optimization and evaluation of hybrid PV/WT/BM system in different initial costs and LPSP conditions. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.; Al-Abdeli, Y.M.; Masek, M.; Bass, O. Optimal sizing and energy scheduling of grid-supplemented solar PV systems with battery storage: Sensitivity of reliability and financial constraints. Energy 2022, 238, 121780. [Google Scholar] [CrossRef]
- Islam, M.R.; Akter, H.; Howlader, H.O.R.; Senjyu, T. Optimal sizing and techno-economic analysis of grid-independent hybrid energy system for sustained rural electrification in developing countries: A Case Study in Bangladesh. Energies 2022, 15, 6381. [Google Scholar] [CrossRef]
- Suresh, M.; Meenakumari, R. An improved genetic algorithm-based optimal sizing of solar photovoltaic/wind turbine generator/diesel generator/battery connected hybrid energy systems for standalone applications. Int. J. Ambient Energy 2021, 42, 1136–1143. [Google Scholar] [CrossRef]
- Ghorbani, N.; Kasaeian, A.; Toopshekan, A.; Bahrami, L.; Maghami, A. Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability. Energy 2018, 154, 581–591. [Google Scholar] [CrossRef]
- Pang, M.; Shi, Y.; Wang, W.; Pang, S. Optimal sizing and control of hybrid energy storage system for wind power using hybrid parallel PSO-GA algorithm. Energy Explor. Exploit. 2019, 37, 558–578. [Google Scholar] [CrossRef] [Green Version]
- Lujano-Rojas, J.M.; Dufo-López, R.; Bernal-Agustín, J.L. Probabilistic modelling and analysis of stand-alone hybrid power systems. Energy 2013, 63, 19–27. [Google Scholar] [CrossRef]
- Agrawal, H.; Talwariya, A.; Gill, A.; Singh, A.; Alyami, H.; Alosaimi, W.; Ortega-Mansilla, A. A fuzzy-genetic-based integration of renewable energy sources and E-vehicles. Energies 2022, 15, 3300. [Google Scholar] [CrossRef]
- Xiangli, X.; Li, S. Research on improved chaotic particle optimization algorithm based on complex function. Front. Phys. 2020, 8, 368. [Google Scholar]
- Kumar, D.; Rani, M. Alternated superior chaotic variants of gravitational search algorithm for optimization problems. Chaos Solitons Fractals 2022, 159, 112152. [Google Scholar] [CrossRef]
- Kumar, S.; Mandal, K.K.; Chakraborty, N. Optimal DG placement by multi-objective opposition based chaotic differential evolution for techno-economic analysis. Appl. Soft Comput. 2019, 78, 70–83. [Google Scholar] [CrossRef]
- Alshathri, S.; Abd Elaziz, M.; Yousri, D.; Hassan, O.F.; Ibrahim, R.A. Quantum chaotic honey badger algorithm for feature selection. Electronics 2022, 11, 3463. [Google Scholar] [CrossRef]
- Mohandas, N.; Balamurugan, R.; Lakshminarasimman, L. Optimal location and sizing of multiple DGs to enhance the voltage stability in the distribution system using a chaotic ABC algorithm. Int. J. Comput. Appl. 2015, 128, 10–26. [Google Scholar] [CrossRef]
- Snaselova, P.; Zboril, F. Genetic algorithm using theory of chaos. Procedia Comput. Sci. 2015, 51, 316–325. [Google Scholar] [CrossRef] [Green Version]
