Towards Sustainable Water Resources Management Considering Climate Change in the Case of Saudi Arabia
Abstract
:1. Introduction
2. Methods
3. Study Area and Climate Data Sources
4. Current Water Resources in KSA
4.1. Conventional Water Sources
4.1.1. Groundwater Resources
4.1.2. Surface Water Resources
4.2. Non-Conventional Water Sources
4.2.1. Desalination Sources
4.2.2. Treated Wastewater Resources
5. Current Water Demands in KSA
5.1. Agricultural Water Demand
5.2. Domestic Water Demand
5.3. Industrial Water Demand
6. Observed Changes in Climatic Variables in Saudi Arabia
Reference | Time Period | Location(s) | Data Type? Observed, Reanalysis or Gridded Data | PCPannual | Tmax | Tmean | Tmin |
---|---|---|---|---|---|---|---|
Nasrallah and Balling [80] | 1891–1990 | Average over the Arabian Peninsula | Gridded dataset | Insignificant decrease | ---- | +0.63 °C during the period | ---- |
Rehman [90] | 1970–2006 | Dhahran station, Eastern part of Saudi Arabia | Observations * | Insignificant decrease | +0.6 °C per decade | +0.5 °C per decade | +0.4 °C per decade |
AlSarmi and Washington [91] | 1980–2008 | Average over the Arabian Peninsula | Observations * | ---- | +0.32 °C per decade | +0.48 °C per decade | +0.55 °C per decade |
Almazroui et al. [86] | 1978–2009 | Average over Saudi Arabia | Observations * | −47.8 mm per decade | +0.71 °C per decade | +0.48 °C per decade | +0.60 °C per decade |
Athar [92] | 1979–2008 | Average of Saudi Arabia | Observations * | ---- | 0.83 °C per decade | 0.66 °C per decade | +0.49 °C per decade |
Krishna [8] | 1984–2013 | Riyadh, Saudi Arabia | Observations * | ---- | +0.38 °C per decade | +0.643 °C per decade | +0.562 °C per decade |
Alghamdi and Moore [93] | 1985–2010 | Urban (rural) stations in Riyadh, Saudi Arabia | Observations ** | ---- | +0.45 (0.69) °C per decade | ---- | +0.68 (0.83) °C per decade |
Islam et al. [9] | 1981–2010 | Average of Saudi Arabia | Observations *** | ---- | +0.86 °C per decade | +0.73 °C per decade | +0.58 °C per decade |
Almazroui [11] | 1978–2019 | Average of Saudi Arabia | Observations *** | ---- | +0.6 °C per decade | +0.63 °C per decade | +0.64 °C per decade |
Range of reported changes in temperature variables (°C per decade): | 0.59 ± 0.27 | 0.61 ± 0.12 | 0.59 ± 0.1 | ||||
* Annual mean of monthly data. ** Data were obtained from the Saudi Presidency of Meteorology and Environment (SPME). *** Data were collected and provided by the General Authority of Meteorology and Environmental Protection (GAMEP). |
7. Projected Changes in Climatic Variables in Saudi Arabia
8. Implications of Climate Change in Saudi Arabia
- One of the primary impacts of global warming is the rise in water demand across all sectors. For example, agricultural water demands are likely to increase by 1 to 3 BCM/year to maintain the current level of agricultural production [97,100]. Rising temperatures are also expected to lead to higher domestic water demand [10]. However, the exact extent of the latter’s impact locally remains uncertain and needs further investigation.
- A reduction in surface runoff by 0.115–0.184 BCM/year (0.600–0.960 BCM/year) could be experienced if the average temperature rises by 1 °C (5 °C) [105].
- If the temperature rises by 1 °C (5 °C), it can lead to a decrease of approximately 0.0914 BCM (0.475 BCM) in the annual groundwater recharge values [106].
