Consumers’ Continued Intention to Use Online-to-Offline (O2O) Services in Omnichannel Retail: Differences between To-Shop and To-Home Models
Abstract
:1. Introduction
2. Literature Review
2.1. Theories and Models
2.2. Continued Intention
2.3. Factors Influencing Continued Intention
3. Research Framework and Hypotheses
3.1. Theoretical Foundation
3.1.1. UTAUT2
3.1.2. ECM
3.1.3. Perceived Risk
3.2. Hypotheses Development
3.2.1. Performance Expectancy
3.2.2. Social Influence
3.2.3. Offline Facilitating Conditions
3.2.4. Hedonic Motivation
3.2.5. Price Value
3.2.6. Habit
3.2.7. Confirmation
3.2.8. Perceived Risk
3.2.9. Differences between To-Shop and To-Home
4. Materials and Methods
4.1. Sampling
4.2. Measurement
4.3. Data Analysis
5. Results
5.1. Common Method Bias
5.2. Measurement Models
5.3. Measurement Invariance
5.4. Structural Model
5.5. Multigroup Analysis
6. Discussion
6.1. Discussion of the Results
6.2. Theoretical Contributions
6.3. Practical Contributions
6.4. Limitations and Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Perceived Risk | (developed by the authors drawing on Featherman and Pavlou [78]) |
PR1 | O2O merchants have the potential to deceive me about the performance of products and services. |
PR2 | Using O2O services can potentially lead to a waste of money. |
PR3 | Using O2O services can potentially lead to time loss. |
PR4 | I worry that I will be very frustrated by not achieving the expected results from O2O services. |
PR5 | I worry that using O2O services will lead to privacy information theft. |
PR_global | Using O2O services exposes me to an overall risk. |
Confirmation | (developed by the authors drawing on Bhattacherjee [53]) |
CO1 | O2O product quality is better than what I expected. |
CO2 | O2O service quality is better than what I expected. |
CO3 | Online content on O2O platforms is more valuable than what I expected. |
CO_global | Overall, most of my expectations from using O2O services are confirmed. |
References
- Verhoef, P.C.; Neslin, S.A.; Vroomen, B. Multichannel Customer Management: Understanding the Research-Shopper Phenomenon. Int. J. Res. Mark. 2007, 24, 129–148. [Google Scholar] [CrossRef]
- Venkatesan, R.; Kumar, V.; Ravishanker, N. Multichannel Shopping: Causes and Consequences. J. Mark. 2007, 71, 114–132. [Google Scholar] [CrossRef]
- Dholakia, U.M.; Kahn, B.E.; Reeves, R.; Rindfleisch, A.; Stewart, D.; Taylor, E. Consumer Behavior in a Multichannel, Multimedia Retailing Environment. J. Interact. Mark. 2010, 24, 86–95. [Google Scholar] [CrossRef]
- Tsai, T.-M.; Wang, W.-N.; Lin, Y.-T.; Choub, S.-C. An O2O Commerce Service Framework and Its Effectiveness Analysis with Application to Proximity Commerce. Procedia Manuf. 2015, 3, 3498–3505. [Google Scholar] [CrossRef] [Green Version]
- Cotarelo, M.; Fayos, T.; Calderón, H.; Mollá, A. Omni-Channel Intensity and Shopping Value as Key Drivers of Customer Satisfaction and Loyalty. Sustainability 2021, 13, 5961. [Google Scholar] [CrossRef]
- Chen, Y.; Chi, T. How Does Channel Integration Affect Consumers’ Selection of Omni-Channel Shopping Methods? An Empirical Study of U.S. Consumers. Sustainability 2021, 13, 8983. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Kannan, P.K.; Inman, J.J. From Multi-Channel Retailing to Omni-Channel Retailing. J. Retail. 2015, 91, 174–181. [Google Scholar] [CrossRef]