- Fuertes, G.; Vargas, M.; Alfaro, M.; Soto-Garrido, R.; Sabattin, J.; Peralta, M.A. Chaotic genetic algorithm and the effects of entropy in performance optimization. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 013132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpolat, A.N.; Dursun, E.; Kuzucuoğlu, A.E.; Yang, Y.; Blaabjerg, F.; Baba, A.F. Performance analysis of a grid-connected rooftop solar photovoltaic system. Electronics 2019, 8, 905. [Google Scholar] [CrossRef]
- Ghamrawi, A.; Gaubert, J.P.; Mehdi, D. A new dual-mode maximum power point tracking algorithm based on the Perturb and Observe algorithm used on solar energy system. Sol. Energy 2018, 174, 508–514. [Google Scholar] [CrossRef]
- Kabir, S.; Krause, O.; Bansal, R.; Ravishanker, J. Dynamic voltage stability analysis of sub-transmission networks with large-scale photovoltaic systems. In Proceedings of the 2014 IEEE PES General Meeting Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Khenissi, I.; Fakhfakh, M.A.; Neji, R. Artificial neural network and space vector pulse width modulation control technique for a photovoltaic system with a power grid connection and lead acid battery storage. Int. J. Electr. Eng. Appl. Sci. 2020, 3, 43–52. [Google Scholar]
- Mikulski, S.; Tomczewski, A. Use of energy storage to reduce transmission losses in meshed power distribution networks. Energies 2021, 14, 7304. [Google Scholar] [CrossRef]
- Adewumi, O.B.; Fotis, G.; Vita, V.; Nankoo, D.; Ekonomou, L. The Impact of Distributed Energy Storage on Distribution and Transmission Networks’ Power Quality. Appl. Sci. 2022, 12, 6466. [Google Scholar] [CrossRef]
- Laadissi, E.M.; Malika Zazi, A.E.; El Ballouti, A. Comparative study of lead acid battery modeling. ARPN J. Eng. Appl. Sci. 2006, 13, 4448–4452. [Google Scholar]
- Zhang, X.; Hou, J.; Wang, Z.; Jiang, Y. Study of SOC estimation by the Ampere-hour integral method with capacity correction based on LSTM. Batteries 2022, 8, 170. [Google Scholar] [CrossRef]
- Devabalaji, K.R.; Mohamed Imran, A.; Yuvaraj, T.; Ravi, K. Power loss minimization in radial distribution system. Energy Procedia 2015, 79, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Ntombela, M.; Musasa, K.; Leoaneka, M.C. Power loss minimization and voltage profile improvement by system reconfiguration, DG sizing, and placement. Computation 2022, 10, 180. [Google Scholar] [CrossRef]
- Khenissi, I.; Fakhfakh, M.A.; Sellami, R.; Neji, R. A new approach for optimal sizing of a grid connected PV system using PSO and GA algorithms: Case of Tunisia. Appl. Artif. Intell. 2021, 35, 1930–1951. [Google Scholar] [CrossRef]
- Hamidan, M.A.; Borousan, F. Optimal planning of distributed generation and battery energy storage systems simultaneously in distribution networks for loss reduction and reliability improvement. J. Energy Storage 2022, 46, 103844. [Google Scholar] [CrossRef]
