Bibliometric Analysis and Key Messages of Monkeypox Research (2003–2022)
Abstract
:1. Introduction
2. Methods
2.1. Search Strategies
2.2. Data Collection and Analysis
2.3. Materials and Methods
3. Results
3.1. Publication Output and Temporal Trend
3.2. Distribution by Country/Region
3.3. Distribution by Author
3.4. Distribution by Journal and Analysis of Co-Cited References
3.5. Analysis of Keywords Co-Occurrence Clusters
3.6. Analysis of Burst Keywords
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bragazzi, N.L.; Kong, J.D.; Mahroum, N.; Tsigalou, C.; Khamisy-Farah, R.; Converti, M.; Wu, J. Epidemiological trends and clinical features of the ongoing monkeypox epidemic: A preliminary pooled data analysis and literature review. J. Med. Virol. 2023, 95, e27931. [Google Scholar] [CrossRef] [PubMed]
- Antinori, A.; Mazzotta, V.; Vita, S.; Carletti, F.; Tacconi, D.; Lapini, L.E.; D’Abramo, A.; Cicalini, S.; Lapa, D.; Pittalis, S.; et al. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Eurosurveillance 2022, 27, 2200421. [Google Scholar] [CrossRef]
- Vivancos, R.; Anderson, C.; Blomquist, P.; Balasegaram, S.; Bell, A.; Bishop, L.; Brown, C.; Chow, Y.; Edeghere, O.; Florence, I.; et al. Community transmission of monkeypox in the United Kingdom, April to May 2022. Eurosurveillance 2022, 27, 2200422. [Google Scholar] [CrossRef]
- Adegboye, O.A.; Castellanos, M.E.; Alele, F.O.; Pak, A.; Ezechukwu, H.C.; Hou, K.; Emeto, T.I. Travel-Related Monkeypox Outbreaks in the Era of COVID-19 Pandemic: Are We Prepared? Viruses 2022, 14, 1283. [Google Scholar] [CrossRef] [PubMed]
- Mauldin, M.; McCollum, A.; Nakazawa, Y.; Mandra, A.; Whitehouse, E.; Davidson, W.; Zhao, H.; Gao, J.; Li, Y.; Doty, J.; et al. Exportation of Monkeypox Virus from the African Continent. J. Infect. Dis. 2022, 225, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.K.; Ansari, S.; Maurya, V.K.; Kumar, S.; Jain, A.; Paweska, J.T.; Tripathi, A.K.; Abdel-Moneim, A.S. Re-emerging human monkeypox: A major public-health debacle. J. Med. Virol. 2023, 95, e27902. [Google Scholar] [CrossRef]
- Yang, Z. Monkeypox: A potential global threat? J. Med. Virol. 2022, 94, 4034–4036. [Google Scholar] [CrossRef]
- Benita, F. Human mobility behavior in COVID-19: A systematic literature review and bibliometric analysis. Sustain. Cities Soc. 2021, 70, 102916. [Google Scholar] [CrossRef]
- Zyoud, S.H. The Arab region’s contribution to global COVID-19 research: Bibliometric and visualization analysis. Glob. Health 2021, 17, 31. [Google Scholar] [CrossRef]
- Fan, J.; Gao, Y.; Zhao, N.; Dai, R.; Zhang, H.; Feng, X.; Shi, G.; Tian, J.; Chen, C.; Hambly, B.; et al. Bibliometric Analysis on COVID-19: A Comparison of Research between English and Chinese Studies. Front. Public Health 2020, 8, 477. [Google Scholar] [CrossRef]