- Rising temperatures can lead to a higher rate of evaporation from open reservoirs [10], affecting the limited usability of the existing 544 dams. However, the exact extent of this impact on local basins remains undetermined.
- The soil moisture may decrease by 0.181 m/year by 2050 [97].
- An increase in seawater salinity in the Arabian Gulf could be brought about by climate change, which, in turn, may decrease the desalination process’s efficiency and energy consumption [108].
- Marine biodiversity in the Arabian Gulf will be adversely affected, and there is a risk of local extinction of some habitat species [108].
9. Sustainable Water Resources Management in a Changing Climate
9.1. Managing Agricultural Demands
9.2. Reuse of Treated Wastewater
9.3. Evaporation Reduction Technologies
9.4. Subsidies in Domestic Water Supply
9.5. Rainfall Harvesting
9.6. Better Technologies in Desalination
9.7. Water Conservation
- Some of the treated wastewater effluents (22% of the total treated wastewater effluents) have been used either for irrigation by SIO (95.6% of reused treated wastewater) or for industrial purposes (4.4% of reused treated wastewater) [49].
- Some efforts have been made to minimize water leakage losses from the water supply networks.
- Toilet flushing at the Holy Mosque in Makkah has adopted a conservation measure whereby highly saline water from Wadi Malakan near Makkah is used instead of expensive desalinated water [161].
- The government launched a nationwide campaign in 2004 to provide free water conservation tools (including water-saving showerheads and faucets, replacement bags for 3-L toilet tanks, and pills for detecting leaks) to targeted sectors, including residential, government/public, and private. However, the efficiency of this campaign is questionable [158].
- Qatrah, which means “droplet” in Arabic, is one of the latest water conservation programs to promote water conservation practices in the industrial and residential sectors. The program aims to decrease daily water usage from 263 L per capita per day (LPCD) in 2019 to 200 LPCD by 2020 and 150 LPCD by 2030.
- The Saudi Green Building Code (SBC 1001-CR), introduced in 2018 as a voluntary part of the new Saudi Building Code (SBC), addresses, among other environmental requirements, water resource quality and efficiency [121].
10. Challenges and Conclusion Remarks
- ➢
- Groundwater is the primary water source in Saudi Arabia, and it is being depleted at an alarming rate due to overuse. However, more comprehensive data-driven studies are needed to investigate the extent of climate change-induced impacts on the country’s groundwater resources, such as changes in natural groundwater recharge.
- ➢
- While climate change is expected to impact precipitation patterns and runoff volumes significantly, there is a need to understand how such changes will affect surface water availability and quality to ensure that water is accessible and safe for human consumption.
- ➢
- More research is necessary to understand the water demand in Saudi Arabia, especially in urban areas, due to the expected impacts of climate change and the government’s plan to substantially increase the population to 50–60 million (about 32 million in 2022), while Riyadh alone is planned to accommodate about 25 million (about 8 million in 2022) by 2030. Such research would help develop effective policies to manage water resources and ensure that water is distributed equitably.
- ➢
- With increasing pressure on conventional resources, treated wastewater should play a significant role as an essential non-conventional water source in meeting SAs water demand. More efforts are needed to increase the use of treated wastewater from 22% to the government benchmark of 60%.
- ➢
- Launching awareness campaigns about water and promoting the use of treated water in KSA is crucial. It can help educate the public about the scarcity of water resources and the importance of conservation, leading to more responsible water usage. In addition, promoting the use of treated water can reduce the strain on freshwater sources and ensure a sustainable supply for future generations. Moreover, raising awareness about treated water can help overcome any misconceptions or stigmas associated with its use, fostering acceptance and encouraging its widespread adoption.
- ➢
- The adoption of data-driven decision-making is vital for effective climate change evaluations. However, the limited accessibility of observed climatic and hydrologic datasets has hindered comprehensive assessments. To overcome this limitation, it is crucial to prioritize efforts that facilitate data access for researchers. This can be achieved by establishing robust data collection networks and promoting open data policies. By enhancing data accessibility, researchers can employ advanced modeling techniques to gain valuable insights into the current climate situation and make informed decisions regarding water resource management.
