Construction and Demolition Waste as Substrate Component Improved the Growth of Container-Grown Duranta repens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.2.1. Physicochemical Properties of the Substrates
2.2.2. Plant Growth
2.2.3. Gas Exchange Measurements
2.2.4. Pigments and Carbohydrates
2.2.5. Principal Component Analysis
2.3. Statistical Analysis
3. Results
3.1. The Properties of Substrates
3.2. Growth and Leaf Morphology
3.3. Gas Exchange
3.4. Pigments and Carbohydrates
3.5. Cluster Analysis
3.6. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammed, M.S.; ElKady, H.M.; Abdel-Gawwad, H.A. Utilization of construction and demolition waste and synthetic aggregates. J. Build. Eng. 2021, 43, 103207. [Google Scholar] [CrossRef]
- Aslam, M.S.; Huang, B.; Cui, L. Review of construction and demolition waste management in China and USA. J. Environ. Manag. 2020, 264, 110445. [Google Scholar] [CrossRef] [PubMed]
- Haiyan, L.; Yihui, Z.; Liyuan, W.; Yi, J.; Yongwei, G.; Angzhen, L.; Jinxi, L.; Fei, L. Recycled aggregates from construction and demolition waste as wetland substrates for pollutant removal. J. Clean. Prod. 2021, 311, 127766. [Google Scholar] [CrossRef]
- Weber, W.J.; Jang, Y.-C.; Townsend, T.G.; Laux, S. Leachate from Land Disposed Residential Construction Waste. J. Environ. Eng. 2002, 128, 237–245. [Google Scholar] [CrossRef]
- Fatta, D.; Papadopoulos, A.; Avramikos, E.; Sgourou, E.; Moustakas, K.; Kourmoussis, F.; Mentzis, A.; Loizidou, M. Generation and management of construction and demolition waste in Greece—An existing challenge. Resour. Conserv. Recycl. 2003, 40, 81–91. [Google Scholar] [CrossRef]
- Hameed, A.M.; Hamza, M.T. Characteristics of polymer concrete produced from wasted construction materials. Energy Procedia 2019, 157, 43–50. [Google Scholar] [CrossRef]
- Kralj, D. Innovative systemic approach for promoting sustainable innovation for zero construction waste. Kybernetes 2011, 40, 275–289. [Google Scholar] [CrossRef]
- Zhe, L.; Liu, L.; Yan, S.; Zhang, M.; Xie, Y. Properties of microscopic particle morphology and particle contact of renewable construction waste mixtures. Constr. Build. Mater. 2019, 207, 190–205. [Google Scholar] [CrossRef]
- Sormunen, P.; Kärki, T. Recycled construction and demolition waste as a possible source of materials for composite manufacturing. J. Build. Eng. 2019, 24, 100742. [Google Scholar] [CrossRef]
- Mifang, L. Multifunctional use of sintered brick and tile waste in landscaping and terrestrial landscaping projects. Brick-Tile 2007, 237, 139–144. [Google Scholar] [CrossRef]
- Yun, S.; Ryu, D.; Khim, J. Evaluation of the recyclability of construction and demolition waste fines as a garden substrate and soil amendment agent: A case study from the Republic of Korea. J. Mater. Cycles Waste Manag. 2020, 22, 479–487. [Google Scholar] [CrossRef]
- Guansheng, L.; Zhan, X. A new way of recycling construction waste. Brick-Tile 2004, 2004, 68–74. [Google Scholar] [CrossRef]