- Huy, T.H.B.; Tran, T.V.; Vo, D.N.; Nguyen, H.T.T. An improved metaheuristic method for simultaneous network reconfiguration and distributed generation allocation. Alex. Eng. J. 2022, 61, 8069–8088. [Google Scholar] [CrossRef]
- Tlijani, K.; Guesmi, T.; Hadj Abdallah, H. Optimal number, location and parameter setting of multiple TCSCs for security and system loadability enhancement. In Proceedings of the 2013 International Multi-Conferences on Systems, Signals & Devices, Hammamet, Tunisia, 22 July 2013; pp. 1–6. [Google Scholar]
- Guesmi, T.; Farah, A.; Hadj Abdallah, H.; Ouali, A. Robust design of multimachine power system stabilizers based on improved non-dominated sorting genetic algorithms. Electr. Eng. 2018, 100, 1351–1363. [Google Scholar] [CrossRef]
- Yang, D.; Li, G.; Cheng, G. On the efficiency of chaos optimization algorithms for global optimization. Chaos Solitons Fractals 2007, 34, 1366–1375. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.; Guo, Q. Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization. KSCE J. Civ. Eng. 2020, 24, 3703–3713. [Google Scholar] [CrossRef]
- Javidi, M.; Hosseinpourfard, R. Chaos genetic algorithm instead genetic algorithm. Int. Arab. J. Inf. Technol. 2015, 12, 163–168. [Google Scholar]
Method | Population Initialization | Crossover | Mutation |
---|---|---|---|
LoGA | Logistic map | Logistic map | Logistic map |
TeGA | Tent map | Tent map | Tent map |
SiGA | Sine map | Sine map | Sine map |
HeGA | Henon map | Henon map | Henon map |
(Si-He-Lo)GA | Sine map | Henon map | Logistic map |
(Te-He-Lo)GA | Tent map | Henon map | Logistic map |
(Si-He-Te)GA | Sine map | Henon map | Tent map |
(He-Si-Lo)GA | Henon map | Sine map | Logistic map |
Function | Formula | Search Space | Optimum |
---|---|---|---|
Sphere | [−5.12, 5.12] | 0 | |
Step | [−100, 100] | 0 | |
Shubert | [−10, 10] | −186.731 | |
SumSquare | [−10, 10] | 0 |
GA Parameters | Value |
---|---|
Maximum Iteration Population size Crossover Percentage (%) Mutation percentage (%) D | 500 200 70 20 10 |
GA | LoGA | TeGA | SiGA | HeGA | (Te-Si-Lo) GA | (Te-He-Lo) GA | (Si-He-Te) GA | (Si-He-Lo)GA | ||
---|---|---|---|---|---|---|---|---|---|---|
F1 | Best | 8.24 × 10−11 | 1.4 × 10−14 | 1.63 × 10−14 | 4.1 × 10−13 | 4.2 × 10−13 | 9.89 × 10−15 | 4.5 × 10−13 | 1.09 × 10−12 | 1.2 × 10−11 |
Mean | 2.42 × 10−9 | 4.9 × 10−10 | 3.17 × 10−10 | 3.7 × 10−9 | 2.9 × 10−9 | 2.8 × 10−10 | 1.63 × 10−9 | 1.8 × 10−9 | 2.7 × 10−9 | |
SD | 1.85 × 10−10 | 1.2 × 10−10 | 8.58 × 10−15 | 8.97 × 10−10 | 9.24 × 10−10 | 9.76 × 10−11 | 3.96 × 10−10 | 4.8 × 10−10 | 6.7 × 10−10 | |
F2 | Best | 8.3 × 10−13 | 5.8 × 10−14 | 9.6 × 10−13 | 5.1 × 10−12 | 8.3 × 10−13 | 1.1 × 10−15 | 7.2 × 10−14 | 2.72 × 10−13 | 4.9 × 10−12 |
Mean | 2.54 × 10−9 | 1.94 × 10−8 | 1.9 × 10−8 | 2.9 × 10−8 | 2.5 × 10−9 | 2.3 × 10−9 | 7.2 × 10−10 | 1.2 × 10−8 | 2.7 × 10−8 | |
SD | 8.35 × 10−10 | 6.3 × 10−9 | 6.3 × 10−9 | 1.1 × 10−8 | 8.35 × 10−10 | 7.23 × 10−10 | 1.8 × 10−10 | 4.2 × 10−9 | 1.08 × 10−8 | |
