Public Acceptance towards Emerging Autonomous Vehicle Technology: A Bibliometric Research
Abstract
:1. Introduction
- To compare the nature of distributions in terms of the authorship and geographical areas spanning across countries in the context of AVs;
- To identify the global emerging trends and core research clusters related to people’s acceptance of AV technology;
- To propose the research directions that can open new avenues for future research based on the review performed in this study.
2. Materials and Methods
3. Nature of Distributions Related to AV Studies
3.1. Temporal Distribution of Paper
3.2. Countries
3.3. High-Yield Journal
3.4. Highly-Yield Authors
3.5. Highly Cited Papers
4. Global Emerging Trends and Core Research Clusters
4.1. Document Cocitation Analysis
4.2. Collaboration
4.3. Keyword Analysis: The Emerging Research Trend
5. Future Research Direction
5.1. Research Approaches and Region
5.2. Antecedents and Models
5.3. Consequences Effects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization, WHO. Global Status Report on Road Safety. 2018. Available online: https://www.who.int/publications/i/item/9789241565684 (accessed on 22 August 2022).
- Kaye, S.A.; Somoray, K.; Rodwell, D.; Lewis, I. Users’ acceptance of private automated vehicles: A systematic review and meta-analysis. J. Saf. Res. 2021, 79, 352–367. [Google Scholar] [CrossRef]
- Singh, S. Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812506 (accessed on 22 August 2018).
- Harb, M.; Stathopoulos, A.; Shiftan, Y.; Walker, J.L. What do we (Not) know about our future with automated vehicles? Transp. Res. Part C Emerg. Technol. 2021, 123, 102948. [Google Scholar] [CrossRef]
- Xing, Y.; Zhou, H.; Han, X.; Zhang, M.; Lu, J. What influences vulnerable road users’ perceptions of autonomous vehicles? A comparative analysis of the 2017 and 2019 Pittsburgh surveys. Technol. Forecast. Soc. Chang. 2022, 176, 121454. [Google Scholar] [CrossRef]
- Korkmaz, H.; Fidanoglu, A.; Ozcelik, S.; Okumus, A. User acceptance of autonomous public transport systems: Extended UTAUT2 model. J. Public Transp. 2021, 23, 100013. [Google Scholar] [CrossRef]
- Winkler, M.; Mehl, R.; Erander, H.; Sule, S.; Buvat, J.; KVJ, S.; Sengupta, A.; Khemka, Y.; Capgemini Research Institute. The Autonomous Car: A Consumer Perspective. Available online: https://www.capgemini.com/wp-content/uploads/2019/05/30min-%E2%80%93-Report-1-1.pdf (accessed on 22 August 2022).
- MIT Technology Reviews. Autonomous Vehicles: Are You Ready for the New Ride? 2007. Available online: https://www.technologyreview.com/s/609450/autonomous-vehicles-are-you-ready-for-the-new-ride/ (accessed on 22 August 2022).
- Kyriakidis, M.; Happee, R.; De Winter, J.C.F. Public opinion on automated driving: Results of an international questionnaire among 5000 respondents. Transp. Res. Part F Traffic Psychol. Behav. 2015, 32, 127–140. [Google Scholar] [CrossRef]
- Emory, K.; Douma, F.; Cao, J. Autonomous vehicle policies with equity implications: Patterns and gaps. Transp. Res. Interdiscip. Perspect. 2022, 13, 100521. [Google Scholar] [CrossRef]
- Othman, K. Exploring the implications of autonomous vehicles: A comprehensive review. Innov. Infrastruct. Solut. 2022, 7, 165. [Google Scholar] [CrossRef]
- Zmud, J.P.; Sener, I.N. Towards an Understanding of the Travel Behavior Impact of Autonomous Vehicles. Transp. Res. Procedia 2017, 25, 2500–2519. [Google Scholar] [CrossRef]
- Ziad, A.; Ramdani, B. Behavioural intention to use fully autonomous vehicles: Instrumental, symbolic and affective motives. Transp. Res. Part F Psychol. Behav. 2022, 86, 226–237. [Google Scholar] [CrossRef]
- Raj, A.; Kumar, J.A.; Bansal, P. A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles. Transp. Res. Part A Policy Pract. 2020, 133, 122–137. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical bibliography or bibliometrics. J. Doc. 1969, 25, 348–349. [Google Scholar]
- Hood, W.W.; Wilson, C.S. The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- Biggi, G.; Stilgoe, J. Artificial Intelligence in Self-Driving Cars Research and Innovation: A Scientometric and Bibliometric Analysis. 2021. Available online: https://ssrn.com/abstract=3829897 (accessed on 22 August 2022).
