Travel Demand Management Implications during the COVID-19 Pandemic: The Case Study of Tehran
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. TDM Strategies
3.1.1. Teleworking
3.1.2. E-Learning
3.1.3. Changing the Congestion Pricing Scheme
3.1.4. Rescheduling Working Hours
3.2. TDM Mixed Scenarios
3.3. Travel Demand Forecasting Model (EMME/2: Equilibre Multimodal/Multimodal Equilibrium)
4. Results
4.1. Traffic Impact
4.2. Emission Impact
4.3. Energy Impact
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, G.R.; Dhore, R.; Bhavathrathan, B.K.; Pawar, D.S.; Sahu, P.; Mulani, A. Consumer responses towards essential purchases during COVID-19 pan-India lockdown. Res. Transp. Bus. Manag. 2022, 43, 100768. [Google Scholar] [CrossRef]
- Bauer, M.; Bauer, K. Analysis of the Impact of the COVID-19 Pandemic on the Future of Public Transport: Example of Warsaw. Sustainability 2022, 14, 7268. [Google Scholar] [CrossRef]
- Praharaj, S.; King, D.; Pettit, C.; Wentz, E. Using Aggregated Mobility Data to Measure the Effect of COVID-19 Policies on Mobility Changes in Sydney, London, Phoenix, and Pune. Findings 2020. [Google Scholar] [CrossRef]
- Shemer, L.; Shayanfar, E.; Avner, J.; Miquel, R.; Mishra, S.; Radovic, M. COVID-19 Impacts on Mobility and Travel Demand. Case Stud. Transp. Policy 2022, 10, 2519–2529. [Google Scholar] [CrossRef]
- Grechi, D.; Ceron, M. COVID-19 lightening the load factor in railway transport: Performance analysis in the north-west area of Milan. Res. Transp. Bus. Manag. 2022, 43, 100739. [Google Scholar] [CrossRef]
- Loo, B.P.Y.; Huang, Z. Spatio-temporal variations of traffic congestion under work from home (WFH) arrangements: Lessons learned from COVID-19. Cities 2022, 124, 103610. [Google Scholar] [CrossRef]
- Das, S.; Boruah, A.; Banerjee, A.; Raoniar, R.; Nama, S.; Maurya, A.K. Impact of COVID-19: A radical modal shift from public to private transport mode. Transp. Policy 2021, 109, 1–11. [Google Scholar] [CrossRef]
- Pawar, D.S.; Yadav, A.K.; Choudhary, P.; Velaga, N.R. Modelling work- and non-work-based trip patterns during transition to lockdown period of COVID-19 pandemic in India. Travel Behav. Soc. 2021, 24, 46–56. [Google Scholar] [CrossRef]
- Szczepanek, W.K.; Kruszyna, M. The Impact of COVID-19 on the Choice of Transport Means in Journeys to Work Based on the Selected Example from Poland. Sustainability 2022, 14, 7619. [Google Scholar] [CrossRef]
- Li, Y. Common Sharing or Public Sharing: A Study on the Choice Behavior of Urban Citizens in Public Travel. Sustainability 2022, 14, 9459. [Google Scholar] [CrossRef]
- Javid, M.A.; Ali, N.; Campisi, T.; Tesoriere, G.; Chaiyasarn, K. Influence of Social Constraints, Mobility Incentives, and Restrictions on Commuters’ Behavioral Intentions and Moral Obligation towards the Metro-Bus Service in Lahore. Sustainability 2022, 14, 2654. [Google Scholar] [CrossRef]
- Zhang, N.; Jia, W.; Wang, P.; Dung, C.H.; Zhao, P.; Leung, K.; Su, B.; Cheng, R.; Li, Y. Changes in local travel behaviour before and during the COVID-19 pandemic in Hong Kong. Cities 2021, 112, 103139. [Google Scholar] [CrossRef]
- Shen, J. Measuring the impact of mitigation measures on infection risk of COVID-19 in Hong Kong since February 2020. Cities 2021, 114, 103192. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, E.; Manoj, B.S.; Wadud, Z.; Goswami, A.K.; Choudhury, C.F. Modelling the effects of COVID-19 on travel mode choice behaviour in India. Transp. Res. Interdiscip. Perspect. 2020, 8, 100273. [Google Scholar] [CrossRef]