- ➢
- At the government level, it is crucial to review and update existing policies and regulations to align with climate change considerations and promote sustainable water management practices. There is also a need to develop incentives and frameworks that encourage responsible water use, conservation, and the use of alternative water sources. Furthermore, it should be noted that the specific scientific basis or data supporting the government objectives were not explicitly available or provided by the governmental agencies, which is a concern that warrants further clarification.
- ➢
- A further comparative investigation of the existing local water reforms with other plans of jurisdictions that have somehow similar conditions (e.g., the Murray–Darling Basin Plan in Australia, the National Water Program (PNH, 2020–2024) of Mexico, and water-sharing arrangements in the USA) is needed to ensure the sustainable fulfillment of the human right to water and the preservation of vital ecosystems. This comparative investigation can provide valuable insights and lessons from experiences and explore the potential applicability of successful strategies to the context of Saudi Arabia.
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Llamas, R.; Custudio, E. Intensive Use of Groundwater: Challenges and Opportunities; A.A. Balkema Publishers: Lisse, The Netherlands, 2003; p. 481. [Google Scholar]
- Alataway, A.; El Alfy, M. Rainwater Harvesting and Artificial Groundwater Recharge in Arid Areas: Case Study in Wadi Al-Alb, Saudi Arabia. J. Water Resour. Plan. Manag. 2019, 145, 05018017. [Google Scholar] [CrossRef]
- Rabeiy, R.; Alfawzan, M.; Bakri, M. Artificial Recharge Modelling of Groundwater Aquifer in Arid Regions. Civ. Environ. Eng. 2022, 18, 301–311. [Google Scholar] [CrossRef]
- Ghanim, A.A. Water resources crisis in Saudi Arabia, challenges and possible management options: An analytic review. Int. J. Environ. Ecol. Eng. 2019, 13, 51–56. [Google Scholar]
- Alkolibi, F.M. Possible Effects of Global Warming on Agriculture and Water Resources in Saudi Arabia: Impacts and Responses. Clim. Chang. 2002, 54, 225–245. [Google Scholar] [CrossRef]
- IPCC. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- The General Authority for Statistics. Population Summary Report. 2023. Available online: https://portal.saudicensus.sa/static-assets/media/content/20230531_GASTAT_Population_Report.pdf?crafterSite=gastat-portal (accessed on 18 July 2023).
- Krishna, L.V. Long term temperature trends in four different climatic zones of Saudi Arabia. Int. J. Appl. 2014, 4, 10. [Google Scholar]
- Nazrul Islam, M.; Almazroui, M.; Dambul, R.; Jones, P.D.; Alamoudi, A.O. Long-term changes in seasonal temperature extremes over Saudi Arabia during 1981–2010. Int. J. Climatol. 2015, 35, 1579–1592. [Google Scholar] [CrossRef]
- Tarawneh, Q.Y.; Chowdhury, S. Trends of climate change in Saudi Arabia: Implications on water resources. Climate 2018, 6, 8. [Google Scholar] [CrossRef]
- Almazroui, M. Changes in temperature trends and extremes over Saudi Arabia for the period 1978–2019. Adv. Meteorol. 2020, 2020, 8828421. [Google Scholar] [CrossRef]
- Haque, M.I.; Khan, M.R. Impact of climate change on food security in Saudi Arabia: A roadmap to agriculture-water sustainability. J. Agribus. Dev. Emerg. Econ. 2022, 12, 1–18. [Google Scholar] [CrossRef]
- DeNicola, E.; Aburizaiza, O.S.; Siddique, A.; Khwaja, H.; Carpenter, D.O. Climate change and water scarcity: The case of Saudi Arabia. Ann. Glob. Health 2015, 81, 342–353. [Google Scholar] [CrossRef]
- Lippman, T.W. Saudi Arabia’s quest for “food security”. Middle East Policy 2010, 17, 90. [Google Scholar] [CrossRef]
- National Water Strategy. 2018. Available online: https://mewa.gov.sa/en/ministry/agencies/thewateragency/topics/pages/strategy.aspx (accessed on 20 March 2023).