- Zhou, W. Study on the Effects of Reclaimed Materials to the Physical and Chemical Properties of Garden Soil and Its Application; Shanghai Institute of Technology: Shanghai, China, 2021. [Google Scholar]
- López-Uceda, A.; Galvín Adela, P.; Jesús, A.; Ramón, J.J.; Tom, V.; Adolfo, P. Risk assessment by percolation leaching tests of extensive green roofs with fine fraction of mixed recycled aggregates from construction and demolition waste. Environ. Sci. Pollut. Res. Int. 2018, 25, 36024–36034. [Google Scholar] [CrossRef]
- Ji, Z.; Chen, C. Chinese Geography; Higher Education Press: Beijing, China, 1999. [Google Scholar]
- Liu, S. Modern Soilless Cultivation Techniques; China Agriculture Press: Beijing, China, 2001. [Google Scholar]
- Qin, J.; Hu, Y.; Wang, L. Study of economic-water soil for space greening on ecology building. Chin. Agric. Sci. Bull. 2007, 2007, 216–220. [Google Scholar] [CrossRef]
- Koch, G.W.; Sillett Stephen, C.; Jennings, G.M.; Davis, S.D. The limits to tree height. Nature 2004, 428, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Jumrani, K.; Bhatia, V.S. Influence of different light intensities on specific leaf weight, stomatal density photosynthesis and seed yield in soybean. Plant Physiol. Rep. 2020, 25, 277–283. [Google Scholar] [CrossRef]
- Brito, G.G.; Sofiatti, V.; Brandão, Z.N.; Silva, V.N.B. Non-destructive analysis of photosynthetic pigments in cotton plants. Acta Scientiarum. Agron. 2011, 33, 671–687. [Google Scholar] [CrossRef]
- Hesheng, L. Principles and Techniques of Plant Physiological Biochemical Experiment; Higher Education Press: Beijing, China, 2000. [Google Scholar]
- Kuswardhani, N.; Sari, F.N.; Wibowo, Y. Identification of potential locations and factors for coffee agro-industry development in Argopuro mountain, Jember. IOP Conf. Ser. Earth Environ. Sci. 2019, 250, 012065. [Google Scholar] [CrossRef]
- Kang, K.; Wang, P.; Jin, J.; Liang, J. Effects of organic waste substrates on growth of potted Jasminum sambac. Chin. Agric. Sci. Bull. 2020, 36, 49–53. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, R.; Liang, P.; Liu, F.; Wu, L. Reasearch on comprehensive evaluation of Camellia oil quality based on principal component analysis. J. Cent. South Univ. For. Technol. 2019, 39, 45–51. [Google Scholar] [CrossRef]
- Shin, E.; Kang, J. Migration of calcium hydroxide compounds in construction waste soil. Adv. Environ. Res. 2015, 4, 183–196. [Google Scholar] [CrossRef]
- Guo, S. Research progress, current exploitations and developing trends of solid cultivation medium. Trans. Chin. Soc. Agric. Eng. 2005, 21, 4. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.; Xu, Z.; Wang, T. Influence of specific surface area and particle size distribution of superfine slag particles on strength of cement. China Powder Sci. Technol. 2011, 17, 80–82. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; Wei, L.; Li, Y.; Huang, L.; Huang, Q.; XU, G. Effect of soil organo-inorganic compounds different in particle size on butachlor sorption. Acta Pedol. Sin. 2017, 54, 400–409. [Google Scholar] [CrossRef]