- Reed, K.D.; Melski, J.W.; Graham, M.B.; Regnery, R.L.; Sotir, M.J.; Wegner, M.V.; Kazmierczak, J.J.; Stratman, E.J.; Li, Y.; Fairley, J.A.; et al. The detection of monkeypox in humans in the Western Hemisphere. N. Engl. J. Med. 2004, 350, 342–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimoin, A.W.; Mulembakani, P.M.; Johnston, S.C.; Lloyd Smith, J.O.; Kisalu, N.K.; Kinkela, T.L.; Blumberg, S.; Thomassen, H.A.; Pike, B.L.; Fair, J.N.; et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. USA 2010, 107, 16262–16267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, S.; Nuara, A.; Buller, R.M.L.; Schultz, D.A. Human monkeypox: An emerging zoonotic disease. Future Microbiol. 2007, 2, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Durski, K.N.; McCollum, A.M.; Nakazawa, Y.; Petersen, B.W.; Reynolds, M.G.; Briand, S.; Djingarey, M.H.; Olson, V.; Damon, I.K.; Khalakdina, A. Emergence of Monkeypox—West and Central Africa, 1970–2017. Mmwr-Morb. Mortal. Wkly. Rep. 2018, 67, 306–310. [Google Scholar] [CrossRef]
- Earl, P.L.; Americo, J.L.; Wyatt, L.S.; Eller, L.A.; Whitbeck, J.C.; Cohen, G.H.; Eisenberg, R.J.; Hartmann, C.J.; Jackson, D.L.; Kulesh, D.A.; et al. Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 2004, 428, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.G.; Carroll, D.S.; Karem, K.L. Factors affecting the likelihood of monkeypox’s emergence and spread in the post-smallpox era. Curr. Opin. Virol. 2012, 2, 335–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, J.R.; Isaacs, S.N. Monkeypox virus and insights into its immunomodulatory proteins. Immunol. Rev. 2008, 225, 96–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakazawa, Y.; Lash, R.R.; Carroll, D.S.; Damon, I.K.; Karem, K.L.; Reynolds, M.G.; Osorio, J.E.; Rocke, T.E.; Malekani, J.M.; Muyembe, J.-J.; et al. Mapping Monkeypox Transmission Risk through Time and Space in the Congo Basin. PLoS ONE 2013, 8, e74816. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L.J.; Townsendl, M.B.; Gallardo-Romerol, N.; Hutson, C.L.; Patel, N.; Doty, J.B.; Salzer, J.S.; Damon, I.K.; Carroll, D.S.; Satheshkumar, P.S.; et al. Magnitude and diversity of immune response to vaccinia virus is dependent on route of administration. Virology 2020, 544, 55–63. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Mauldin, M.R.; Emerson, G.L.; Reynolds, M.G.; Lash, R.R.; Gao, J.; Zhao, H.; Li, Y.; Muyembe, J.J.; Mbala Kingebeni, P.; et al. A Phylogeographic Investigation of African Monkeypox. Viruses 2015, 7, 2168–2184. [Google Scholar] [CrossRef]
- Rao, A.K.; Schulte, J.; Chen, T.H.; Hughes, C.M.; Davidson, W.; Neff, J.M.; Markarian, M.; Delea, K.C.; Wada, S.; Liddell, A.; et al. Monkeypox in a Traveler Returning from Nigeria—Dallas, Texas, July 2021. Mmwr-Morb. Mortal. Wkly. Rep. 2022, 71, 509–516. [Google Scholar] [CrossRef]
- Keckler, M.S.; Salzer, J.S.; Patel, N.; Townsend, M.B.; Nakazawa, Y.J.; Doty, J.B.; Gallardo-Romero, N.F.; Satheshkumar, P.S.; Carroll, D.S.; Karem, K.L.; et al. IMVAMUNE(R) and ACAM2000(R) Provide Different Protection against Disease When Administered Postexposure in an Intranasal Monkeypox Challenge Prairie Dog Model. Vaccines 2020, 8, 396. [Google Scholar] [CrossRef]
- Petersen, E.; Kantele, A.; Koopmans, M.; Asogun, D.; Yinka-Ogunleye, A.; Ihekweazu, C.; Zumla, A. Human Monkeypox Epidemiologic and Clinical Characteristics, Diagnosis, and Prevention. Infect. Dis. Clin. N. Am. 2019, 33, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damon, I.K. Status of human monkeypox: Clinical disease, epidemiology and research. Vaccine 2011, 29, D54–D59. [Google Scholar] [CrossRef] [PubMed]