- Phang, C.W.; Tan, C.-H.; Sutanto, J.; Magagna, F.; Lu, X. Leveraging O2O Commerce for Product Promotion: An Empirical Investigation in Mainland China. IEEE Trans. Eng. Manag. 2014, 61, 623–632. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Wu, X. Operation Models in O2O Supply Chain When Existing Competitive Service Level. Int. J. U- E- Serv. Sci. Technol. 2015, 8, 279–290. [Google Scholar] [CrossRef]
- Yao, P.; Osman, S.; Sabri, M.F.; Zainudin, N. Consumer Behavior in Online-to-Offline (O2O) Commerce: A Thematic Review. Sustainability 2022, 14, 7842. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, Y.; Land, L.P.W.; Chesney, T. Understanding the Effects of Physical Experience and Information Integration on Consumer Use of Online to Offline Commerce. Int. J. Inf. Manag. 2020, 51, 102046. [Google Scholar] [CrossRef]
- He, B.; Gupta, V.; Mirchandani, P. Online Selling through O2O Platform or on Your Own? Strategic Implications for Local Brick-and-Mortar Stores. Omega 2021, 103, 102424. [Google Scholar] [CrossRef]
- Yang, F.X.; Li, X.; Lau, V.M.-C.; Zhu, V.Z. To Survive or to Thrive? China’s Luxury Hotel Restaurants Entering O2O Food Delivery Platforms amid the COVID-19 Crisis. Int. J. Hosp. Manag. 2021, 94, 102855. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheung, C.M.K.; Tan, C.-W. Omnichannel Business Research: Opportunities and Challenges. Decis. Support Syst. 2018, 109, 1–4. [Google Scholar] [CrossRef]
- Xiao, L.; Guo, Z.; D’Ambra, J. Benefit-Based O2O Commerce Segmentation: A Means-End Chain Approach. Electron. Commer. Res. 2019, 19, 409–449. [Google Scholar] [CrossRef]
- Agarwal, V.; Sahu, R. Predicting Repeat Usage Intention towards O2O Food Delivery: Extending UTAUT2 with User Gratifications and Bandwagoning. J. Foodserv. Bus. Res. 2022, 25, 434–474. [Google Scholar] [CrossRef]
- Roh, M.; Park, K. Adoption of O2O Food Delivery Services in South Korea: The Moderating Role of Moral Obligation in Meal Preparation. Int. J. Inf. Manag. 2019, 47, 262–273. [Google Scholar] [CrossRef]
- Wang, O.; Scrimgeour, F. Consumer Adoption of Online-to-Offline Food Delivery Services in China and New Zealand. Br. Food J. 2021, 124, 1590–1608. [Google Scholar] [CrossRef]
- Li, Y.; Yao, P.; Osman, S.; Zainudin, N.; Sabri, M.F. A Thematic Review on Using Food Delivery Services during the Pandemic: Insights for the Post-COVID-19 Era. Int. J. Environ. Res. Public Health 2022, 19, 15267. [Google Scholar] [CrossRef]
- Leung, P.P.L.; Wu, C.H.; Ip, W.H.; Ho, G.T.S. Enhancing Online-to-Offline Specific Customer Loyalty in Beauty Industry. Enterp. Inf. Syst. 2019, 13, 352–375. [Google Scholar] [CrossRef]
- Lin, M.; Wang, Z.; Zhang, Z.; Cao, Y. Research on Consumers’ Attitudes in China about Using Online-to-Offline Mode for Purchasing Wooden Furniture. For. Prod. J. 2019, 69, 159–172. [Google Scholar] [CrossRef]
- Prassida, G.F.; Hsu, P.-Y.; Chang, Y.-W. Understanding How O2O Service Synergies Drive Customer Continuance Intention: A Study of OTAs and Hotels. Asia Pac. J. Tour. Res. 2021, 26, 1139–1155. [Google Scholar] [CrossRef]
- Statista. Gross Merchandise Value of the To-Shop O2O Market in China from 1st Half of 2016 to 1st Half of 2019. Available online: https://www.statista.com/statistics/1147378/china-gmv-of-to-shop-o2o-market/ (accessed on 1 June 2022).
- Statista. Gross Merchandise Value of To-Home O2O Market in China from 1st Half of 2016 to 1st Half of 2019. Available online: https://www.statista.com/statistics/1147402/china-gmv-of-to-home-o2o-market/ (accessed on 1 June 2022).