- Faisal, A.; Yigitcanlar, T.; Kamruzzaman, M.; Paz, A. Mapping Two Decades of Autonomous Vehicle Research: A Systematic Scientometric Analysis. J. Urban Technol. 2021, 28, 45–74. [Google Scholar] [CrossRef]
- Schauer, C.; Schiebel, E.; Schlögl, C. A bibliometric view of the research development in autonomous driving from 2018 to 2021. SSRN 4102784. [CrossRef]
- Gandia, R.M.; Antonialli, F.; Cavazza, B.F.; Neto, F.M.; de Lima, D.A.; Sugano, J.Y.; Nicolai, I.; Zambalde, A.L. Autonomous vehicles: Scientometric and bibliometric review. Transp. Rev. 2019, 39, 9–28. [Google Scholar] [CrossRef]
- Golbabaei, F.; Yigitcanlar, T.; Paz, A.; Bunker, J. Individual predictors of autonomous vehicle public acceptance and intention to use: A systematic review of the literature. J. Open Innov. Technol. Mark. Complex. 2020, 6, 106. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOS: A new method for visualizing similarities between objects. In Advances in Data Analysis, Proceedings of the 30th Annual Conference of the German Classification Society, Berlin, Germany, 8–10 March 2006; Lenz, H.-J., Decker, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 299–306. [Google Scholar]
- Society of Automotive Engineers—SAE. SAE International Releases Updated Visual Chart for Its ‘Levels of Driving Automation’ Standards for Self-Driving Vehicles. Available online: https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (accessed on 9 December 2022).
- Najm, W.G.; Stearns, M.D.; Howarth, H.; Koopmann, J.; Hitz, J. Evaluation of an Automotive Rear-End Collision Avoidance System. In National Highway Traffic Safety Administration (NHTSA); U.S. Department of Transportation: Washington, DC, USA, 2006. [Google Scholar]
- Cserdi, Z.; Kenesei, Z. Attitudes to forced adoption of new technologies in public transportation services. Res. Transp. Bus. Manag. 2021, 41, 100611. [Google Scholar] [CrossRef]
- Rezaei, A.; Caulfield, B. Examining public acceptance of autonomous mobility. Travel Behav. Soc. 2020, 21, 235–246. [Google Scholar] [CrossRef]
- Weigl, K.; Eisele, D.; Riener, A. Estimated years until the acceptance and adoption of automated vehicles and the willingness to pay for them in Germany: Focus on age and gender. Int. J. Transp. Sci. Technol. 2022, 11, 216–228. [Google Scholar] [CrossRef]
- Barnatt, C. The Second Digital Revolution. J. Gen. Manag. 2001, 27, 1–16. [Google Scholar]
- Pendleton, S.D.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.H.; Ang, M.H. Perception, planning, control, and coordination for autonomous vehicles. Machines 2017, 5, 6. [Google Scholar] [CrossRef]
- Yoo, S.; Managi, S. To fully automate or not? Investigating demands and willingness to pay for autonomous vehicles based on automation levels. IATSS Res. 2021, 45, 459–468. [Google Scholar] [CrossRef]
- Lee, Y.C.; Hand, S.H.; Lilly, H. Are parents ready to use autonomous vehicles to transport children? Concerns and safety features. J. Saf. Res. 2020, 72, 287–297. [Google Scholar] [CrossRef]
- Dunne, M.J. Forbes—China Aims to Be No. 1 Globally in EVs, Autonomous Cars By 2030. Available online: https://www.forbes.com/sites/michaeldunne/2016/12/14/chinas-automotive-2030-blueprint-no-1-globally-in-evs-autonomous-cars/#20056cd61c6e (accessed on 22 August 2022).
- Chng, S.; Cheah, L. Understanding Autonomous Road Public Transport Acceptance: A Study of Singapore. Sustainability 2020, 12, 4974. [Google Scholar] [CrossRef]
- Chng, S.; Anowar, S.; Cheah, L. To embrace or not to embrace? Understanding public’s dilemma about autonomous mobility services: A case study of Singapore. Case Stud. Transp. Policy 2021, 9, 1542–1552. [Google Scholar] [CrossRef]
- Tokyoesque. The Japanese Automotive Market: Driving Strong Demand in 2021 and beyond. Available online: https://tokyoesque.com/japanese-automotive-market/ (accessed on 22 August 2022).