- Ruixue, C.; Qiuyue, G.; Pramod, P.; Yanming, L.; Qing, C.; Ying, S. Pretreatment by composting increased the utilization proportion of pig manure biogas digestate and improved the seedling substrate quality. Waste Manag. 2021, 129, 47–53. [Google Scholar] [CrossRef]
- Nkongolo, N.V.; Caron, J.; Gauthier, F.; Yamada, M. Organic Wastes for Improving Soil Physical Properties and Enhancing Plant Growth in Container Substrates. J. Crop Prod. 2001, 3, 97–112. [Google Scholar] [CrossRef]
- Duchesne, I.; Rioux, J.A.; Caron, J.; Parent, L.É.; Allaire, S.E. Air-filled Porosity, Gas Relative Diffusivity, and Tortuosity: Indices of Prunus ×cistena sp. Growth in Peat Substrates. J. Am. Soc. Hortic. Sci. 1996, 121, 236–242. [Google Scholar] [CrossRef]
- Meng, G.-L.; Luan, D.-T.; Tai, Z.-J.; Deng, J.-F.; Han, J.-Q.; Zhou, Y.-M. Effects of Different Substrate Ratios on the Growth and Physiology of Sequoia sempervirens Container Seedlings. Compost. Sci. Util. 2019, 27, 169–177. [Google Scholar] [CrossRef]
- Sahu, S.S.; Das, S.C. Study of Electrochemical and PhysicoChemical Properties of Clay Minerals and their Mixtures and of Some Soil Clays to Characterise their Clay Mineralogy. Proc. Indian Natl. Sci. Acad. 2013, 40, 235–248. [Google Scholar] [CrossRef]
- Yan, X.; Lijie, P.; Runsen, Z.; Ming, Z.; Meng, Z.; Xinguo, B.; Xuefeng, X.; Yuan, W. Effects of Agricultural Reclamation on Soil Physicochemical Properties in the Mid-Eastern Coastal Area of China. Land 2021, 10, 142. [Google Scholar] [CrossRef]
- El-Shakweer, M.H.A.; El-Sayad, E.A.; Ewees, M.S.A. Soil and plant analysis as a guide for interpretation of the improvement efficiency of organic conditioners added to different soils in Egypt. Commun. Soil Sci. Plant Anal. 1998, 29, 2067–2088. [Google Scholar] [CrossRef]
- Xu, C.; Yuan, Q.; Zhao, S.; He, T.; Song, N. Effects of pretreatments on physical and chemical characteristics of wheat straw used as a maintenance-free compressed green roof substrate material. J. Clean. Prod. 2020, 277, 123381. [Google Scholar] [CrossRef]
- Gong, B.; Zhao, F.; Wang, N.; Wu, X.; Li, J.; Lv, G.; Gao, H. Effects of air-water ratio and water content of substrate on the growth of tomato seedlings. J. Hebei Agric. Univ. 2020, 43, 45–49. [Google Scholar] [CrossRef]
- Wei, W.; Cheng, Z.; Hu, J.; Yang, J.; Jiang, X.; Ge, Y.; Sun, L.; Miao, Y.; Tao, Z. A review on formation and lon attached form of cosstal Saline-alkali soil. Chin. J. Soil Sci. 2017, 48, 1003–1007. [Google Scholar] [CrossRef]
- Sekucia, F.; Dlapa, P.; Kollár, J.; Cerdá, A.; Hrabovský, A.; Svobodová, L. Land-use impact on porosity and water retention of soils rich in rock fragments. Catena 2020, 195, 104807. [Google Scholar] [CrossRef]