- Chai, L.; Wang, Y. Exploring the Sustainable Usage Intention of BOPS: A Perspective of Channel Integration Quality. Sustainability 2022, 14, 14114. [Google Scholar] [CrossRef]
- Wang, O.; Somogyi, S.; Charlebois, S. Food Choice in the E-Commerce Era: A Comparison between Business-to-Consumer (B2C), Online-to-Offline (O2O) and New Retail. Br. Food J. 2020, 122, 1215–1237. [Google Scholar] [CrossRef]
- Howard, J.A.; Sheth, J.N. The Theory of Buyer Behavior; Wiley: New York, NY, USA, 1969; ISBN 978-0-471-41657-9. [Google Scholar]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research; Addison-Wesley series in social psychology; Addison-Wesley: Reading, MA, USA, 1975; ISBN 978-0-201-02089-2. [Google Scholar]
- Cai, S.; Xu, Y. Effects of Outcome, Process and Shopping Enjoyment on Online Consumer Behaviour. Electron. Commer. Res. Appl. 2006, 5, 272–281. [Google Scholar] [CrossRef]
- Parthasarathy, M.; Bhattacherjee, A. Understanding Post-Adoption Behavior in the Context of Online Services. Inf. Syst. Res. 1998, 9, 362–379. [Google Scholar] [CrossRef] [Green Version]
- Bhattacherjee, A. An Empirical Analysis of the Antecedents of Electronic Commerce Service Continuance. Decis. Support Syst. 2001, 32, 201–214. [Google Scholar] [CrossRef]
- Haryanti, T.; Subriadi, A.P. Factors and Theories for E-Commerce Adoption: A Literature Review. Int. J. Electron. Commer. Stud. 2020, 11, 87–105. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef]
- Chen, C.-C.; Hsiao, K.-L.; Hsieh, C.-H. Understanding Usage Transfer Behavior of Two Way O2O Services. Comput. Hum. Behav. 2019, 100, 184–191. [Google Scholar] [CrossRef]
- Dai, T.; Wen, D.; Chen, X. An Empirical Study on the Customer Channel Choice Behavior in the Overall Process of Shopping under O2O Mode. Int. J. Web Portals 2016, 8, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.-W.; Namkung, Y. The Information Quality and Source Credibility Matter in Customers’ Evaluation toward Food O2O Commerce. Int. J. Hosp. Manag. 2019, 78, 189–198. [Google Scholar] [CrossRef]
- Lin, S.; Chen, S.-C.; Chuang, S.-H. Perceived Innovation and Quick Response Codes in an Online-to-Offline E-Commerce Service Model. Int. J. E-Adopt. 2017, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Xue, W.; Yang, Y.; Li, D.; Li, Y. The Impacts of User Experience on User Loyalty Based on O2O Innovation Platform. J. Electron. Commer. Organ. 2019, 17, 79–87. [Google Scholar] [CrossRef]
- Wu, T.-J.; Zhao, R.-H.; Tzeng, S.-Y. An Empirical Research of Consumer Adoption Behavior on Catering Transformation to Mobile O2O. J. Interdiscip. Math. 2015, 18, 769–788. [Google Scholar] [CrossRef]
- Zhu, Y.; Wei, Y.; Zhou, Z.; Jiang, H. Consumers’ Continuous Use Intention of O2O E-Commerce Platform on Community: A Value Co-Creation Perspective. Sustainability 2022, 14, 1666. [Google Scholar] [CrossRef]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. J. Retail. 1988, 64, 12–40. [Google Scholar]
- Choi, Y.; Zhang, L.; Debbarma, J.; Lee, H. Sustainable Management of Online to Offline Delivery Apps for Consumers’ Reuse Intention: Focused on the Meituan Apps. Sustainability 2021, 13, 3593. [Google Scholar] [CrossRef]
- Ha, H.-Y.; Kitchen, P.J. Positive Crossover Loyalty Shifts or Negative Temporal Changes? The Evolution of Shopping Mechanism in the O2O Era. Eur. J. Mark. 2020, 54, 1383–1405. [Google Scholar] [CrossRef]
- Huang, C.-C.; Chang, Y.-W.; Hsu, P.Y.; Prassida, G.F. A Cross-Country Investigation of Customer Transactions from Online to Offline Channels. Ind. Manag. Data Syst. 2020, 120, 2397–2422. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, S. Does MIM Experience Affect Satisfaction with and Loyalty toward O2O Services? Comput. Hum. Behav. 2018, 82, 70–80. [Google Scholar] [CrossRef]