- Merlone, A.; Al-Dashti, H.; Faisal, N.; Cerveny, R.S.; AlSarmi, S.; Bessemoulin, P.; Brunet, M.; Driouech, F.; Khalatyan, Y.; Peterson, T.C.; et al. Temperature extreme records: World Meteorological Organization metrological and meteorological evaluation of the 54.0 °C observations in Mitribah, Kuwait and Turbat, Pakistan in 2016/2017. Int. J. Climatol. 2019, 39, 5154–5169. [Google Scholar] [CrossRef]
- Alosairi, Y.; Alsulaiman, N.; Rashed, A.; Al-Houti, D. World record extreme sea surface temperatures in the northwestern Arabian/Persian Gulf verified by in situ measurements. Mar. Pollut. Bull. 2020, 161, 111766. [Google Scholar] [CrossRef] [PubMed]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate change and weather extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Kotwicki, V.; Al Sulaimani, Z. Climates of the Arabian Peninsula–past, present, future. Int. J. Clim. Chang. Strateg. Manag. 2009, 1, 297–310. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742. [Google Scholar] [CrossRef] [PubMed]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Konikow, L.F.; Kendy, E. Groundwater depletion: A global problem. Hydrogeol. J. 2005, 13, 317–320. [Google Scholar] [CrossRef]
- Aeschbach-Hertig, W.; Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, J.Y.; Shahid, S.; Guan, E.H.; Wu, Y.X.; Gao, J.; He, R.M. Adaptation to climate change impacts on water demand. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 81–99. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Mohsenipour, M.; Asgari, H. Impact of landuse on groundwater quality of Bangladesh. Sustain. Water Resour. Manag. 2018, 4, 1031–1036. [Google Scholar] [CrossRef]
- Dangar, S.; Asoka, A.; Mishra, V. Causes and implications of groundwater depletion in India: A review. J. Hydrol. 2021, 596, 126103. [Google Scholar] [CrossRef]
- Kundzewicz, Z. Climate change impacts on water resources—Global and regional perspectives. In Proceedings of the First International Conference on Water Resources and Climate Change in the MENA Region, Muscat, Oman, 2–4 November 2008. [Google Scholar]
- Ludwig, F.; van Slobbe, E.; Cofino, W. Climate change adaptation and Integrated Water Resource Management in the water sector. J. Hydrol. 2014, 518, 235–242. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. Climate change 2021: The physical science basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cmbridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2. [Google Scholar]
- Gabr, M.E. Impact of climatic changes on future irrigation water requirement in the Middle East and North Africa’s region: A case study of upper Egypt. Appl. Water Sci. 2023, 13, 158. [Google Scholar] [CrossRef]
- Haggag, M.; El-Badry, H. Mesoscale numerical study of quasi-stationary convective system over Jeddah in November 2009. Atmos. Clim. Sci. 2013, 3, 73–86. [Google Scholar] [CrossRef]
- De Vries, A.J.; Tyrlis, E.; Edry, D.; Krichak, S.O.; Steil, B.; Lelieveld, J. Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. J. Geophys. Res. Atmos. 2013, 118, 7087–7108. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef] [PubMed]