- Bansal, P.; Kockelman, K.; Singh, A. Assessing public opinions of and interest in new vehicle technologies: An Austin perspective. Transp. Res. Part C Emerg. Technol. 2016, 67, 1–14. [Google Scholar] [CrossRef]
- Haboucha, C.J.; Ishaq, R.; Shiftan, Y. User preferences regarding autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2017, 78, 37–49. [Google Scholar] [CrossRef]
- Krueger, R.; Rashidi, T.H.; Rose, J.M. Preferences for shared autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2016, 69, 343–355. [Google Scholar] [CrossRef]
- Payre, W.; Cestac, J.; Delhomme, P. Intention to use a fully automated car: Attitudes and a priori acceptability. Transp. Res. Part F Traffic Psychol. 2014, 27, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.K.; Ji, Y.G. Investigating the importance of trust on adopting an autonomous vehicle. Int. J. Hum.-Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Bansal, P.; Kockelman, K.M. Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies. Transp. Res. Part A 2017, 95, 49–63. [Google Scholar] [CrossRef]
- Hulse, L.M.; Xie, H.; Galea, E.R. Perceptions of autonomous vehicles: Relationships with road users, risk, gender and age. Saf. Sci. 2018, 102, 1–13. [Google Scholar] [CrossRef]
- Zhang, T.; Tao, D.; Qu, X.; Zhang, X.Y.; Lin, R.; Zhang, W. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transp. Res. Part C Emerg. Technol. 2019, 98, 207–220. [Google Scholar] [CrossRef]
- Kaur, K.; Rampersad, G. Trust in driverless cars: Investigating key factors influencing the adoption of driverless cars. J. Eng. Tech. Manag. 2018, 48, 87–96. [Google Scholar] [CrossRef]
- White, H.D.; Griffith, B.C. Author cocitation: A literature measure of intellectual structure. J. Am. Soc. Inf. Sci. 1981, 32, 163–171. [Google Scholar] [CrossRef]
- Braam, R.R.; Moed, H.F.; Van Raan, A.F. Mapping of science by combined co-citation and word analysis. II: Dynamical aspects. J. Am. Soc. Inf. Sci. 1991, 42, 252–266. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Wang, S.Y.; Sun, S.L.; Wei, Y.J. Knowledge mapping of tourism demand forecasting research. Tour. Manag. Perspect. 2020, 35, 100715. [Google Scholar] [CrossRef]
- Trujillo, C.M.; Long, T.M. Document co-citation analysis to enhance transdisciplinary research. Sci. Adv. 2018, 4, e1701130. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Davis, F.D. User acceptance of information technology: Toward a unified view. Mis Quart. Manage. Inform. Syst. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Panagiotopoulos, I.; Dimitrakopoulos, G. An empirical investigation on consumers’ intentions towards autonomous driving. Transp. Res. Part C Emerg. Technol. 2018, 95, 773–784. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, K.; Min, H.; Wang, Z.; Zhao, X.; Liu, P. What drives people to accept automated vehicles? Findings from a field experiment. Transp. Res. Part C Emerg. Technol. 2018, 95, 320–334. [Google Scholar] [CrossRef]
- Madigan, R.; Louw, T.; Wilbrink, M.; Schieben, A.; Merat, N. What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems. Transp. Res. Part F Traffic Psychol. Behav. 2017, 50, 55–64. [Google Scholar] [CrossRef]
- Madigan, R.; Louw, T.; Dziennus, M.; Graindorge, T.; Ortega, E.; Graindorge, M.; Merat, N. Acceptance of Automated Road Transport Systems (ARTS): An adaptation of the UTAUT model. Transp. Res. Procedia 2016, 14, 2217–2226. [Google Scholar] [CrossRef] [Green Version]
- Modliński, A.; Gwiaździński, E.; Karpińska-Krakowiak, M. The effects of religiosity and gender on attitudes and trust toward autonomous vehicles. J. High Technol. Manag. Res. 2022, 33, 100426. [Google Scholar] [CrossRef]
- McKnight, D.H.; Carter, M.; Thatcher, J.B.; Clay, P.F. Trust in a specific technology: An investigation of its components and measures. ACM Trans. Manag. Inf. Syst. 2011, 2, 1–25. [Google Scholar] [CrossRef]
- Bennett, R.; Vijaygopal, R.; Kottasz, R. Attitudes towards autonomous vehicles among people with physical disabilities. Transp. Res. Part A Policy Pract. 2019, 127, 1–17. [Google Scholar] [CrossRef]