- Kang, M.J.; Wu, Z.; Hwang, H.J. A Study on the Mediating Effect of Customer Orientation between O2O Service Quality and Customers’ Perceived Service Satisfaction. J. Distrib. Sci. 2021, 19, 37–44. [Google Scholar] [CrossRef]
- Moon, Y.; Armstrong, D.J. Service Quality Factors Affecting Customer Attitudes in Online-to-Offline Commerce. Inf. Syst. E-Bus. Manag. 2020, 18, 1–34. [Google Scholar] [CrossRef]
- Pei, Y.; Li, D.; Xue, W. The Evaluation of Customer Experience Using BP Neural Network-taking Catering O2O Takeout. Concurr. Comput. Pract. Exp. 2020, 32, e5515. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Kim, H.-K. A Study on the Factors Affecting Satisfaction and Reuse Intention among Customers Using O2O Delivery Platform in China. J. Syst. Manag. Sci. 2021, 11, 58–74. [Google Scholar] [CrossRef]
- Zhuang, X.; Lin, L.; Zhang, R.; Li, J.; He, B. E-Service Quality Perceptions of Millennials and Non-Millennials on O2O Delivery Applications. Br. Food J. 2021, 123, 4116–4134. [Google Scholar] [CrossRef]
- Oliver, R.L. A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. J. Mark. Res. 1980, 17, 460–469. [Google Scholar] [CrossRef]
- Bhattacherjee, A. Understanding Information Systems Continuance: An Expectation-Confirmation Model. MIS Q. 2001, 25, 351. [Google Scholar] [CrossRef]
- Che, T.; Ji, M.; Zheng, X.; Feng, B. Dissatisfaction toward O2O Websites: Expectation Disconfirmation and Justice Perspective. Asia Pac. J. Mark. Logist. 2022, 34, 190–208. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Lin, J.C.-C. Understanding Continuance Intention to Use Online to Offline (O2O) Apps. Electron. Mark. 2020, 30, 883–897. [Google Scholar] [CrossRef]
- Kim, S.H.; Bae, J.H.; Jeon, H.M. Continuous Intention on Accommodation Apps: Integrated Value-Based Adoption and Expectation–Confirmation Model Analysis. Sustainability 2019, 11, 1578. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Ongoing Trust and Tourism O2O Platform Continuance: A Two-Trustee Involved Model With Moderating Variable. SAGE Open 2020, 10, 1–18. [Google Scholar] [CrossRef]
- Sweeney, J.C.; Soutar, G.N. Consumer Perceived Value: The Development of a Multiple Item Scale. J. Retail. 2001, 77, 203–220. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Hsu, P.-Y.; Yang, Q.-M. Integration of Online and Offline Channels: A View of O2O Commerce. Internet Res. 2018, 28, 926–945. [Google Scholar] [CrossRef]
- Hsu, C.-L.; Lin, J.C.-C. Examining Social Networking O2O Apps User Loyalty. J. Comput. Inf. Syst. 2020, 60, 459–467. [Google Scholar] [CrossRef]
- DeLone, W.H.; McLean, E.R. Information Systems Success: The Quest for the Dependent Variable. Inf. Syst. Res. 1992, 3, 60–95. [Google Scholar] [CrossRef] [Green Version]
- DeLone, W.H.; McLean, E.R. The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. J. Manag. Inf. Syst. 2003, 19, 9–30. [Google Scholar] [CrossRef]
- Kim, Y.; Wang, Q.; Roh, T. Do Information and Service Quality Affect Perceived Privacy Protection, Satisfaction, and Loyalty? Evidence from a Chinese O2O-Based Mobile Shopping Application. Telemat. Inform. 2021, 56, 101483. [Google Scholar] [CrossRef]
- Petty, R.E.; Cacioppo, J.T. The Elaboration Likelihood Model of Persuasion. In Advances in Experimental Social Psychology; Berkowitz, L., Ed.; Academic Press: Cambridge, MA, USA, 1986; Volume 19, pp. 123–205. ISBN 978-0-12-015219-3. [Google Scholar]
- Xu, X.; Huang, Y. Restaurant Information Cues, Diners’ Expectations, and Need for Cognition: Experimental Studies of Online-to-Offline Mobile Food Ordering. J. Retail. Consum. Serv. 2019, 51, 231–241. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003; ISBN 978-0-7432-2209-9. [Google Scholar]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157. [Google Scholar] [CrossRef]