F3 | Best | −186.7291 | −186.7305 | −186.7302 | −186.7291 | −186.7291 | −186.7307 | −186.7305 | −186.7301 | −186.7304 |
Mean | −186.7017 | −186.7063 | −186.6956 | −186.6878 | −186.7077 | −186.6990 | −186.7088 | −186.712 | −186.6966 | |
SD | 0.0044 | 0.0035 | 0.0055 | 0.0068 | 0.0036 | 4.40 × 10−3 | 0.0035 | 0.0029 | 0.0055 | |
F4 | Best | 2.1 × 10−6 | 2.5 × 10−13 | 3.9 × 10−13 | 8.9 × 10−13 | 3.7 × 10−12 | 1.96 × 10−13 | 5 × 10−13 | 1.47 × 10−12 | 1.5 × 10−13 |
Mean | 2.26 × 10−4 | 1.8 × 10−8 | 2.8 × 10−8 | 2.6 × 10−9 | 2.03 × 10−8 | 4.5 × 10−9 | 7.7 × 10−9 | 1.3 × 10−9 | 5.3 × 10−8 | |
SD | 4.17 × 10−5 | 9.6 × 10−9 | 1.5 × 10−10 | 6 × 10−10 | 9 × 10−9 | 1.6 × 10−9 | 2.2 × 10−9 | 5.2 × 10−10 | 3 × 10−8 |
0 PV | 1 PV | 2 PV | 3 PV | ||||
---|---|---|---|---|---|---|---|
- | - | 1st PV | 2nd PV | 1st PV | 2nd PV | 3rd PV | |
Optimal position | - | 3 | 6 | 5 | 1 | 2 | 7 |
Optimal capacity (MW) | - | 4 | 5 | 5 | 3 | 4 | 4 |
Minimum Ploss (pu) | 0.1348 | 0.1289 | 0.1252 | 0.1208 | |||
Reduction percentage (%) | - | 4 | 7 | 10.3 |
1PVDG-BES | 2PVDG-BES | 3PVDG-BES | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PV | BES | 1st PV | 1st BES | 2nd PV | 2nd BES | 1st PV | 1st BES | 2nd PV | 2nd BES | 3rd PV | 3rd BES | |||
Optimal position | 4 | 1 | 4 | 6 | 5 | 4 | ||||||||
Optimal capacity (MW) | 4.5 | 3 | 2.5 | 4.4 | 1.4 | 4 | 1.2 | 2 | 1.5 | 2 | 1.5 | 2 | ||
Minimum Ploss (pu) | 0.1043 | 0.0973 | 0.0898 | |||||||||||
Reduction percentage (%) | 22.6 | 28 | 33.3 |
GA | LoGA | (Te-Si-Lo)GA | |
---|---|---|---|
Best minimum Ploss (pu) | 0.0953 | 0.0943 | 0.0919 |
Reduction percentage (%) | 29.3 | 30 | 31.8 |
Optimal PVDG capacity (MW) | 1.5 | 2.7 | 5 |
Optimal BES capacity (MW) | 1.5 | 4.4 | 4 |
Optimal location | 4 | 1 | 1 |
Mean | 0.950 | 0.094 | 0.091 |
SD | 3.4 × 10−4 | 1.1 × 10−3 | 3.18 × 10−6 |
Number of iterations | 479 | 377 | 252 |
LPSP | 0.0899 | 0.0812 | 0.03315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khenissi, I.; Guesmi, T.; Marouani, I.; Alshammari, B.M.; Alqunun, K.; Albadran, S.; Rahmani, S.; Neji, R. Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile. Sustainability 2023, 15, 1004. https://doi.org/10.3390/su15021004
Khenissi I, Guesmi T, Marouani I, Alshammari BM, Alqunun K, Albadran S, Rahmani S, Neji R. Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile. Sustainability. 2023; 15(2):1004. https://doi.org/10.3390/su15021004
Chicago/Turabian StyleKhenissi, Imene, Tawfik Guesmi, Ismail Marouani, Badr M. Alshammari, Khalid Alqunun, Saleh Albadran, Salem Rahmani, and Rafik Neji. 2023. "Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile" Sustainability 15, no. 2: 1004. https://doi.org/10.3390/su15021004
APA StyleKhenissi, I., Guesmi, T., Marouani, I., Alshammari, B. M., Alqunun, K., Albadran, S., Rahmani, S., & Neji, R. (2023). Energy Management Strategy for Optimal Sizing and Siting of PVDG-BES Systems under Fixed and Intermittent Load Consumption Profile. Sustainability, 15(2), 1004. https://doi.org/10.3390/su15021004