- Bennett, R.; Vijaygopal, R.; Kottasz, R. Willingness of people who are blind to accept autonomous vehicles: An empirical investigation. Transp. Res. Part F Traffic Psychol. Behav. 2020, 69, 13–27. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J. Risk preference and adoption of autonomous vehicles. Transp. Res. Part A Policy Pract. 2019, 126, 215–229. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Cugurullo, F. Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 349–375. [Google Scholar] [CrossRef] [Green Version]
- Charness, N.; Yoon, J.S.; Souders, D.; Stothart, C.; Yehnert, C. Predictors of attitudes toward autonomous vehicles: The roles of age, gender, prior knowledge, and personality. Front. Psychol. 2018, 9, 2589. [Google Scholar] [CrossRef] [Green Version]
- Woldeamanuel, M.; Nguyen, D. Perceived benefits and concerns of autonomous vehicles: An exploratory study of millennials’ sentiments of an emerging market. Res. Transp. Econ. 2018, 71, 44–53. [Google Scholar] [CrossRef]
- Hudson, J.; Orviska, M.; Hunady, J. People’s attitudes to autonomous vehicles. Transp. Res. Part A Policy Pract. 2019, 121, 164–176. [Google Scholar] [CrossRef]
- Leicht, T.; Chtourou, A.; Ben Youssef, K. Consumer innovativeness and intentioned autonomous car adoption. J. High Technol. Manag. Res. 2018, 29, 1–11. [Google Scholar] [CrossRef]
- Liu, P.; Xu, Z. Public attitude toward self-driving vehicles on public roads: Direct experience changed ambivalent people to be more positive. Technol. Forecast. Soc. Change 2020, 151, 119827. [Google Scholar] [CrossRef]
- Yuen, K.F.; Wong, Y.D.; Ma, F.; Wang, X. The determinants of public acceptance of autonomous vehicles: An innovation diffusion perspective. J. Clean. Prod. 2020, 270, 121904. [Google Scholar] [CrossRef]
- Hassan, H.M.; Ferguson, M.R.; Vrkljan, B.; Newbold, B.; Razavi, S. Older adults and their willingness to use semi and fully autonomous vehicles: A structural equation analysis. J. Transp. Geogr. 2021, 95, 103133. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Abe, G.; Itoh, M.; Tanaka, K. Dynamics of drivers’ trust in warning systems. IFAC Proc. Vol. 2002, 35, 363–368. [Google Scholar] [CrossRef]
- Lee, J.D.; See, K.A. Trust in automation: Designing for appropriate reliance. Hum. Factors 2004, 46, 50–80. [Google Scholar] [CrossRef] [Green Version]
- Gold, C.; Körber, M.; Hohenberger, C.; Lechner, D.; Bengler, K. Trust in automation—Before and after the experience of take-over scenarios in a highly automated vehicle. Procedia Manuf. 2015, 3, 3025–3032. [Google Scholar] [CrossRef]
- Buckley, L.; Kaye, S.A.; Pradhan, A.K. A qualitative examination of drivers’ responses to partially automated vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2018, 56, 167–175. [Google Scholar] [CrossRef]
- Moody, J.; Bailey, N.; Zhao, J. Public perceptions of autonomous vehicle safety: An international comparison. Saf. Sci. 2020, 121, 634–650. [Google Scholar] [CrossRef]
- Banks, V.A.; Stanton, N.A. Driver-centred vehicle automation: Using network analysis for agent-based modelling of the driver in highly automated driving systems. Ergonomics 2016, 59, 1442–1452. [Google Scholar] [CrossRef]
- Berkowsky, R.W.; Sharit, J.; Czaja, S.J. Factors predicting decisions about technology adoption among older adults. Innov. Aging 2017, 1, 2. [Google Scholar] [CrossRef]
- Rogers, W.A.; Mitzner, T.L.; Boot, W.R.; Charness, N.H.; Czaja, S.J.; Sharit, J. Understanding individual and age-related differences in technology adoption. Innov. Aging 2017, 1, 1026. [Google Scholar] [CrossRef]
- Alawadhi, M.; Almazrouie, J.; Kamil, M.; Khalil, K.A. A systematic literature review of the factors influencing the adoption of autonomous driving. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 1065–1082. [Google Scholar] [CrossRef]
- Shladover, S.E. Connected and automated vehicle systems: Introduction and overview. J. Intell. Transp. Syst. 2018, 22, 190–200. [Google Scholar] [CrossRef]
