Adsorption of Fatty Acid on Beta-Cyclodextrin Functionalized Cellulose Nanofiber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CNF by Electrospinning Process
2.3. Functionalization of Cellulose Nanofiber with β-cyclodextrin
2.4. Morphological, Surface and Thermal Characterization of Nanofibers
2.5. Adsorption of Palmitic Acid
2.5.1. Comparison of Palmitic Acid Adsorption onto CNF and CNF/β-CD
2.5.2. Adsorption Kinetics
2.5.3. Adsorption Isotherms and Thermodynamic
2.6. Palmitic Acid Quantification Using High Performance Liquid Chromatography
3. Results and Discussion
3.1. The Synthesis of Beta-Cyclodextrin Functionalized Cellulose Nanofiber
3.2. Functionalization of Cellulose Nanofiber with β-Cyclodextrin
3.3. Morphological Characterization of the Nanofibers
3.4. Surface Chemical Characterization of Nanofiber
3.5. Thermal Characterization of the Nanofibers
3.6. Adsorption Behavior of Palmitic Acid onto CNF/β-CD
3.6.1. Comparison of Adsorption Performance of the CNF and CNF/β-CD
3.6.2. Adsorption Kinetics
3.6.3. Adsorption Isotherms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.; Huang, Z.; Li, M.; Sun, P.; Yu, T.; Zhou, L. Novel porous magnetic nanospheres functionalized by β-cyclodextrin polymer and its application in organic pollutants from aqueous solution. Environ. Pollut. 2019, 250, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.; Su, J.; Jiang, Y.; Ke, Q.; Xu, H. A pre-wetting induced superhydrophilic/superlipophilic micro-patterned electrospun membrane with self-cleaning property for on-demand emulsified oily wastewater separation. J. Hazard. Mater. 2020, 384, 121475. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Zhu, Z.; Chen, B.; Zhang, B. Oil-in-water emulsion breaking marine bacteria for demulsifying oily wastewater. Water Res. 2019, 149, 292–301. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, J.; Liu, K.; Jiang, Y.; Yang, G.; Liu, Y.; Lin, C.; Ye, X.; Shi, Y.; Liu, M.; et al. Rapid elimination of trace bisphenol pollutants with porous β-cyclodextrin modified cellulose nanofibrous membrane in water: Adsorption behavior and mechanism. J. Hazard. Mater. 2021, 403, 123666. [Google Scholar] [CrossRef]
- Maniyazagan, M.; Chakraborty, S.; Pérez-Sánchez, H.; Stalin, T. Encapsulation of triclosan within 2-hydroxypropyl–β–cyclodextrin cavity and its application in the chemisorption of rhodamine B dye. J. Mol. Liq. 2019, 282, 235–243. [Google Scholar] [CrossRef]
- Missoum, K.; Belgacem, M.N.; Bras, J. Nanofibrillated Cellulose Surface Modification: A Review. Materials 2013, 6, 1745–1766. [Google Scholar] [CrossRef] [Green Version]
- Connors, K.A. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev. 1997, 97, 1325–1358. [Google Scholar] [CrossRef]
- Del Valle, E. Cyclodextrins and their uses: A review. Process. Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Yin, C.; Cui, Z.; Jiang, Y.; van der Spoel, D.; Zhang, H. Role of Host–Guest Charge Transfer in Cyclodextrin Complexation: A Computational Study. J. Phys. Chem. C 2019, 123, 17745–17756. [Google Scholar] [CrossRef]
- Dodero, A.; Schlatter, G.; Hébraud, A.; Vicini, S.; Castellano, M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr. Polym. 2021, 264, 118042. [Google Scholar] [CrossRef]
- Wongfaed, N.; Kongjan, P.; Prasertsan, P.; O-Thong, S. Effect of oil and derivative in palm oil mill effluent on the process imbalance of biogas production. J. Clean. Prod. 2020, 247, 119110. [Google Scholar] [CrossRef]