- Turunen, M.; Hyväluoma, J.; Heikkinen, J.; Keskinen, R.; Kaseva, J.; Hannula, M.; Rasa, K. Quantifying the pore structure of different biochars and their impacts on the water retention properties of Sphagnum moss growing media. Biosyst. Eng. 2020, 191, 96–106. [Google Scholar] [CrossRef]
- Alberto, O.P.J.; Pedro, P.G.; Elias, A.K.; Fatima, M.R.; Javier, E.O.F. SWITCHGRASS BIOMASS AS A SUBSTRATE FOR Camellia AND Cuphea production in container. Environ. Eng. Manag. J. 2020, 19, 37–42. [Google Scholar] [CrossRef]
- Wei, Y.; Li, J.; Sun, J. Research on the effect of construction waste as alternative soil material. Land Dev. Eng. Res. 2019, 4, 32–36. [Google Scholar]
- Zhang, X.; Wang, Z.; Lu, J.; Yang, M.; Yang, H. Responses of leaf traits to drought at different growth stsges of alfafa. Acta Ecol. Sin. 2016, 36, 2669–2676. [Google Scholar] [CrossRef]
- Cuiju, L.; Xiao, G.; Ling, W.K.; Chao, L.Q.; Kun, S.Y.; Qiang, J.X.; Hua, L.Q. Ecophysiological responses of Camellia japonica (Naidong) to different light and water conditions. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2018, 29, 1125–1132. [Google Scholar] [CrossRef]
- Sowers, D.L.; Marini, R.P. Net Photosynthesis, Specific Leaf Weight, and Flowering of Peach as Influenced by Shade. HortScience 1990, 25, 331–334. [Google Scholar] [CrossRef]
- Rodermel, S. Redesigning Rice Photosynthesis to Increase Yield. Crop Sci. 2002, 42, 2227–2228. [Google Scholar] [CrossRef] [Green Version]
- Tombesi, S.; Cincera, I.; Frioni, T.; Ughini, V.; Gatti, M.; Palliotti, A.; Poni, S. Relationship among night temperature, carbohydrate translocation and inhibition of grapevine leaf photosynthesis. Environ. Exp. Bot. 2019, 157, 293–298. [Google Scholar] [CrossRef]
- Souden, S.; Ennajeh, M.; Ouledali, S.; Massoudi, N.; Cochard, H.; Khemira, H. Water relations, photosynthesis, xylem embolism and accumulation of carbohydrates and cyclitols in two Eucalyptus species (E. camaldulensis and E. torquata) subjected to dehydration–rehydration cycle. Trees 2020, 34, 1439–1452. [Google Scholar] [CrossRef]
- Kensuke, K.; Shoko, H.; Toshiharu, K.; Koh, I. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J. Exp. Bot. 2012, 63, 5635–5644. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, H.; Li, Y.; Zhang, S. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J. 2017, 5, 231–239. [Google Scholar] [CrossRef]
- Nigmatullayevich, R.S.; Young, Y.E.; Cheoul, C.M.; Young, C.S.; Bong, J.H.; Byoung, C.W. Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci. Rep. 2021, 11, 14328. [Google Scholar] [CrossRef]
- Westcott, M.; Marais, G.; Potgieter, G.P.; Berner, J.M.; Ferreira, K. Effects of two plant growth promotors on photosynthetic capacity in Citrus spp. S. Afr. J. Bot. 2016, 103, 354. [Google Scholar] [CrossRef]
- French, C.S. The distribution and action in photosynthesis of several forms of chlorophyll. Proc. Natl. Acad. Sci. USA 1971, 68, 2893–2897. [Google Scholar] [CrossRef] [Green Version]
- Karin, A.; Jaan, K.; Katri, O.; Aljona, L. Effect of wood ash on leaf and shoot anatomy, photosynthesis and carbohydrate concentrations in birch on a cutaway peatland. Environ. Monit. Assess. 2015, 187, 02–13. [Google Scholar] [CrossRef]