- Ross, P. Robot, you can drive my car. IEEE Spectr. 2014, 51, 60–90. [Google Scholar] [CrossRef]
- Ge, I.J.; Avedisov, S.S.; He, C.R.; Qin, W.B.; Sadeghpour, M.; Orosz, G. Experimental validation of connected automated vehicle design among human-driven vehicles. Transp. Res. Part C Emerg. Technol. 2018, 91, 335–352. [Google Scholar] [CrossRef]
- Zheng, L.; Li, B.; Yang, B.; Song, H.; Lu, Z. Lane-level road network generation techniques for lane-level maps of autonomous vehicles: A survey. Sustainability 2019, 11, 4511. [Google Scholar] [CrossRef] [Green Version]
- Jing, P.; Huang, H.; Ran, B.; Zhan, F.; Shi, Y. Exploring the Factors Affecting Mode Choice Intention of Autonomous Vehicle Based on an Extended Theory of Planned Behavior—A Case Study in China. Sustainability 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Potoglou, D.; Whittle, C.; Tsouros, I.; Whitmarsh, L. Consumer intentions for alternative fuelled and autonomous vehicles: A segmentation analysis across six countries. Transp. Res. Part D Transp. Environ. 2020, 79, 102243. [Google Scholar] [CrossRef]
- Tan, S.Y.; Taeihagh, A. Adaptive governance of autonomous vehicles: Accelerating the adoption of disruptive technologies in Singapore. Gov. Inf. Q. 2021, 38, 101546. [Google Scholar] [CrossRef]
- NHTSA’s National Center for Statistics and Analysis, U.S. Department of Transportation; National Highway Traffic Safety Administration. Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115 (accessed on 22 August 2022).
- Fagnant, D.J.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 2015, 77, 167–181. [Google Scholar] [CrossRef]
- Litman, T. Autonomous Vehicle Implementation Predictions. Canada: Victoria Transport Policy Institute Victoria. Available online: https://www.vtpi.org/avip.pdf (accessed on 22 August 2022).
- Penmetsa, P.; Adanu, E.K.; Wood, D.; Wang, T.; Jones, S.L. Perceptions and expectations of autonomous vehicles—A snapshot of vulnerable road user opinion. Technol. Forecast. Soc. Change 2019, 143, 9–13. [Google Scholar] [CrossRef]
- Afghari, A.P.; Papadimitriou, E.; Li, X.; Kaye, S.A.; Oviedo-Trespalacios, O. How much should a pedestrian be fined for intentionally blocking a fully automated vehicle? A random parameters beta hurdle model with heterogeneity in the variance of the beta distribution. Anal. Methods Accid. Res. 2021, 32, 100186. [Google Scholar] [CrossRef]
- Berge, S.H.; Hagenzieker, M.; Farah, H.; de Winter, J. Do cyclists need HMIs in future automated traffic? An interview study. Transp. Res. Part F Traffic Psychol. Behav. 2022, 84, 33–52. [Google Scholar] [CrossRef]
- Musleh, J.S.A. Effects of Risk, Trust and Attitude on Online Shopping Intention. Ph.D. Dissertation, Multimedia University Malaysia, Cyberjaya, Malaysia, 2018. [Google Scholar]
- Wicki, M. How do familiarity and fatal accidents affect acceptance of self-driving vehicles? Transp. Res. Part F Traffic Psychol. Behav. 2021, 83, 401–423. [Google Scholar] [CrossRef]
- Sohrabi, S.; Khreis, H.; Lord, D. Impacts of Autonomous Vehicles on Public Health: A Conceptual Model and Policy Recommendations. Sustain. Cities Soc. 2020, 63, 102457. [Google Scholar] [CrossRef]
- Narayanan, S.; Chaniotakis, E.; Antoniou, C. Shared autonomous vehicle services: A comprehensive review. Transp. Res. Part C Emerg. Technol. 2020, 111, 255–293. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, W.; Zhang, Y.; Tao, D.; Li, G.; Qu, X. What drives people to use automated vehicles? A meta-analytic review. Accid. Anal. Prev. 2021, 159, 106270. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Review articles and research articles written in English | Articles not written in English |
Articles dated between year 2000 and 30 June 2022 | Book or chapter or thesis or lecture notes or encyclopedia |
Research interests in public acceptance/adoption/intention to use AV/automated vehicles/self-driving vehicles/driverless vehicles |
Publication Source | Number |
---|---|