- Griffiths, S.; Furszyfer Del Rio, D.; Sovacool, B. Policy mixes to achieve sustainable mobility after the COVID-19 crisis. Renew. Sustain. Energy Rev. 2021, 143, 110919. [Google Scholar] [CrossRef]
- Habib, M.A.; Anik, M.A.H. Impacts of COVID-19 on Transport Modes and Mobility Behavior: Analysis of Public Discourse in Twitter. Transp. Res. Rec. J. Transp. Res. Board 2021, 03611981211029926. [Google Scholar] [CrossRef]
- Ecke, L.; Magdolen, M.; Chlond, B.; Vortisch, P. How the COVID-19 pandemic changes daily commuting routines—Insights from the German Mobility Panel. Case Stud. Transp. Policy 2022, 10, 2175–2182. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.F.; Silva, C.; Moura e Sá, F. The strengths and weaknesses of bike sharing as an alternative mode during disruptive public health crisis: A qualitative analysis on the users’ motivations during COVID-19. Transp. Policy 2022, 129, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liu, J.; Tao, T.; Zhao, Q. Impacts of COVID-19 on public transit ridership. Int. J. Transp. Sci. Technol. 2021, in press. [Google Scholar] [CrossRef]
- Parker, M.E.G.; Li, M.; Bouzaghrane, M.A.; Obeid, H.; Hayes, D.; Frick, K.T.; Rodríguez, D.A.; Sengupta, R.; Walker, J.; Chatman, D.G. Public transit use in the United States in the era of COVID-19: Transit riders’ travel behavior in the COVID-19 impact and recovery period. Transp. Policy 2021, 111, 53–62. [Google Scholar] [CrossRef]
- Salon, D.; Conway, M.W.; da Silva, D.C.; Chauhan, R.S.; Derrible, S.; Mohammadian, A.; Khoeini, S.; Parker, N.; Mirtich, L.; Shamshiripour, A.; et al. The potential stickiness of pandemic-induced behavior changes in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2106499118. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, B.Y.; Gao, J.; Chow, J.Y.J.; Ozbay, K.; Iyer, S. Impact of COVID-19 behavioral inertia on reopening strategies for New York City transit. Int. J. Transp. Sci. Technol. 2021, 10, 197–211. [Google Scholar] [CrossRef]
- Basu, R.; Ferreira, J. Sustainable mobility in auto-dominated Metro Boston: Challenges and opportunities post-COVID-19. Transp. Policy 2021, 103, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.; Chakraborty, R.; Anwari, N. Impact of COVID-19 on daily travel behaviour: A literature review. Transp. Saf. Environ. 2022, 4, tdac013. [Google Scholar] [CrossRef]
- Zhang, J.; Hayashi, Y.; Frank, L.D. COVID-19 and transport: Findings from a world-wide expert survey. Transp. Policy 2021, 103, 68–85. [Google Scholar] [CrossRef]
- Sunio, V.; Mateo-Babiano, I. Pandemics as ‘windows of opportunity’: Transitioning towards more sustainable and resilient transport systems. Transp. Policy 2022, 116, 175–187. [Google Scholar] [CrossRef]
- Habibian, M.; Rezaei, A. Accounting for systematic heterogeneity across car commuters in response to multiple TDM policies: Case study of Tehran. Transportation 2017, 44, 681–700. [Google Scholar] [CrossRef]
- World Population Review No Title. Available online: Worldpopulationreview.com/world-cities/tehran-population (accessed on 15 December 2021).
- Soltanpour, A.; Mesbah, M.; Habibian, M. Customer satisfaction in urban rail: A study on transferability of structural equation models. Public Transp. 2020, 12, 123–146. [Google Scholar] [CrossRef]
- Transportation and Traffic Organization of Tehran Municipality. Tehran’s Urban Transportation Information and Statics; 2020. Available online: https://traffic.tehran.ir/ (accessed on 25 July 2022).