- Qin, Y.; Shen, Y.; Wang, Q.; Wang, X.; Fan, L.; Wang, Y.; Zhang, S.; Liu, Z.; Zhang, M. Light deficiency and waterlogging affect chlorophyll metabolism and photosynthesis in Magnolia sinostellata. Trees 2019, 33, 11–22. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Noedoost, F.; Geuns, J.M.C.; Djalovic, I.; Siddique, K.H.M. Effect of Cold Stress on Photosynthetic Traits, Carbohydrates, Morphology, and Anatomy in Nine Cultivars of Stevia rebaudiana. Front. Plant Sci. 2018, 9, 1430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacAlister, D.; Muasya, A.M.; Crespo, O.; Chimphango, S.B.M. High temperature effects on photosynthesis, carbohydrate partitioning and phenolics in field grown Aspalathus linearis. S. Afr. J. Bot. 2018, 115, 293–294. [Google Scholar] [CrossRef]
- Duan, R.; Ma, Y.; Yang, L. Effects of Shading on Photosynthetic Pigments and Photosynthetic Parameters of Lespedeza Buergeri Seedlings. IOP Conf. Ser. Mater. Sci. Eng. 2018, 452, 022158. [Google Scholar] [CrossRef]
Pb | As | Cd | Hg | Cr | Cu | Ni |
---|---|---|---|---|---|---|
21.4 | 7.1 | 0.132 | 0.042 | 53 | 21.9 | 30 |
Sand % (2.0–0.02 mm) | Silt % (0.02–0.002 mm) | Clay % (<0.002 mm) |
---|---|---|
34.7 | 35.2 | 30.1 |
Substrate | CDW Size (mm) | CDW Proportion (%) | Clay Soil Proportion (%) |
---|---|---|---|
S1 | 0–3 | 20 | 80 |
S2 | 0–3 | 35 | 65 |
S3 | 0–3 | 50 | 50 |
S4 | 3–6 | 20 | 80 |
S5 | 3–6 | 35 | 65 |
S6 | 3–6 | 50 | 50 |
S7 | 6–8 | 20 | 80 |
S8 | 6–8 | 35 | 65 |
S9 | 6–8 | 50 | 50 |
S10 | 0–10 | 20 | 80 |
S11 | 0–10 | 35 | 65 |
S12 | 0–10 | 50 | 50 |
CS | / | 0 | 100 |
CW | 0–10 | 100 | 0 |
Substrate | pH | EC (ms·cm−1) | Bulk Density g cm−3 | Total Porosity (%) | Aeration Porosity (%) | Hold-Water Porosity (%) | Gas-Water Ratio (%) | Water Loss Rate (%) |
---|---|---|---|---|---|---|---|---|
S1 | 6.84 ± 0.09 cde | 0.52 ± 0.04 abc | 1.36 ± 0 bc | 38.37 ± 0.65 bcd | 5.24 ± 0.17 g | 33.13 ± 0.75 b | 0.16 ± 0.01 g | 17.96 ± 1.00 a |
S2 | 6.92 ± 0.08 c | 0.50 ± 0.06 abc | 1.34 ± 0.02 c | 39.06 ± 0.33 bcd | 6.81 ± 1.26 f | 32.25 ± 0.94 bc | 0.21 ± 0.04 efg | 17.10 ± 0.92 ab |
S3 | 7.13 ± 0.07 b | 0.56 ± 0.08 ab | 1.30 ± 0.02 d | 39.33 ± 0.66 bc | 8.58 ± 0.49 de | 30.75 ± 1.05 cde | 0.28 ± 0.03 cde | 16.55 ± 0.96 abc |
S4 | 6.71 ± 0.03 def | 0.31 ± 0.03 e | 1.28 ± 0.02 de | 38.85 ± 0.68 bcd | 9.53 ± 0.35 cd | 29.32 ± 1.03 def | 0.33 ± 0.02 cd | 16.44 ± 0.76 abc |
S5 | 6.86 ± 0.07 cd | 0.48 ± 0.06 abcd | 1.28 ± 0.02 de | 39.08 ± 0.26 bcd | 10.24 ± 0.21 c | 28.84 ± 0.47 ef | 0.36 ± 0.01 c | 15.75 ± 0.94 bcd |
S6 | 6.89 ± 0.05 c | 0.52 ± 0.04 abc | 1.26 ± 0.01 e | 38.27 ± 0.43 cd | 11.68 ± 0.50 b | 26.59 ± 0.9 gh | 0.44 ± 0.03 b | 12.76 ± 0.53 e |
S7 | 6.59 ± 0.15 fg | 0.36 ± 0.02 de | 1.33 ± 0.01 c | 37.51 ± 0.65 cd | 5.12 ± 0.48 g | 32.39 ± 0.96 bc | 0.16 ± 0.02 g | 15.60 ± 0.65 bcd |