- Lee, S.W.; Sung, H.J.; Jeon, H.M. Determinants of Continuous Intention on Food Delivery Apps: Extending UTAUT2 with Information Quality. Sustainability 2019, 11, 3141. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. J. Assoc. Inf. Syst. 2016, 17, 328–376. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, L.; Peng, X.; Dong, Y.; Barnes, S.J. Understanding Chinese Users’ Continuance Intention toward Online Social Networks: An Integrative Theoretical Model. Electron. Mark. 2014, 24, 57–66. [Google Scholar] [CrossRef]
- Tran, V.D. Using Mobile Food Delivery Applications during the COVID-19 Pandemic: Applying the Theory of Planned Behavior to Examine Continuance Behavior. Sustainability 2021, 13, 12066. [Google Scholar] [CrossRef]
- Cao, X.; Yu, L.; Liu, Z.; Gong, M.; Adeel, L. Understanding Mobile Payment Users’ Continuance Intention: A Trust Transfer Perspective. Internet Res. 2018, 28, 456–476. [Google Scholar] [CrossRef]
- Lin, H.; Fan, W.; Chau, P.Y.K. Determinants of Users’ Continuance of Social Networking Sites: A Self-Regulation Perspective. Inf. Manag. 2014, 51, 595–603. [Google Scholar] [CrossRef]
- Shang, D.; Wu, W. Understanding Mobile Shopping Consumers’ Continuance Intention. Ind. Manag. Data Syst. 2017, 117, 213–227. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [Google Scholar] [CrossRef] [Green Version]
- Tamilmani, K.; Rana, N.P.; Dwivedi, Y.K. Consumer Acceptance and Use of Information Technology: A Meta-Analytic Evaluation of UTAUT2. Inf. Syst. Front. 2021, 23, 987–1005. [Google Scholar] [CrossRef]
- Featherman, M.S.; Pavlou, P.A. Predicting E-Services Adoption: A Perceived Risk Facets Perspective. Int. J. Hum. Comput. Stud. 2003, 59, 451–474. [Google Scholar] [CrossRef] [Green Version]
- Karahanna, E.; Straub, D.W.; Chervany, N.L. Information Technology Adoption Across Time: A Cross-Sectional Comparison of Pre-Adoption and Post-Adoption Beliefs. MIS Q. 1999, 23, 183. [Google Scholar] [CrossRef]
- Alalwan, A.A. Mobile Food Ordering Apps: An Empirical Study of the Factors Affecting Customer e-Satisfaction and Continued Intention to Reuse. Int. J. Inf. Manag. 2020, 50, 28–44. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Chan, F.K.Y.; Hu, P.J.-H.; Brown, S.A. Extending the Two-Stage Information Systems Continuance Model: Incorporating UTAUT Predictors and the Role of Context: Context, Expectations and IS Continuance. Inf. Syst. J. 2011, 21, 527–555. [Google Scholar] [CrossRef]
- Tamilmani, K.; Rana, N.P.; Prakasam, N.; Dwivedi, Y.K. The Battle of Brain vs. Heart: A Literature Review and Meta-Analysis of “Hedonic Motivation” Use in UTAUT2. Int. J. Inf. Manag. 2019, 46, 222–235. [Google Scholar] [CrossRef]
- Simanjuntak, M.; Nur, H.R.; Sartono, B.; Sabri, M.F. A General Structural Equation Model of the Emotions and Repurchase Intention in Modern Retail. Manag. Sci. Lett. 2020, 10, 801–814. [Google Scholar] [CrossRef]
- Pascual-Miguel, F.J.; Agudo-Peregrina, Á.F.; Chaparro-Peláez, J. Influences of Gender and Product Type on Online Purchasing. J. Bus. Res. 2015, 68, 1550–1556. [Google Scholar] [CrossRef]
- Zeithaml, V.A. Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Magli, A.S.; Sabri, M.F.; Rahim, H.A. The Influence of Financial Attitude, Financial Behaviour, and Self-Belief towards Financial Vulnerability among Public Employees in Malaysia. Malays. J. Consum. Fam. Econ. 2020, 25, 175–193. [Google Scholar]
- Sabri, M.F.; Aw, E.C.X.; Rahim, H.A.; Burhan, N.A.S.; Othmana, M.A.; Simanjuntak, M. Financial Literacy, Behavior and Vulnerability Among Malaysian Households: Does Gender Matter? Int. J. Econ. Manag. 2021, 15, 241–256. [Google Scholar]
- Sabri, M.F.; Gudmunson, C.G.; Griesdorn, T.S.; Dean, L.R. Influence of Family Financial Socialization on Academic Success in College. J. Financ. Couns. Plan. 2020, 31, 267–283. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Attitudes and the Attitude-Behavior Relation: Reasoned and Automatic Processes. Eur. Rev. Soc. Psychol. 2000, 11, 1–33. [Google Scholar] [CrossRef]