- Lesteven, G.; Samadzad, M. Ride-hailing, a new mode to commute? Evidence from Tehran, Iran. Travel Behav. Soc. 2021, 22, 175–185. [Google Scholar] [CrossRef]
- Akbari, F.; Mahpour, A.; Ahadi, M.R. Evaluation of Energy Consumption and CO2 Emission Reduction Policies for Urban Transport with System Dynamics Approach. Environ. Model. Assess. 2020, 25, 505–520. [Google Scholar] [CrossRef]
- Heger, M.; Sarraf, M. Air Pollution in Tehran: Health Costs, Sources, and Policies; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Mahoutchi Saeid, K.; Esfahanian, V.; Ahmadi Kia, H.; Ohadi, A.; Hojjat, Y.; Khazini, L.; Taleei, M.; Rashidi, Y.; Ramezanian, N.; Soleimani, M.; et al. Emissions of Air Pollutants, Management Report; University of Tehran Press: Tehran, Iran, 2021; ISBN 978-964-03-0246-0. [Google Scholar]
- Baghestani, A.; Tayarani, M.; Allahviranloo, M.; Oliver Gao, H. Cordon pricing, daily activity pattern, and exposure to traffic-related air pollution: A case study of New York City. Atmosphere 2021, 12, 1458. [Google Scholar] [CrossRef]
- Baghestani, A.; Tayarani, M.; Allahviranloo, M.; Nadafianshahamabadi, R.; Kucheva, Y.; Mamdoohi, A.R.; Oliver Gao, H. New York City cordon pricing and its’ impacts on disparity, transit accessibility, air quality, and health. Case Stud. Transp. Policy 2022, 10, 485–499. [Google Scholar] [CrossRef]
- He, S.Y.; Hu, L. Telecommuting, income, and out-of-home activities. Travel Behav. Soc. 2015, 2, 131–147. [Google Scholar] [CrossRef]
- Mokhtarian, P.L.; Collantes, G.O.; Gertz, C. Telecommuting, residential location, and commute-distance traveled: Evidence from State of California employees. Environ. Plan. A 2004, 36, 1877–1897. [Google Scholar] [CrossRef]
- Olde Kalter, M.J.; Geurs, K.T.; Wismans, L. Post COVID-19 teleworking and car use intentions. Evidence from large scale GPS-tracking and survey data in the Netherlands. Transp. Res. Interdiscip. Perspect. 2021, 12, 100498. [Google Scholar] [CrossRef]
- Goulias, K.G.; Su, R.; Mcbride, E.C. Revisiting the Impact of Teleworking on Activity-Travel Behavior Using Recent Data and Sequence-Based Analytical Techniques; Report No. PSR-19-15; Pacific Southwest Region University Transportation Center (UTC): Long Beach, CA, USA, 2020.
- Ton, D.; Arendsen, K.; de Bruyn, M.; Severens, V.; van Hagen, M.; van Oort, N.; Duives, D. Teleworking during COVID-19 in the Netherlands: Understanding behaviour, attitudes, and future intentions of train travellers. Transp. Res. Part A Policy Pract. 2022, 159, 55–73. [Google Scholar] [CrossRef]
- Angell, C.; Potoglou, D. An insight into the impacts of COVID-19 on work-related travel behaviours in the Cardiff Capital Region and following the UK’s first national lockdown. Cities 2022, 124, 103602. [Google Scholar] [CrossRef]
- Beck, M.J.; Hensher, D.A. Insights into the impact of COVID-19 on household travel and activities in Australia—The early days under restrictions. Transp. Policy 2020, 96, 76–93. [Google Scholar] [CrossRef]
- Consortium of Amirkabir University of Technology and Tarbiat Modares University. Travel Behavior Analysis during the COVID-19, Tehran Travel Demand Management Research Studies, Final Questionnaire Report; Tehran Traffic and Transportation Organization: Tehran, Iran, 2021. [Google Scholar]
- Consortium of Amirkabir University of Technology and Tarbiat Modares University. Traffic Volume Changes during the COVID-19 Using Traffic Camera Records, Tehran Travel Demand Management Research Studies, Final Report; Tehran Traffic and Transportation Organization: Tehran, Iran, 2021. [Google Scholar]
- Cherkasova, M.; Sirotkin, V.; Kostyukov, A. E-learning for transportation professionals (post graduate program) during the COVID-19 pandemic. Transp. Res. Procedia 2022, 63, 254–263. [Google Scholar] [CrossRef]