S8 | 6.48 ± 0.10 g | 0.44 ± 0.10 bcd | 1.28 ± 0.01 de | 39.02 ± 0.82 bcd | 8.37 ± 0.17 e | 30.65 ± 0.99 cde | 0.27 ± 0.01 def | 14.49 ± 0.43 cde |
S9 | 6.68 ± 0.12 ef | 0.53 ± 0.08 abc | 1.33 ± 0.03 c | 38.68 ± 1.91 bcd | 10.17 ± 0.36 c | 28.51 ± 1.79 fg | 0.36 ± 0.02 c | 14.21 ± 0.25 de |
S10 | 6.92 ± 0.18 c | 0.48 ± 0.05 abcd | 1.40 ± 0.01 a | 37.15 ± 0.07 d | 6.09 ± 0.48 fg | 31.06 ± 0.49 cd | 0.20 ± 0.02 fg | 14.07 ± 0.43 de |
S11 | 7.09 ± 0.07 b | 0.49 ± 0.13 abc | 1.38 ± 0.01 ab | 37.11 ± 0.54 d | 9.33 ± 0.48 cde | 27.78 ± 0.36 fg | 0.34 ± 0.02 cd | 13.70 ± 0.25 de |
S12 | 7.21 ± 0.08 b | 0.47 ± 0.02 abcd | 1.35 ± 0.01 c | 37.55 ± 2.02 cd | 11.92 ± 0.82 b | 25.63 ± 1.57 h | 0.47 ± 0.03 b | 13.64 ± 0.42 de |
CS | 6.60 ± 0.03 fg | 0.42 ± 0.04 cd | 1.30 ± 0.02 d | 40.33 ± 1.67 b | 5.02 ± 0.54 g | 35.32 ± 1.2 a | 0.14 ± 0.01 g | 16.75 ± 0.85 ab |
CW | 7.39 ± 0.12 a | 0.58 ± 0.01 a | 1.10 ± 0.01 f | 46.50 ± 1.32 a | 25.29 ± 1.24 a | 21.22 ± 1.79 i | 1.20 ± 0.14 a | 14.96 ± 0.15 bcd |
T | P | S | T × P | T × S | S × P | T × P × S | |
---|---|---|---|---|---|---|---|
Root collar diameter | *** | ** | ns | ns | * | ns | ns |
Total branch length | *** | ns | * | ns | ** | * | * |
Branch number | *** | ns | ns | ns | ns | ** | ** |
Leaf length | / | *** | *** | / | / | *** | / |
Leaf width | / | *** | *** | / | / | *** | / |
Leaf area | / | *** | *** | / | / | *** | / |
SLW | ** | ns | *** | ns | * | ns | * |
Pn | ** | ns | *** | * | *** | *** | ns |
Rd | *** | * | *** | * | *** | *** | * |
gs | *** | *** | *** | * | *** | *** | *** |
E | *** | ns | *** | ns | *** | * | ** |
WUE | *** | ns | *** | ns | ** | ns | * |
Chl a | *** | ** | *** | ns | ns | ns | ns |
Chl b | *** | * | * | ns | ns | ns | * |
Total Chl | *** | * | ** | ns | ns | ** | ** |
Chl a/b | *** | * | ns | * | ns | ns | ns |
Carotinoid | *** | ns | *** | ns | * | ** | ns |
Total soluble sugars | *** | *** | ns | *** | *** | *** | * |
Starch | ** | ns | *** | ** | * | *** | *** |
Index | Initial Eigenvalues | Extraction of the Sum of Squares of Loads | ||||
---|---|---|---|---|---|---|
Total | Percentage of Variance | Accumulation % | Total | Percentage of Variance | Accumulation % | |
1 | 7.877 | 41.458 | 41.458 | 7.877 | 41.458 | 41.458 |
2 | 4.16 | 21.896 | 63.355 | 4.16 | 21.896 | 63.355 |
3 | 1.882 | 9.904 | 73.258 | 1.882 | 9.904 | 73.258 |
4 | 1.315 | 6.922 | 80.18 | 1.315 | 6.922 | 80.18 |
5 | 0.852 | 4.484 | 84.664 | |||
6 | 0.658 | 3.461 | 88.125 | |||
7 | 0.532 | 2.797 | 90.923 | |||
8 | 0.415 | 2.184 | 93.107 | |||
9 | 0.354 | 1.865 | 94.972 | |||
10 | 0.286 | 1.506 | 96.477 | |||
11 | 0.223 | 1.172 | 97.649 | |||
12 | 0.113 | 0.595 | 98.244 | |||
13 | 0.092 | 0.484 | 98.729 | |||
14 | 6.30 × 10−2 | 3.34 × 10−1 | 99.062 | |||
15 | 5.60 × 10−2 | 2.94 × 10−1 | 99.356 | |||
16 | 4.60 × 10−2 | 2.42 × 10−1 | 99.598 | |||
17 | 3.40 × 10−2 | 1.82 × 10−1 | 99.78 | |||
18 | 2.60 × 10−2 | 1.35 × 10−1 | 99.915 | |||
19 | 1.60 × 10−2 | 8.50 × 10−2 | 100 |
Parameter | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Leaf width | 0.94 | 0.014 | 0.162 | 0.052 |
