Model Study of Mechanicochemical Degradation in a Planetary Ball Mill
Abstract
:1. Introduction
2. Ball Milling Model and Verification
2.1. Ball Milling Kinematic Model
2.1.1. The Derivation Process
2.1.2. The Experimental Verification Process
2.2. Energy Transfer Model
2.2.1. The Derivation Process
- (1)
- The collision process involves completely elastic collision, and no energy loss occurs in the process;
- (2)
- The Hertz radius is significantly less than the radius of the impact milling ball; therefore, the contact surface of the impact milling ball is treated as a plane.
Single Elastic Collision Energy
The Average Free Path of Milling Ball
Collision Material Mass
Energy Transfer Power of Milling Ball System
2.2.2. The Experimental Verification Process
Single Elastic Collision Energy
Average Free Path of the Milling Ball
Mass of the Collision Material
Energy Transfer Power
3. System Temperature Change
4. Conclusions
- (1)
- Under the experimental milling-ball conditions, considering that a single ball is moving to reach the take-off condition, the maximum speed of the ball is v = 3.169 m/s, and the maximum centrifugal acceleration is 16.84 times the acceleration of gravity.
- (2)
- Under the experimental milling-ball conditions, the single-elastic collision energy of the milling ball is 8.09 × 10−3 J, the collision frequency of the ball mill is 97.7 Hz, and the power of the ball mill on the material is 0.356 W.
- (3)
- Under the experimental milling-ball conditions, the theoretical calculated time from the impact of the material particles in the milling-ball process to the next action is Tc = 0.01 s, and the material particles have sufficient time to cool after heating up due to the collisions. Therefore, no local high temperature accumulation occurs, and the temperature change of the entire milling-ball system is small.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, X.; Li, C.H.; Xiong, W.H.; Lu, Q.Z. Progress in modeling of Meehanieal alloying. Mater. Rev. 2002, 8, 11–14. [Google Scholar]
- Brun, L.; Froyen, L.; Delaey, L. The modelling of the mechanical alloying process in a planetary ball mill: Comparison between theory and in-situ observations. Mater. Sci. Eng. A 1993, 161, 75–82. [Google Scholar] [CrossRef]
- Maurice, R.; Courtney, T. The physics of mechanical alloying: A first report. Metall. Trans. A 1990, 211, 289–303. [Google Scholar] [CrossRef]
- Chattopadhyay, P.P.; Manna, I.; Talapatra, S.; Pabi, S.K. A mathematical analysis of milling mechanics in a planetary ball mill. Mater. Chem. Phys. 2001, 68, 85–94. [Google Scholar] [CrossRef]
- Burgio, N.; Iasonna, A.; Magini, M.; Martelli, S.; Padella, F. Mechanical alloying of the FeZr system. Correlation between input energy and end products. Nuovo Cim. D 1991, 134, 459–476. [Google Scholar] [CrossRef]
- Schilz, J. Internal Kinematics of Tumbler and Planetary Ball Mills: A Mathematical Model for the Parameter Setting. Mater. Trans. 1998, 39, 1152–1157. [Google Scholar] [CrossRef] [Green Version]
- Love, A.E.H. A Treatise on the Mathematical Theory of Elasticity; Cambridge University Press: Cambridge, UK, 1926. [Google Scholar]
- Timoshenko, S.P.; Goodier, J.N.; Abramson, H.N. Theory of Elasticity. J. Appl. Mech. 1970, 37, 888. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Huang, J.; Wang, Z.; Yu, Y.; Deng, S.; Yu, G. Mechanochemical degradation of tetrabromobisphenol A: Performance, products and pathway. J. Hazard. Mater. 2012, 243, 278–285. [Google Scholar] [CrossRef]
- Monagheddu, M.; Mulas, G.; Doppiu, S.; Cocco, G.; Raccanelli, S. Reduction of polychlorinated dibenzodioxins and dibenzofurans in contaminated muds by mechanically induced combustion reactions. Environ. Sci. Technol. 1999, 33, 2485–2488. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Wang, H.; Liu, K.; Yu, G.; Deng, S.; Wang, B. Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. Chemosphere 2014, 116, 40–45. [Google Scholar] [CrossRef]
- Yugo, N.; Satoshi, N.; Masaaki, H. Elucidation of Degradation Mechanism of Dioxins during Mechanochemical Treatment. Environ. Sci. Technol. 2005, 39, 3799–3804. [Google Scholar]