- Hutson, C.L.; Kondas, A.V.; Mauldin, M.R.; Doty, J.B.; Grossi, I.M.; Morgan, C.N.; Ostergaard, S.D.; Hughes, C.M.; Nakazawa, Y.; Kling, C.; et al. Pharmacokinetics and Efficacy of a Potential Smallpox Therapeutic, Brincidofovir, in a Lethal Monkeypox Virus Animal Model. Msphere 2021, 6, e00927-20. [Google Scholar] [CrossRef]
- Sergeev, A.A.; Kabanov, A.S.; Bulychev, L.E.; Sergeev, A.A.; Pyankov, O.V.; Bodnev, S.A.; Galahova, D.O.; Zamedyanskaya, A.S.; Titova, K.A.; Glotova, T.I.; et al. Using the Ground Squirrel (Marmota bobak) as an Animal Model to Assess Monkeypox Drug Efficacy. Transbound. Emerg. Dis. 2017, 64, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Hutson, C.L.; Damon, I.K. Monkeypox Virus Infections in Small Animal Models for Evaluation of Anti-Poxvirus Agents. Viruses 2010, 2, 2763–2776. [Google Scholar] [CrossRef] [Green Version]
- Shchelkunov, S.N.; Totmenin, A.V.; Babkin, I.V.; Safronov, P.F.; Ryazankina, O.I.; Petrov, N.A.; Gutorov, V.V.; Uvarova, E.A.; Mikheev, M.V.; Sisler, J.R.; et al. Human monkeypox and smallpox viruses: Genomic comparison. FEBS Lett. 2001, 509, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Abrahams, B.C.; Kaufman, D.M. Anticipating smallpox and monkeypox outbreaks—Complications of the smallpox vaccine. Neurologist 2004, 10, 265–274. [Google Scholar] [CrossRef]
- Parker, S.; D’Angelo, J.; Buller, R.M.; Smee, D.F.; Lantto, J.; Nielsen, H.; Jensen, A.; Prichard, M.; George, S.L. A human recombinant analogue to plasma-derived vaccinia immunoglobulin prophylactically and therapeutically protects against lethal orthopoxvirus challenge. Antivir. Res. 2021, 195, 105179. [Google Scholar] [CrossRef]
- Smith, S.K.; Self, J.; Weiss, S.; Carroll, D.; Braden, Z.; Regnery, R.L.; Davidson, W.; Jordan, R.; Hruby, D.E.; Damon, I.K. Effective Antiviral Treatment of Systemic Orthopoxvirus Disease: ST-246 Treatment of Prairie Dogs Infected with Monkeypox Virus. J. Virol. 2011, 85, 9176–9187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.K.; Olson, V.A.; Karem, K.L.; Jordan, R.; Hruby, D.E.; Damon, I.K. In Vitro Efficacy of ST246 against Smallpox and Monkeypox. Antimicrob. Agents Chemother. 2009, 53, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
Number | Author | Documents | Total Link Strength | Country | Institution/Organization |
---|---|---|---|---|---|
1st | Damon, IK | 94 | 481 | USA | Centers for Disease Control and Prevention—USA |
2nd | Reynolds, MG | 56 | 333 | USA | Centers for Disease Control and Prevention—USA |
3rd | Carroll, DS | 50 | 338 | USA | Centers for Disease Control and Prevention—USA |
4th | Karem, KL | 50 | 297 | USA | Centers for Disease Control and Prevention—USA |
5th | Mccollum, A | 32 | 212 | USA | Centers for Disease Control and Prevention—USA |
6th | Li, Y | 30 | 209 | USA | Centers for Disease Control and Prevention—USA |
7th | Olson, VA | 28 | 178 | USA | Centers for Disease Control and Prevention—USA |