- Yesubabu, V.; Srinivas, C.V.; Langodan, S.; Hoteit, I. Predicting extreme rainfall events over Jeddah, Saudi Arabia: Impact of data assimilation with conventional and satellite observations. Q. J. R. Meteorol. Soc. 2016, 142, 327–348. [Google Scholar] [CrossRef]
- Tabari, H.; Willems, P. Seasonally varying footprint of climate change on precipitation in the Middle East. Sci. Rep. 2018, 8, 4435. [Google Scholar] [CrossRef]
- Luong, T.M.; Dasari, H.P.; Hoteit, I. Extreme precipitation events are becoming less frequent but more intense over Jeddah, Saudi Arabia. Are shifting weather regimes the cause? Atmos. Sci. Lett. 2020, 21, e981. [Google Scholar] [CrossRef]
- Kompas, T.; Pham, V.H.; Che, T.N. The effects of climate change on GDP by country and the global economic gains from complying with the Paris Climate Accord. Earth’s Future 2018, 6, 1153–1173. [Google Scholar] [CrossRef]
- Alaidroos, A.; Krarti, M. Optimal design of residential building envelope systems in the Kingdom of Saudi Arabia. Energy Build. 2015, 86, 104–117. [Google Scholar] [CrossRef]
- Salimi, M.; Al-Ghamdi, S.G. Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustain. Cities Soc. 2020, 54, 101948. [Google Scholar] [CrossRef]
- Azeem, M.I.; Alhafi Alotaibi, B. Farmers’ beliefs and concerns about climate change, and their adaptation behavior to combat climate change in Saudi Arabia. PLoS ONE 2023, 18, e0280838. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, B.A.; Abbas, A.; Ullah, R.; Azeem, M.I.; Samie, A.; Muddassir, M.; Dabiah, A.T.; Raid, M.; Sadaf, T. Dynamics and Determinants of Farmers’ Perceptions about Causes and Impacts of Climate Change on Agriculture in Saudi Arabia: Implications for Adaptation, Mitigation, and Sustainability. Atmosphere 2023, 14, 917. [Google Scholar] [CrossRef]
- Arnout, B.A. Climate values as predictor of climate change perception in the Kingdom of Saudi Arabia. Front. Psychol. 2022, 13, 1044697. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.A.; Fauser, B.C. Balancing the strengths of systematic and narrative reviews. Hum. Reprod. Update 2005, 11, 103–104. [Google Scholar] [CrossRef]
- Rother, E.T. Systematic literature review X narrative review. Acta Paul. Enferm. 2007, 20, 5–6. [Google Scholar] [CrossRef]
- Vincent, P. Saudi Arabia: An Environmental Overview; Taylor and Francis: London, UK, 2008. [Google Scholar]
- Patlakas, P.; Stathopoulos, C.; Flocas, H.; Kalogeri, C.; Kallos, G. Regional climatic features of the Arabian Peninsula. Atmosphere 2019, 10, 220. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef]
- Weeks, W.F. Iceberg water: An assessment. Ann. Glaciol. 1980, 1, 5–10. [Google Scholar] [CrossRef]
- Ministry of Environment, Water, and Agriculture (MEWA), Saudi Arabia (2022) MEWA Statistical Report 2021. Available online: https://mewa.gov.sa/ar/InformationCenter/Researchs/Reports/GeneralReports/%D8%A7%D9%84%D9%83%D8%AA%D8%A7%D8%A8%20%D8%A7%D9%84%D8%A7%D9%95%D8%AD%D8%B5%D8%A7%D9%8A%D9%94%D9%8A%202021%20%D9%85.pdf (accessed on 21 March 2023).
- MWE (Ministry of Water and Electricity). Supporting Documents for King Hassan II Great Water Prize. Riyadh, KSA. Retrieved 30 November 2014. 2012. Available online: http://www.worldwatercouncil.org/fileadmin/wwc/Prizes/Hassan_II/Candidates_2011/16.Ministry_SA.pdf (accessed on 8 May 2023).