- Peter, J.P.; Ryan, M.J. An Investigation of Perceived Risk at the Brand Level. J. Mark. Res. 1976, 13, 184–188. [Google Scholar] [CrossRef]
- Pavlou, P.A. Consumer Acceptance of Electronic Commerce: Integrating Trust and Risk with the Technology Acceptance Model. Int. J. Electron. Commer. 2003, 7, 101–134. [Google Scholar] [CrossRef]
- Chiu, C.-M.; Wang, E.T.G.; Fang, Y.-H.; Huang, H.-Y. Understanding Customers’ Repeat Purchase Intentions in B2C e-Commerce: The Roles of Utilitarian Value, Hedonic Value and Perceived Risk: Understanding Customers’ Repeat Purchase Intentions. Inf. Syst. J. 2014, 24, 85–114. [Google Scholar] [CrossRef]
- Fong, L.H.N.; Lam, L.W.; Law, R. How Locus of Control Shapes Intention to Reuse Mobile Apps for Making Hotel Reservations: Evidence from Chinese Consumers. Tour. Manag. 2017, 61, 331–342. [Google Scholar] [CrossRef]
- Hulland, J.; Baumgartner, H.; Smith, K.M. Marketing Survey Research Best Practices: Evidence and Recommendations from a Review of JAMS Articles. J. Acad. Mark. Sci. 2018, 46, 92–108. [Google Scholar] [CrossRef]
- Saunders, M.N.K.; Lewis, P. Doing Research in Business and Management, 2nd ed.; Pearson: Harlow, UK, 2018; ISBN 978-1-292-13352-2. [Google Scholar]
- Krejcie, R.V.; Morgan, D.W. Determining Sample Size for Research Activities. Educ. Psychol. Meas. 1970, 30, 607–610. [Google Scholar] [CrossRef]
- Sekaran, U.; Bougie, R. Research Methods for Business: A Skill-Building Approach, 7th ed.; Wiley: Chichester, UK, 2016; ISBN 978-1-119-26684-6. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; SAGE: Thousand Oaks, CA, USA, 2022; ISBN 978-1-5443-9640-8. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Brislin, R.W. Back-Translation for Cross-Cultural Research. J. Cross-Cult. Psychol. 1970, 1, 185–216. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G* Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. Testing Measurement Invariance of Composites Using Partial Least Squares. Int. Mark. Rev. 2016, 33, 405–431. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. Advanced Issues in Partial Least Squares Structural Equation Modeling; SAGE: Thousand Oaks, CA, USA, 2018; ISBN 978-1-4833-7739-1. [Google Scholar]
- Sarstedt, M.; Cheah, J.-H. Partial Least Squares Structural Equation Modeling Using SmartPLS: A Software Review. J. Mark. Anal. 2019, 7, 196–202. [Google Scholar] [CrossRef]
- Ali, F.; Rasoolimanesh, S.M.; Sarstedt, M.; Ringle, C.M.; Ryu, K. An Assessment of the Use of Partial Least Squares Structural Equation Modeling (PLS-SEM) in Hospitality Research. Int. J. Contemp. Hosp. Manag. 2018, 30, 514–538. [Google Scholar] [CrossRef] [Green Version]
- Vomberg, A.; Klarmann, M. Crafting Survey Research: A Systematic Process for Conducting Survey Research. In Handbook of Market Research; Homburg, C., Klarmann, M., Vomberg, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 67–119. ISBN 978-3-319-57413-4. [Google Scholar]
- Kock, N.; Lynn, G. Lateral Collinearity and Misleading Results in Variance-Based SEM: An Illustration and Recommendations. J. Assoc. Inf. Syst. 2012, 13, 546–580. [Google Scholar] [CrossRef] [Green Version]
- Kock, N. Common Method Bias in PLS-SEM: A Full Collinearity Assessment Approach. Int. J. E-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to Use and How to Report the Results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modelling. In Modern Methods for Business Research; Marcoulides, G.A., Ed.; Lawrence Erlbaum: Mahwah, NJ, USA, 1998; pp. 295–358. ISBN 978-0-8058-2677-7. [Google Scholar]
- Rigdon, E.E. Rethinking Partial Least Squares Path Modeling: In Praise of Simple Methods. Long Range Plan. 2012, 45, 341–358. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Henseler, J.; Hair, J.F. On the Emancipation of PLS-SEM: A Commentary on Rigdon (2012). Long Range Plan. 2014, 47, 154–160. [Google Scholar] [CrossRef]