8th | Jahrling, PB | 25 | 61 | USA | NIH National Institute of Allergy and Infectious Diseases |
9th | Hruby, DE | 23 | 64 | USA | SIGA Technol Inc |
10th | Nakazawa, YJ | 23 | 171 | USA | Centers for Disease Control and Prevention—USA |
Number | Count | Centrality | Year | Cited Authors | Country | Institution/Organization |
---|---|---|---|---|---|---|
1st | 14 | 0.26 | 2004 | Buller, RML | USA | Saint Louis University |
2nd | 24 | 0.22 | 2011 | Abrahao, JS | Brazil | Universidade Federal de Minas Gerais |
3rd | 18 | 0.16 | 2017 | Bera, BC | INDIA | ICAR—National Research Centre on Equine |
4th | 12 | 0.14 | 2008 | Jordan, R | USA | Gilead Sciences |
5th | 12 | 0.13 | 2006 | Fogg, C | USA | 2013-2018 Freelance Sci Writer |
6th | 6 | 0.13 | 2008 | Broyles, SS | USA | Purdue University |
7th | 9 | 0.12 | 2009 | Berhanu, A | Ethiopia | CDC Ethiopia |
8th | 17 | 0.11 | 2005 | Senkevich, TG | USA | National Institutes of Health (NIH)—USA |
9th | 11 | 0.11 | 2005 | Wyatt, LS | USA | National Institutes of Health (NIH)—USA |
10th | 10 | 0.11 | 2004 | Damaso, CR | Brazil | Universidade Federal do Rio de Janeiro |
Number | Journal | Documents | Country | Journal Rank |
---|---|---|---|---|
1st | J VIROL | 482 | Netherlands | Q2 |
2nd | VIROLOGY | 442 | USA | Q3 |
3rd | P NATL ACAD SCI USA | 432 | USA | Q1 |
4th | EMERG INFECT DIS | 425 | USA | Q1 |
5th | J GEN VIROL | 409 | England | Q2 |
6th | NEW ENGL J MED | 379 | USA | Q1 |
7th | J INFECT DIS | 374 | UK | Q1 |
8th | CLIN INFECT DIS | 311 | UK | Q1 |
9th | NATURE | 288 | UK | Q1 |
10th | AM J TROP MED HYG | 282 | USA | Q2 |
Number | Keyword | Occurrences | Total Link Strength |
---|---|---|---|
1st | monkeypox | 128 | 245 |
2nd | orthopoxvirus | 107 | 230 |
3rd | smallpox | 73 | 193 |
4th | vaccinia virus | 69 | 133 |
5th | poxvirus | 56 | 114 |
6th | monkeypox virus | 45 | 85 |
7th | variola | 44 | 136 |
8th | zoonosis | 42 | 91 |
9th | vaccinia | 34 | 98 |
10th | antiviral | 28 | 73 |
11th | smallpox vaccine | 24 | 45 |
12th | vaccine | 23 | 54 |
13th | cowpox virus | 22 | 58 |
14th | animal model | 20 | 60 |
15th | epidemiology | 16 | 45 |
16th | virus | 16 | 49 |
17th | cowpox | 15 | 52 |
18th | bioterrorism | 13 | 26 |
19th | cidofovir | 13 | 38 |
20th | outbreak | 13 | 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.; Zhang, X.; Du, M.; Dong, Y.; Liu, L.; Rong, H.; Liu, J. Bibliometric Analysis and Key Messages of Monkeypox Research (2003–2022). Sustainability 2023, 15, 1005. https://doi.org/10.3390/su15021005
Yu W, Zhang X, Du M, Dong Y, Liu L, Rong H, Liu J. Bibliometric Analysis and Key Messages of Monkeypox Research (2003–2022). Sustainability. 2023; 15(2):1005. https://doi.org/10.3390/su15021005
Chicago/Turabian StyleYu, Weijie, Xiaowen Zhang, Meijiao Du, Yue Dong, Lin Liu, Hongguo Rong, and Jianping Liu. 2023. "Bibliometric Analysis and Key Messages of Monkeypox Research (2003–2022)" Sustainability 15, no. 2: 1005. https://doi.org/10.3390/su15021005
APA StyleYu, W., Zhang, X., Du, M., Dong, Y., Liu, L., Rong, H., & Liu, J. (2023). Bibliometric Analysis and Key Messages of Monkeypox Research (2003–2022). Sustainability, 15(2), 1005. https://doi.org/10.3390/su15021005