- Ekka, B.; Mieriņa, I.; Juhna, T.; Turks, M.; Kokina, K. Quantification of different fatty acids in raw dairy wastewater. Clean. Eng. Technol. 2022, 7, 100430. [Google Scholar] [CrossRef]
- Sousa, D.Z.; Salvador, A.F.; Ramos, J.; Guedes, A.; Barbosa, S.L.; Stams, A.; Alves, M.; Pereira, M.A. Activity and Viability of Methanogens in Anaerobic Digestion of Unsaturated and Saturated Long-Chain Fatty Acids. Appl. Environ. Microbiol. 2013, 79, 4239–4245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deaver, J.A.; Diviesti, K.I.; Soni, M.N.; Campbell, B.J.; Finneran, K.T.; Popat, S.C. Palmitic acid accumulation limits methane production in anaerobic co-digestion of fats, oils and grease with municipal wastewater sludge. Chem. Eng. J. 2020, 396, 125235. [Google Scholar] [CrossRef]
- Liu, H.; Hsieh, Y.-L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 2119–2129. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. Z. Für Chem. Und Ind. Der Kolloide 1907, 2, 15. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Roginsky, S.; Zeldovich, Y.B. The Catalytic Oxidation of Carbon Monoxide on Manganese Dioxide. Acta Phys. Chem. USSR 1934, 1, 2019. [Google Scholar]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Jeppu, G.P.; Clement, T.P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 2012, 129–130, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Tempkin, M.J.; Pyzhev, V. Recent Modifications to Langmuir Isotherms. Acta Phys.-Chim. Sin. 1940, 12, 217–225. [Google Scholar]
- Hall, K.R.; Eagleton, L.C.; Acrivos, A.; Vermeulen, T. Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Ind. Eng. Chem. Fundam. 1966, 5, 212–223. [Google Scholar] [CrossRef]
- Smith, J.M.; Van Ness, H.C. Introduction to Chemical Engineering Thermodynamics, 3rd ed.; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Chen, G.; Shah, K.J.; Shi, L.; Chiang, P.-C. Removal of Cd(II) and Pb(II) ions from aqueous solutions by synthetic mineral adsorbent: Performance and mechanisms. Appl. Surf. Sci. 2017, 409, 296–305. [Google Scholar] [CrossRef]
- Kayaci, F.; Aytac, Z.; Uyar, T. Surface modification of electrospun polyester nanofibers with cyclodextrin polymer for the removal of phenanthrene from aqueous solution. J. Hazard. Mater. 2013, 261, 286–294. [Google Scholar] [CrossRef]
- Abdel-Halim, E.; Fouda, M.M.; Hamdy, I.; Abdel-Mohdy, F.; El-Sawy, S. Incorporation of chlorohexidin diacetate into cotton fabrics grafted with glycidyl methacrylate and cyclodextrin. Carbohydr. Polym. 2010, 79, 47–53. [Google Scholar] [CrossRef]
- Uyar, T.; Havelund, R.; Hacaloglu, J.; Besenbacher, F.; Kingshott, P. Functional Electrospun Polystyrene Nanofibers Incorporating α-, β-, and γ-Cyclodextrins: Comparison of Molecular Filter Performance. ACS Nano 2010, 4, 5121–5130. [Google Scholar] [CrossRef]
- Lim, Y.-M.; Gwon, H.-J.; Pyo, J.; Nho, Y.-C. Preparation of Cellulose-based Nanofibers Using Electrospinning. In Nanofibers; Kumar, A., Ed.; Intech: Rijeka, Croatia, 2010; pp. 179–188. ISBN 978-953-7619-86-2. [Google Scholar]
- Korhonen, J.T.; Kettunen, M.; Ras, R.H.A.; Ikkala, O. Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Appl. Mater. Interfaces 2011, 3, 1813–1816. [Google Scholar] [CrossRef]