- Tam, C.; Santos, D.; Oliveira, T. Exploring the Influential Factors of Continuance Intention to Use Mobile Apps: Extending the Expectation Confirmation Model. Inf. Syst. Front. 2020, 22, 243–257. [Google Scholar] [CrossRef]
- Chin, W.; Cheah, J.-H.; Liu, Y.; Ting, H.; Lim, X.-J.; Cham, T.H. Demystifying the Role of Causal-Predictive Modeling Using Partial Least Squares Structural Equation Modeling in Information Systems Research. Ind. Manag. Data Syst. 2020, 120, 2161–2209. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M. Explanation Plus Prediction—The Logical Focus of Project Management Research. Proj. Manag. J. 2021, 52, 319–322. [Google Scholar] [CrossRef]
- Shmueli, G.; Ray, S.; Velasquez Estrada, J.M.; Chatla, S.B. The Elephant in the Room: Predictive Performance of PLS Models. J. Bus. Res. 2016, 69, 4552–4564. [Google Scholar] [CrossRef]
- Shmueli, G.; Sarstedt, M.; Hair, J.F.; Cheah, J.H.; Ting, H.; Vaithilingam, S.; Ringle, C.M. Predictive Model Assessment in PLS-SEM: Guidelines for Using PLSpredict. Eur. J. Mark. 2019, 53, 2322–2347. [Google Scholar] [CrossRef]
Theory and Model | Article | Count |
---|---|---|
Technology acceptance model (TAM) [33,34] | [11,17,21,35,36,37,38,39,40,41] | 10 |
General service quality theories (e.g., SERVQUAL [42]) | [22,43,44,45,46,47,48,49,50,51] | 10 |
Expectation confirmation theory (ECT) [52] and expectation confirmation model (ECM) [53] | [45,54,55,56,57] | 5 |
General value theories/models (e.g., consumer perceived value [58]) | [11,22,56,59,60] | 5 |
Information systems success model (ISSM) [61,62] | [35,59,63] | 3 |
Elaboration likelihood model (ELM) [64] | [37,65] | 2 |
Diffusion of innovations theory (DIT) [66] | [17,18] | 2 |
The extended unified theory of acceptance and use of technology (UTAUT2) [67] | [16,68] | 2 |
Theory of planned behavior (TPB) [69] | [38,41] | 2 |
Field | Category | Frequency | Percentage |
---|---|---|---|
Gender | Male | 289 | 57.8% |
Female | 211 | 42.2% | |
Age | 16–22 | 175 | 35.0% |
23–30 | 201 | 40.2% | |
31–40 | 102 | 20.4% | |
Over 40 | 22 | 4.4% | |
Service type | To-shop | 223 | 44.6% |
To-home | 277 | 55.4% |
Variable | PE | SI | OFC | HM | PV | HA | CO | PR | CI |
---|---|---|---|---|---|---|---|---|---|
Inner VIF | 1.702 | 1.262 | 1.418 | 1.310 | 1.346 | 1.881 | 1.686 | 1.074 | 1.542 |
Construct | Item | Indicator Reliability | Internal Consistency Reliability | ||
---|---|---|---|---|---|
Loading | Alpha | Rho_A | CR | ||
PE | PE1 | 0.867 | 0.881 | 0.881 | 0.918 |
PE2 | 0.834 | ||||
PE3 | 0.845 | ||||
PE4 | 0.886 | ||||
SI | SI1 | 0.841 | 0.791 | 0.798 | 0.877 |
SI2 | 0.829 | ||||
SI3 | 0.846 | ||||
OFC | OFC1 | 0.835 | 0.819 | 0.823 | 0.881 |
OFC2 | 0.833 | ||||
OFC3 | 0.809 | ||||
OFC4 | 0.742 | ||||
HM | HM1 | 0.871 | 0.872 | 0.872 | 0.922 |
HM2 | 0.905 | ||||
HM3 | 0.902 | ||||
PV | PV1 | 0.895 | 8.855 | 0.858 | 0.912 |
PV2 | 0.886 | ||||
PV3 | 0.860 | ||||
HA | HA1 | 0.899 | 0.883 | 0.885 | 0.920 |
HA2 | 0.792 | ||||
HA3 | 0.895 | ||||
HA4 | 0.855 | ||||
CI | CI1 | 0.912 | 0.903 | 0.903 | 0.939 |
CI2 | 0.929 | ||||
CI3 | 0.904 |
Construct | Convergent Validity | Discriminant Validity * | |||||
---|---|---|---|---|---|---|---|
AVE | PE | SI | OFC | HM | PV | HA | |
PE | 0.737 | ||||||
SI | 0.704 | 0.441 | |||||
OFC | 0.649 | 0.446 | 0.391 | ||||
HM | 0.797 | 0.477 | 0.299 | 0.405 | |||
PV | 0.775 | 0.452 | 0.361 | 0.422 | 0.365 | ||
HA | 0.742 | 0.609 | 0.463 | 0.597 | 0.493 | 0.473 | |
CI | 0.838 | 0.810 | 0.491 | 0.683 | 0.593 | 0.566 | 0.847 |
Construct | Item | Convergent Validity | Collinearity | Indicator’s Significance and Relevance | ||
---|---|---|---|---|---|---|
Redundancy Analysis | Outer VIF | Weight | Loading | Significance * | ||
CO | CO1 | 0.830 | 1.387 | 0.359 | 0.749 | Yes |
CO2 | 1.345 | 0.438 | 0.769 | Yes | ||
CO3 | 1.171 | 0.511 | 0.770 | Yes | ||
PR | PR1 | 0.789 | 1.366 | 0.260 | 0.686 | Yes |
PR2 | 1.780 | 0.320 | 0.757 | Yes | ||