- Müller, M.F.M.F.; Müller-Itten, M.C.M.C.; Gorelick, S.M. How Jordan and Saudi Arabia are avoiding a tragedy of the commons over shared groundwater. Water Resour. Res. 2017, 53, 5451–5468. [Google Scholar] [CrossRef]
- Penny, G.; Müller-Itten, M.; De Los Cobos, G.; Mullen, C.; Müller, M.F. Trust and incentives for transboundary groundwater cooperation. Adv. Water Resour. 2021, 155, 104019. [Google Scholar] [CrossRef]
- Al-Ahmadi, M.E.; El-Fiky, A.A. Hydrogeochemical evaluation of shallow alluvial aquifer of Wadi Marwani, western Saudi Arabia. J. King Saud Univ.-Sci. 2009, 21, 179–190. [Google Scholar] [CrossRef]
- et Miniéres BD. Investigations for Updating the Groundwater Mathematical Model (S) of the Saq and Overlying Aquifers; Ministry of Water and Electricity: Dhahran, Saudi Arabia, 2006.
- Drewes, J.E.; Patricio Roa Garduño, C.; Amy, G.L. Water reuse in the Kingdom of Saudi Arabia–status, prospects and research needs. Water Sci. Technol. Water Supply 2012, 12, 926–936. [Google Scholar] [CrossRef]
- UN-ESCWA, B.G.R. United Nations Economic and Social Commission for Western Asia; Bundesanstalt für Geowissenschaften und Rohstofe. Inventory of Shared Water Resources in Western Asia; Beirut, Lebanon. 2013. Available online: http://waterinventory.org/sites/waterinventory.org/files/00-inventory-of-shared-water-resources-in-western-asia-web.pdf (accessed on 13 June 2023).
- Othman, A.; Abotalib, A.Z. Land subsidence triggered by groundwater withdrawal under hyper-arid conditions: Case study from Central Saudi Arabia. Environ. Earth Sci. 2019, 78, 243. [Google Scholar] [CrossRef]
- Al-Amri, N.S.; Abdurahman, S.G.; Elfeki, A.M. Modeling Aquifer Responses from Flash Flood Events through Ephemeral Stream Beds: Case Studies from Saudi Arabia. Water 2023, 15, 2735. [Google Scholar] [CrossRef]
- Awadh, S.M.; Al-Mimar, H.; Yaseen, Z.M. Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environ. Dev. Sustain. 2021, 23, 1–21. [Google Scholar] [CrossRef]
- Al-Saud, M.; Teutsch, G.; Schüth, C.; Rausch, R. Challenges for an integrated groundwater management in the Kingdom of Saudi Arabia. Int. J. Water Resour. Arid Environ. 2011, 1, 65–70. [Google Scholar]
- Alkhudhiri, A.; Darwish, N.B.; Hilal, N. Analytical and forecasting study for wastewater treatment and water resources in Saudi Arabia. J. Water Process Eng. 2019, 32, 100915. [Google Scholar] [CrossRef]
- Saline Water Conversion Corporation (SWCC). Annual Report. 2022. Available online: https://www.swcc.gov.sa/uploads/SWCC-Annual-Report-2022.pdf (accessed on 4 July 2023).
- Saline Water Conversion Corporation (SWCC). Sustainability Report. 2022. Available online: https://www.swcc.gov.sa/uploads/SustainabilityReport2022-en.pdf (accessed on 4 July 2023).
- Hamed, O.A.; Al-Sofi, M.A.K.; Imam, M.; Mustafa, G.M.; Mardouf, K.B.; Al-Washmi, H. Thermal performance of multi-stage flash distillation plants in Saudi Arabia. Desalination 2000, 128, 281–292. [Google Scholar] [CrossRef]
- Ihm, S.; Al-Najdi, O.Y.; Hamed, O.A.; Jun, G.; Chung, H. Energy cost comparison between MSF, MED and SWRO: Case studies for dual purpose plants. Desalination 2016, 397, 116–125. [Google Scholar] [CrossRef]
- CSIS-Center for Strategic and International Studies. Water and National Strength in Saudi Arabia. Middle East Program. 2011. Available online: https://csis-website-prod.s3.amazonaws.com/s3fs-public/legacy_files/files/publication/110405_Water%20and%20national%20strength%20in%20Saudi%20Arabia.pdf (accessed on 3 July 2023).