- Ortega-Toro, R.; Jiménez, A.; Talens, P.; Chiralt, A. Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydr. Polym. 2014, 109, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Prabakaran, M.; Qilong, S.; Lee, J.S.; Chung, I.-M.; Gopiraman, M.; Song, K.-H.; Kim, I.S. Cyclodextrin functionalized cellulose nanofiber composites for the faster adsorption of toluene from aqueous solution. J. Taiwan Inst. Chem. Eng. 2017, 70, 352–358. [Google Scholar] [CrossRef]
- Kang, Y.; Choi, Y.K.; Kim, H.J.; Song, Y.; Kim, H. Preparation of anti-bacterial cellulose fiber via electrospinning and crosslinking with β-cyclodextrin. Fash. Text. 2015, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Gawish, S.M.; Ramadan, A.M.; Mosleh, S.; Morcellet, M.; Martel, B. Synthesis and characterization of novel biocidal cyclodextrin inclusion complexes grafted onto polyamide-6 fabric by a redox method. J. Appl. Polym. Sci. 2006, 99, 2586–2593. [Google Scholar] [CrossRef]
- Wilpiszewska, K.; Antosik, A.K.; Zdanowicz, M. The Effect of Citric Acid on Physicochemical Properties of Hydrophilic Carboxymethyl Starch-Based Films. J. Polym. Environ. 2019, 27, 1379–1387. [Google Scholar] [CrossRef]
- Demitri, C.; Del Sole, R.; Scalera, F.; Sannino, A.; Vasapollo, G.; Maffezzoli, A.; Ambrosio, L.; Nicolais, L. Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J. Appl. Polym. Sci. 2008, 110, 2453–2460. [Google Scholar] [CrossRef]
- Xie, X.; Liu, Q. Development and Physicochemical Characterization of New Resistant Citrate Starch from Different Corn Starches. Starch–Stärke 2004, 56, 364–370. [Google Scholar] [CrossRef]
- Crini, G.; Peindy, H.N.; Gimbert, F.; Robert, C. Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: Kinetic and equilibrium studies. Sep. Purif. Technol. 2007, 53, 97–110. [Google Scholar] [CrossRef]
- Huang, H.; Fan, Y.; Wang, J.; Gao, H.; Tao, S. Adsorption kinetics and thermodynamics of water-insoluble crosslinked β-cyclodextrin polymer for phenol in aqueous solution. Macromol. Res. 2013, 21, 726–731. [Google Scholar] [CrossRef]
- Murcia-Salvador, A.; Pellicer, J.A.; Fortea, M.I.; Gómez-López, V.M.; Rodríguez-López, M.I.; Núñez-Delicado, E.; Gabaldón, J.A. Adsorption of Direct Blue 78 Using Chitosan and Cyclodextrins as Adsorbents. Polymers 2019, 11, 1003. [Google Scholar] [CrossRef] [Green Version]
- Pellicer, J.A.; Rodríguez-López, M.I.; Fortea, M.I.; Lucas-Abellán, C.; Mercader-Ros, M.T.; López-Miranda, S.; Gómez-López, V.M.; Semeraro, P.; Cosma, P.; Fini, P.; et al. Adsorption Properties of β- and Hydroxypropyl-β-Cyclodextrins Cross-Linked with Epichlorohydrin in Aqueous Solution. A Sustainable Recycling Strategy in Textile Dyeing Process. Polymers 2019, 11, 252. [Google Scholar] [CrossRef] [Green Version]
- Rahman, N.; Nasir, M. Effective removal of acetaminophen from aqueous solution using Ca (II)-doped chitosan/β-cyclodextrin composite. J. Mol. Liq. 2020, 301, 112454. [Google Scholar] [CrossRef]
- Kaveeshwar, A.R.; Ponnusamy, S.K.; Revellame, E.D.; Gang, D.D.; Zappi, M.E.; Subramaniam, R. Pecan shell based activated carbon for removal of iron(II) from fracking wastewater: Adsorption kinetics, isotherm and thermodynamic studies. Process. Saf. Environ. Prot. 2018, 114, 107–122. [Google Scholar] [CrossRef]
- Qiao, X.; Yang, L.; Hu, X.; Cao, Y.; Li, Z.; Xu, J.; Xue, C. Characterization and evaluation of inclusion complexes between astaxanthin esters with different molecular structures and hydroxypropyl-β-cyclodextrin. Food Hydrocoll. 2021, 110, 106208. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Rodríguez-López, M.I.; Fortea, M.I.; Gómez-López, V.M.; Auñón, D.; Núñez-Delicado, E.; Gabaldón, J.A. Synthesis of New Cyclodextrin-Based Adsorbents to Remove Direct Red 83:1. Polymers 2020, 12, 1880. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Qiu, B.; Dang, Y.; Sun, D. Enhanced adsorption of naproxen from aquatic environments by β-cyclodextrin-immobilized reduced graphene oxide. Chem. Eng. J. 2021, 412, 128710. [Google Scholar] [CrossRef]