PR3 | 1.713 | 0.287 | 0.739 | Yes | ||
PR4 | 1.146 | 0.310 | 0.601 | Yes | ||
PR5 | 1.163 | 0.300 | 0.605 | Yes |
Model | Configural Invariance | Compositional Invariance | Equality of Composite Means and Variances | |||||||
---|---|---|---|---|---|---|---|---|---|---|
c Value | p Value | Result | Mean Difference | p Value | Result | Variance Difference | p Value | Result | ||
PE | Established | 1.000 | 0.655 | Established | 0.044 | 0.626 | Equal | −0.024 | 0.823 | Equal |
SI | Established | 0.998 | 0.391 | Established | 0.133 | 0.140 | Equal | −0.028 | 0.769 | Equal |
OFC | Established | 0.999 | 0.521 | Established | 0.088 | 0.324 | Equal | −0.098 | 0.394 | Equal |
HM | Established | 1.000 | 0.930 | Established | 0.166 | 0.065 | Equal | 0.108 | 0.279 | Equal |
PV | Established | 1.000 | 0.875 | Established | 0.135 | 0.128 | Equal | −0.082 | 0.412 | Equal |
HA | Established | 1.000 | 0.831 | Established | −0.125 | 0.169 | Equal | 0.081 | 0.423 | Equal |
CO | Established | 0.995 | 0.497 | Established | 0.046 | 0.623 | Equal | 0.062 | 0.549 | Equal |
PR | Established | 0.982 | 0.624 | Established | −0.095 | 0.288 | Equal | 0.015 | 0.889 | Equal |
CI | Established | 1.000 | 0.961 | Established | 0.014 | 0.866 | Equal | −0.016 | 0.887 | Equal |
Path | Hypothesis | Inner VIF | Path Coefficient | 95% Percentile Confidence Interval | p Value | Result | ƒ2 | R2 |
---|---|---|---|---|---|---|---|---|
PE→CI | H1 | 2.153 | 0.224 | [0.168, 0.276] | 0.000 * | Supported | 0.115 | 0.798 |
SI→CI | H2 | 1.274 | 0.014 | [−0.022, 0.050] | 0.261 | Not supported | 0.001 | |
OFC→CI | H3 | 1.466 | 0.158 | [0.112, 0.205] | 0.000 * | Supported | 0.084 | |
HM→CI | H4 | 1.373 | 0.089 | [0.048, 0.129] | 0.000 * | Supported | 0.029 | |
PV→CI | H5 | 1.344 | 0.087 | [0.050, 0.124] | 0.000 * | Supported | 0.028 | |
HA→CI | H6 | 1.906 | 0.321 | [0.265, 0.373] | 0.000 * | Supported | 0.267 | |
CO→CI | H7 | 2.367 | 0.210 | [0.155, 0.269] | 0.000 * | Supported | 0.092 | |
PR→CI | H8 | 1.829 | −0.084 | [−0.134, −0.042] | 0.001 * | Supported | 0.019 |
Indicator | Q2_Predict | RMSE_PLS | RMSE_LM | RMSE_PLS—RMSE_LM |
---|---|---|---|---|
CI 1 | 0.660 | 0.700 | 0.716 | −0.016 |
CI 2 | 0.656 | 0.790 | 0.817 | −0.027 |
CI 3 | 0.665 | 0.786 | 0.802 | −0.016 |
Path | Hypothesis | ①PC (to-Shop) | ②PC (to-Home) | PC Difference (① − ②) | p Value | 95% Percentile Confidence Interval | Result |
---|---|---|---|---|---|---|---|
OFC→CI | H9 a | 0.133 | 0.176 | −0.043 | 0.460 | [−0.113, 0.111] | Not supported |
HM→CI | H9 b | 0.148 | 0.041 | 0.107 | 0.033 * | [−0.099, 0.098] | Supported |
PV→CI | H9 c | 0.154 | 0.050 | 0.105 | 0.025 * | [−0.089, 0.091] | Supported |
PR→CI | H9 d | −0.036 | −0.156 | 0.120 | 0.032 * | [−0.114, 0.105] | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, P.; Sabri, M.F.; Osman, S.; Zainudin, N.; Li, Y. Consumers’ Continued Intention to Use Online-to-Offline (O2O) Services in Omnichannel Retail: Differences between To-Shop and To-Home Models. Sustainability 2023, 15, 945. https://doi.org/10.3390/su15020945
Yao P, Sabri MF, Osman S, Zainudin N, Li Y. Consumers’ Continued Intention to Use Online-to-Offline (O2O) Services in Omnichannel Retail: Differences between To-Shop and To-Home Models. Sustainability. 2023; 15(2):945. https://doi.org/10.3390/su15020945
Chicago/Turabian StyleYao, Pinyi, Mohamad Fazli Sabri, Syuhaily Osman, Norzalina Zainudin, and Yezheng Li. 2023. "Consumers’ Continued Intention to Use Online-to-Offline (O2O) Services in Omnichannel Retail: Differences between To-Shop and To-Home Models" Sustainability 15, no. 2: 945. https://doi.org/10.3390/su15020945
APA StyleYao, P., Sabri, M. F., Osman, S., Zainudin, N., & Li, Y. (2023). Consumers’ Continued Intention to Use Online-to-Offline (O2O) Services in Omnichannel Retail: Differences between To-Shop and To-Home Models. Sustainability, 15(2), 945. https://doi.org/10.3390/su15020945