Transportation Research Part F—Traffic Psychology and Behaviour ISSN: 1369-8478 | 44 |
Transportation Research Part C—Emerging Technologies ISSN: 0968-090X | 25 |
Transportation Research Part A—Policy and Practice 0965-8564 | 21 |
Sustainability ISSN: 2071-1050 | 21 |
Accident Analysis and Prevention 0001-4575 | 10 |
Transportation Research Record ISSN: 0361-1981 | 10 |
Transportation ISSN: 0049-4488 | 9 |
International Journal of Human–Computer Interaction ISSN: 1044-7318 | 7 |
Author | Documents | Citations |
---|---|---|
Nordhoff, Sina | 9 | 349 |
Happee, Riender | 8 | 349 |
Van Arem, Bart | 8 | 334 |
Liu, Peng | 8 | 364 |
Merat, Natasha | 7 | 345 |
Authors | Citation | Title of Paper |
---|---|---|
Kyriakidis et al. [9] | 523 | Public opinion on automated driving: Results of an international questionnaire among 5000 respondents |
Bansal et al. [36] | 376 | Assessing public opinions of and interest in new vehicle technologies: An Austin perspective |
Haboucha et al. [37] | 344 | User preferences regarding autonomous vehicles |
Krueger et al. [38] | 340 | Preferences for shared autonomous vehicles |
Payre et al. [39] | 317 | Intention to use a fully automated car: Attitudes and a priori acceptability |
Choi and Ji [40] | 301 | Investigating the importance of trust on adopting an autonomous vehicle |
Bansal and Kockelman [41] | 268 | Forecasting Americans’ long-term adoption of connected and autonomous vehicle technologies |
Hulse et al. [42] | 213 | Perceptions of autonomous vehicles: Relationships with road users, risk, gender and age |
Zhang et al. [43] | 160 | The roles of initial trust and perceived risk in public’s acceptance of automated vehicles |
Kaur and Rampersad [44] | 154 | Trust in driverless cars: Investigating key factors influencing the adoption of driverless cars |
Cluster | Color | Authors | Journal Title |
---|---|---|---|
#1 | Red | Kyriakidis [9] Transportation Research Part F | Public opinion on automated driving: Results of an international questionnaire among 5000 respondents |
Bansal [36] Transportation Research Part C | Assessing public opinions of and interest in new vehicle technologies: An Austin perspective | ||
#2 | Green | Choi [40] International Journal of Human Computer | Investigating the importance of trust on adopting an autonomous vehicle |
Venkatesh [49] Mis Quarterly | User acceptance of information technology: Toward a unified view | ||
#3 | Blue | Panagiotopoulos [50] Transportation Research Part C | An empirical investigation on consumers’ intentions towards autonomous driving |
Xu [51] Transportation Research Part C | What drives people to accept automated vehicles? Findings from a field experiment | ||
#4 | Yellow | Madigan [52] Transportation Research Part F | What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems |
Madigan [53] Transportation Research Procedia | Acceptance of automated road transport systems (ARTS): An adaptation of the UTAUT model |
Cluster | Color | Keywords |
---|---|---|
1 | Red | Attitude |
2 | Green | Trust |
3 | Blue | Technology |
4 | Yellow | Technology acceptance models |
5 | Purple | Impact |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, J.S.; Tan, B.C.; Lau, T.C.; Khan, N. Public Acceptance towards Emerging Autonomous Vehicle Technology: A Bibliometric Research. Sustainability 2023, 15, 1566. https://doi.org/10.3390/su15021566
Ho JS, Tan BC, Lau TC, Khan N. Public Acceptance towards Emerging Autonomous Vehicle Technology: A Bibliometric Research. Sustainability. 2023; 15(2):1566. https://doi.org/10.3390/su15021566
Chicago/Turabian StyleHo, Jen Sim, Booi Chen Tan, Teck Chai Lau, and Nasreen Khan. 2023. "Public Acceptance towards Emerging Autonomous Vehicle Technology: A Bibliometric Research" Sustainability 15, no. 2: 1566. https://doi.org/10.3390/su15021566
APA StyleHo, J. S., Tan, B. C., Lau, T. C., & Khan, N. (2023). Public Acceptance towards Emerging Autonomous Vehicle Technology: A Bibliometric Research. Sustainability, 15(2), 1566. https://doi.org/10.3390/su15021566