- Andini, S.; Bolognese, A.; Formisano, D.; Manfra, M.; Montagnaro, F.; Santoro, L. Mechanochemistry of ibuprofen pharmaceutical. Chemosphere 2012, 88, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Huang, J.; Zhang, W.; Zhang, K.; Deng, S.; Yu, G. Mechanochemical destruction of mirex co-ground with iron and quartz in a planetary ball mill. Chemosphere 2013, 90, 1729–1735. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Zhao, J.; Sun, W.; Li, X.; Li, J.; Zhang, J.; Jing, Z. NaOH-activated persulfate-assisted mechanochemical mechanism and removal of lindane from contaminated soil. J. Environ. Chem. Eng. 2021, 9, 105391. [Google Scholar] [CrossRef]
- Nomura, Y.; Fujiwara, K.; Terada, A.; Nakai, S.; Hosomi, M. Mechanochemical degradation of γ-hexachlorocyclohexane by a planetary ball mill in the presence of CaO. Chemosphere 2012, 86, 228–234. [Google Scholar] [CrossRef]
- Di Leo, P.; Pizzigallo, M.D.R.; Ancona, V.; Di Benedetto, F.; Mesto, E.; Schingaro, E.; Ventruti, G. Mechanochemical degradation of pentachlorophenol onto birnessite. J. Hazard. Mater. 2012, 244–245, 303–310. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Zhang, K.; Qi, C. Sodium persulfate-assisted mechanochemical degradation of tetrabromobisphenol A: Efficacy, products and pathway. Chemosphere 2016, 150, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Loiselle, S.; Branca, M.; Mulas, G.; Cocco, G. Selective Mechanochemical Dehalogenation of Chlorobenzenes over Calcium Hydride. Environ. Sci. Technol. 1996, 31, 261–265. [Google Scholar] [CrossRef]
- Tochi, K.; Noguchi, T.; Yamazaki, H.; Unno, K.; Miyazaki, M.; Shoji, S. Thin-Film Piezoelectric Element and Method of Making Same. US US7247975, 24 July 2007. [Google Scholar]
- Kotacska, L.H.; Langensiepen, R.A.; Murphy, J.P. Corrosion-Resistant Cradle And Castable Materials For Glass Production. WO US20090272150, 5 November 2009. [Google Scholar]
- Murty, B.S.; Rao, M.M.; Ranganathan, S. Milling maps and amorphization during mechanical alloying. Acta Metall. Mater. 1995, 43, 2443–2450. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Shao, K.; Lin, C.; Li, C.; Ge, F.; Dong, Y. Fe0-activated persulfate-assisted mechanochemical destruction of expired compound sulfamethoxazole tablets. RSC Adv. 2016, 6, 20938–20948. [Google Scholar] [CrossRef]
- Yao, L. Analysis of the reason for the extremely low energy utilization rate of the ball mill. J. Southwest Univ. Sci. Technol. (Philos. Soc. Sci. Ed.) 2002, 2, 40–43. [Google Scholar]
- Lü, L.; Lai, M.O.; Zhang, S. Modeling of the mechanical-alloying process. J. Mater. Process. Technol. 1995, 52, 539–546. [Google Scholar] [CrossRef]
- Hao, L.; Lu, Y.; Sato, H.; Asanuma, H.; Guo, J. Analysis on energy transfer during mechanical coating and ball milling-Supported by electric power measurement in planetary ball mill. Int. J. Miner. Process. 2013, 121, 51–58. [Google Scholar] [CrossRef]
Impact Type | |||
---|---|---|---|
Ball to another ball of the same size and material | 5.5744 | 0.9731 | 0.4646 |
Parameter | Value | Calculation Process | Remark |
---|---|---|---|
3.169 m/s | - | Section 2.1.2 | |
5.5744 | - | Table 1 | |
0.9731 | - | ||
0.4646 | - | ||
Equation (17) | |||
Equation (18) | |||
δmax = rh2/2rb | Equation (19) | ||
Equation (20) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liu, X.; Zhao, J.; Sun, W.; Zhang, Y.; Qiao, J.; Xing, G.; Wang, X. Model Study of Mechanicochemical Degradation in a Planetary Ball Mill. Sustainability 2023, 15, 1353. https://doi.org/10.3390/su15021353
Zhang X, Liu X, Zhao J, Sun W, Zhang Y, Qiao J, Xing G, Wang X. Model Study of Mechanicochemical Degradation in a Planetary Ball Mill. Sustainability. 2023; 15(2):1353. https://doi.org/10.3390/su15021353
Chicago/Turabian StyleZhang, Xiaohui, Xitao Liu, Jianguo Zhao, Wenjun Sun, Yuanna Zhang, Jun Qiao, Guoqiang Xing, and Xiaoshu Wang. 2023. "Model Study of Mechanicochemical Degradation in a Planetary Ball Mill" Sustainability 15, no. 2: 1353. https://doi.org/10.3390/su15021353
APA StyleZhang, X., Liu, X., Zhao, J., Sun, W., Zhang, Y., Qiao, J., Xing, G., & Wang, X. (2023). Model Study of Mechanicochemical Degradation in a Planetary Ball Mill. Sustainability, 15(2), 1353. https://doi.org/10.3390/su15021353