Leaf area | 0.939 | 0.108 | 0.17 | 0.167 |
Leaf length | 0.909 | 0.147 | 0.238 | 0.019 |
Total branch length | 0.838 | 0.245 | 0.34 | −0.013 |
gs | 0.706 | −0.027 | 0.602 | 0.229 |
Root collar diameter | 0.665 | 0.303 | 0.456 | −0.269 |
Chl b | 0.022 | 0.958 | 0.094 | 0.008 |
Chl a | 0.076 | 0.944 | 0.078 | −0.044 |
Carotinoid content | −0.105 | 0.92 | 0.147 | 0.096 |
Total chl | 0.122 | 0.877 | 0.133 | 0.097 |
Chl a/b | 0.148 | 0.734 | −0.105 | −0.066 |
Branch number | 0.196 | 0.698 | 0.107 | −0.011 |
Starch | 0.049 | 0.224 | 0.799 | 0.151 |
Pn | 0.439 | 0.011 | 0.701 | 0.082 |
WUE | 0.593 | −0.039 | 0.693 | 0.151 |
Rd | 0.27 | 0.286 | 0.663 | −0.248 |
E | −0.416 | 0.044 | −0.648 | −0.072 |
Total soluble sugars | 0.117 | −0.062 | 0.154 | 0.916 |
SLW | 0.054 | 0.12 | 0.004 | 0.897 |
Accumulation | 41.46% | 21.90% | 9.90% | 6.92% |
Substrate | F1 | F2 | F3 | F4 | FS | Rank |
---|---|---|---|---|---|---|
S1 | −0.184422 | 0.077688 | −0.428626 | −0.895793 | −16.39049 | 11 |
S2 | −0.152025 | 0.851681 | 0.436033 | −0.275437 | 14.75763 | 3 |
S3 | 0.26828 | 0.368478 | −1.105075 | −0.250885 | 6.509271 | 7 |
S4 | −0.288866 | 0.410749 | 1.244299 | 0.052652 | 9.705969 | 5 |
S5 | 0.331499 | −0.170606 | 0.389862 | 1.026092 | 20.9715 | 2 |
S6 | 0.674399 | 0.142034 | 0.247582 | 0.789278 | 38.98464 | 1 |
S7 | 0.253801 | −0.461718 | 0.428692 | −0.648606 | 0.168442 | 9 |
S8 | 0.161114 | −0.229638 | 0.070323 | −0.012557 | 2.260847 | 8 |
S9 | 0.399871 | −0.303137 | −0.104073 | 0.199001 | 10.28711 | 4 |
S10 | −0.083285 | 0.516747 | −0.355603 | 0.545952 | 8.119067 | 6 |
S11 | −0.286777 | −0.411357 | −1.051081 | −0.409856 | −34.14319 | 14 |
S12 | −0.313847 | 0.145911 | −0.755834 | −0.431701 | −20.29061 | 12 |
CS | −0.102836 | −0.265854 | 0.881858 | −1.456798 | −11.43454 | 10 |
CW | −0.676907 | −0.670979 | 0.101643 | 1.768658 | −29.50564 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, J.; Zhang, Z.; Tai, Z.; Yang, M.; Luo, Y.; Yang, Z.; Zhou, Y. Construction and Demolition Waste as Substrate Component Improved the Growth of Container-Grown Duranta repens. Sustainability 2023, 15, 1585. https://doi.org/10.3390/su15021585
Jia J, Zhang Z, Tai Z, Yang M, Luo Y, Yang Z, Zhou Y. Construction and Demolition Waste as Substrate Component Improved the Growth of Container-Grown Duranta repens. Sustainability. 2023; 15(2):1585. https://doi.org/10.3390/su15021585
Chicago/Turabian StyleJia, Jingjing, Zhiguo Zhang, Zhijuan Tai, Ming Yang, Yuxin Luo, Zhuo Yang, and Yumei Zhou. 2023. "Construction and Demolition Waste as Substrate Component Improved the Growth of Container-Grown Duranta repens" Sustainability 15, no. 2: 1585. https://doi.org/10.3390/su15021585
APA StyleJia, J., Zhang, Z., Tai, Z., Yang, M., Luo, Y., Yang, Z., & Zhou, Y. (2023). Construction and Demolition Waste as Substrate Component Improved the Growth of Container-Grown Duranta repens. Sustainability, 15(2), 1585. https://doi.org/10.3390/su15021585