- Chen, D.; Shen, Y.; Wang, S.; Chen, X.; Cao, X.; Wang, Z.; Li, Y. Efficient removal of various coexisting organic pollutants in water based on β-cyclodextrin polymer modified flower-like Fe3O4 particles. J. Colloid Interface Sci. 2021, 589, 217–228. [Google Scholar] [CrossRef] [PubMed]
Material Characteristics | CNF | CNF/β-CD |
---|---|---|
Physical appearance | Smooth surface texture | Rough surface texture |
Morphology (SEM analysis) | Regular and uniform fiber | Irregular fiber |
Fiber diameter (SEM analysis) | 133 nm to 241 nm | 262 nm to 378 nm. |
Functional groups (FTIR analysis) | -OH (3600 and 3000 cm−1) -C-C or C=C (1100 cm−1) | -OH (3100–3550 cm−1) -C=O (1740 cm−1) |
Thermal decomposition (TGA analysis) | 370 °C (cellulose nanofiber) | 153 °C (citric acid) 290 °C (β-cyclodextrin) 390 °C (cellulose nanofiber) |
Adsorption Kinetics Models | Parameters | R2 |
---|---|---|
Pseudo-first-order | K1 = 0.1559 min−1 qe = 6940.68 mg g−1 | 0.6615 |
Pseudo-second-order | K2 = 6.42 × 10−5 g mg−1 min−1 qe = 7181.89 mg g−1 | 0.8983 |
Elovich | α = 1.0122 × 1010 β = 0.0033 mg g−1 min−1 | 0.8533 |
Intra-particle diffusion | Kid = 107.04 mg g−1 min1/2 C = 5990.80 | 0.8365 |
Isotherm Models | Parameters | Correlation Coefficient, R2 | Type of Surface/Adsorption Type |
---|---|---|---|
Langmuir | KL = 3.64 × 10−5 L mg−1 qm = 10485.38 mg g−1 RL = 0.7331 | 0.9862 | Homogeneous/monolayer |
Freundlich | nf = 1.9444 Kf = 25.5563 mg g−1 L mg1/nf | 0.9388 | Heterogenous/multi-layer |
Sips | KS = 5.7141 × 10−5 L mg−1 qms = 8349.23 mg g−1 nS = 1.4177 | 0.9996 | Homogeneous or heterogenous/monolayer |
Temkin | KT = 3.3 × 10−4 L mg−1 bT = 2402.17 J/mol (0.57 kcal/mol) | 0.9986 | Multi-layer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Manas, N.H.; Kumar, N.K.M.F.; Mohd Shah, N.A.; Ling, G.Y.; Azelee, N.I.W.; Fuzi, S.F.Z.M.; Masngut, N.; Bunyamin, M.A.H.; Illias, R.M.; El Enshasy, H.A. Adsorption of Fatty Acid on Beta-Cyclodextrin Functionalized Cellulose Nanofiber. Sustainability 2023, 15, 1559. https://doi.org/10.3390/su15021559
Abdul Manas NH, Kumar NKMF, Mohd Shah NA, Ling GY, Azelee NIW, Fuzi SFZM, Masngut N, Bunyamin MAH, Illias RM, El Enshasy HA. Adsorption of Fatty Acid on Beta-Cyclodextrin Functionalized Cellulose Nanofiber. Sustainability. 2023; 15(2):1559. https://doi.org/10.3390/su15021559
Chicago/Turabian StyleAbdul Manas, Nor Hasmaliana, Nurhidayah Kumar Muhammad Firdaus Kumar, Nurul Aqilah Mohd Shah, Guang Yik Ling, Nur Izyan Wan Azelee, Siti Fatimah Zaharah Mohd Fuzi, Nasratun Masngut, Muhammad Abd Hadi Bunyamin, Rosli Md. Illias, and Hesham Ali El Enshasy. 2023. "Adsorption of Fatty Acid on Beta-Cyclodextrin Functionalized Cellulose Nanofiber" Sustainability 15, no. 2: 1559. https://doi.org/10.3390/su15021559
APA StyleAbdul Manas, N. H., Kumar, N. K. M. F., Mohd Shah, N. A., Ling, G. Y., Azelee, N. I. W., Fuzi, S. F. Z. M., Masngut, N., Bunyamin, M. A. H., Illias, R. M., & El Enshasy, H. A. (2023). Adsorption of Fatty Acid on Beta-Cyclodextrin Functionalized Cellulose Nanofiber. Sustainability, 15(2), 1559. https://doi.org/10.3390/su15021559