- Adedoyin, O.B.; Soykan, E. Covid-19 pandemic and online learning: The challenges and opportunities. Interact. Learn. Environ. 2020, 1–13. [Google Scholar] [CrossRef]
- TCTTS. Tehran Mid-Range Transportation and Traffic Studies; Tehran Traffic Control Company: Tehran, Iran, 2000. [Google Scholar]
- Dueker, K.; Rao, R.L.; Cotugno, A.; Lawson, K.; Walker, R. The Impact of EMME/2 on Urban Transportation Planning: A Portland Case Study; Center for Urban Studies Publications and Reports. 78; Portland State University: Portland, OR, USA, 1985. [Google Scholar]
- Zhang, Z.; Fu, D.; Liu, F.; Wang, J.; Xiao, K.; Wolshon, B. COVID-19, Traffic Demand, and Activity Restriction in China: A National Assessment. Travel Behav. Soc. 2022, 31, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Lei, Z.; Hai, Z.; Xiao, S.; Rui, J.; Yang, H.; Jing, X.; Wang, H.; Xie, Z.; Luo, P.; et al. Transmission of SARS-CoV-2 in public transportation vehicles: A case study in Hunan Province, China. Open Forum Infect. Dis. 2020, 7, ofaa430. [Google Scholar] [CrossRef] [PubMed]
- Shabani, A.; Shabani, A.; Ahmadinejad, B.; Salmasnia, A. Measuring the customer satisfaction of public transportation in Tehran during the COVID-19 pandemic using MCDM techniques. Case Stud. Transp. Policy 2022, 10, 1520–1530. [Google Scholar] [CrossRef] [PubMed]
Strategy | Teleworking | E-Learning | Changing the Congestion Pricing Scheme | Rescheduling Working Hours | |
---|---|---|---|---|---|
Scenario | |||||
TDM1 | 🗸 | 🗸 | – | – | |
TDM2 | 🗸 | 🗸 | 🗸 | – | |
TDM3 | 🗸 | 🗸 | – | 🗸 | |
TDM4 | 🗸 | 🗸 | 🗸 | 🗸 |
Scenario | Strategy | Measure | ||||
---|---|---|---|---|---|---|
Ave Speed (Km/h) | Travel Time (Veh-h) | Delay (% of Travel Time) | VKT (Veh-Km) | V/C > 1 (% of Network Area) | ||
Base | – | 24.24 | 335,515 | 55.61 | 8,131,996 | 13.57 |
TDM1 | Teleworking + E-learning | 30.74 | 208,924 | 44.93 | 6,421,552 | 7.22 |
TDM2 | TDM1 + Relaxed CP | 27.47 | 257,362 | 50.48 | 7,070,129 | 9.72 |
TDM3 | TDM1 + Peak-shifting | 31.29 | 201,887 | 44.01 | 6,316,480 | 6.71 |
TDM4 | TDM2 + TDM3 | 28.20 | 246,060 | 49.23 | 6,939,494 | 9.35 |
Scenario | Strategy | Emission (Kg) | ||
---|---|---|---|---|
CO | HC | NOx | ||
Base | – | 480,068 | 56,598 | 9847 |
TDM1 | Teleworking + E-learning | 326,235 (−32%) | 38,034 (−33%) | 8183 (−17%) |
TDM2 | TDM1 + Relaxed CP | 388,176 (−19%) | 44,657 (−21%) | 8665 (−12%) |
TDM3 | TDM1 + Peak-shifting | 316,830 (−34%) | 36,908 (−35%) | 8105 (−18%) |
TDM4 | TDM2 + TDM3 | 375,269 (−22%) | 43,056 (−24%) | 8568 (−13%) |
Scenario | Strategy | Fuel Consumption (Liter) | |
---|---|---|---|
Gas | Gas Oil | ||
Base | – | 1,358,273 | 134,045 |
TDM1 | Teleworking + E-learning | 964,742 | 102,168 |
TDM2 | TDM1 + Relaxed CP | 1,124,043 | 104,659 |
TDM3 | TDM1 + Peak-shifting | 940,816 | 101,564 |
TDM4 | TDM2 + TDM3 | 1,088,232 | 103,705 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghestani, A.; Tayarani, M.; Mamdoohi, A.R.; Habibian, M.; Gao, O. Travel Demand Management Implications during the COVID-19 Pandemic: The Case Study of Tehran. Sustainability 2023, 15, 1209. https://doi.org/10.3390/su15021209
Baghestani A, Tayarani M, Mamdoohi AR, Habibian M, Gao O. Travel Demand Management Implications during the COVID-19 Pandemic: The Case Study of Tehran. Sustainability. 2023; 15(2):1209. https://doi.org/10.3390/su15021209
Chicago/Turabian StyleBaghestani, Amirhossein, Mohammad Tayarani, Amir Reza Mamdoohi, Meeghat Habibian, and Oliver Gao. 2023. "Travel Demand Management Implications during the COVID-19 Pandemic: The Case Study of Tehran" Sustainability 15, no. 2: 1209. https://doi.org/10.3390/su15021209
APA StyleBaghestani, A., Tayarani, M., Mamdoohi, A. R., Habibian, M., & Gao, O. (2023). Travel Demand Management Implications during the COVID-19 Pandemic: The Case Study of Tehran. Sustainability, 15(2), 1209. https://doi.org/10.3390/su15021209