- Mahmoud, M.S.A.; Abdallh, S.M.A. Water–demand management in the kingdom of Saudi Arabia for enhancement environment. Comput. Eng. Intell. Syst. 2013, 4, 101–127. [Google Scholar]
- Alnajdi, O.; Wu, Y.; Kaiser Calautit, J. Toward a sustainable decentralized water supply: Review of adsorption desorption desalination (ADD) and current technologies: Saudi Arabia (SA) as a case study. Water 2020, 12, 1111. [Google Scholar] [CrossRef]
- Ouda, O.K. Treated wastewater use in Saudi Arabia: Challenges and initiatives. Int. J. Water Resour. Dev. 2016, 32, 799–809. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M. Characterizing water resources and trends of sector wise water consumptions in Saudi Arabia. J. King Saud Univ.-Eng. Sci. 2015, 27, 68–82. [Google Scholar] [CrossRef]
- Ouda, O.K. Impacts of agricultural policy on irrigation water demand: A case study of Saudi Arabia. Int. J. Water Resour. Dev. 2014, 30, 282–292. [Google Scholar] [CrossRef]
- Al-Shayaa, M.A.; Gaig, M.B.; Strquadine, G.S. Agricultural extension in the Kingdom of Saudi Arabia: Difficult present and demanding future. J. Anim. Plant Sci. 2012, 22, 239–246. [Google Scholar]
- UNDP: United Nations Development Programme. Water Governance in the Arab Region: Managing Scarcity and Securing the Future; United Nations Publications: New York, NY, USA, 2013. [Google Scholar]
- Cao, X.; Bao, Y.; Li, Y.; Li, J.; Wu, M. Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity. Agric. Water Manag. 2023, 278, 108165. [Google Scholar] [CrossRef]
- Gazzeh, K.; Abubakar, I.R. Regional disparity in access to basic public services in Saudi Arabia: A sustainability challenge. Util. Policy 2018, 52, 70–80. [Google Scholar] [CrossRef]
- United Nations Committee on Economic Social and Cultural Rights (CESCR). General Comment No. 15. The right to water and sanitation (Arts. 11 and 12 of the International Covenant on Economic, Social and Cultural Rights), E/C.12/2002/11, United Nations, New York, USA. 2003. Available online: http://www2.ohchr.org/english/issues/water/docs/CESCR_GC_15.pdf (accessed on 23 March 2023).
- World Health Organization (WHO). Domestic Water Quantity, Service Level and Health; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Crouch, M.L.; Jacobs, H.E.; Speight, V.L. Defining domestic water consumption based on personal water use activities. AQUA—Water Infrastruct. Ecosyst. Soc. 2021, 70, 1002–1011. [Google Scholar] [CrossRef]
- Alotaibi, B.A.; Baig, M.B.; Najim, M.M.; Shah, A.A.; Alamri, Y.A. Water Scarcity Management to Ensure Food Scarcity through Sustainable Water Resources Management in Saudi Arabia. Sustainability 2023, 15, 10648. [Google Scholar] [CrossRef]
- Nasrallah, H.A.; Balling, R.C. Analysis of recent climatic changes in the Arabian Peninsula region. Theor. Appl. Climatol. 1996, 53, 245–252. [Google Scholar] [CrossRef]
- Christensen, J.H.; Kanikicharla, K.K.; Aldrian, E.; An, S.I.; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; et al. Climate phenomena and their relevance for future regional climate change. In Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1217–1308. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Almazroui, M.; Islam, M.N.; Dambul, R.; Jones, P.D. Trends of temperature extremes in Saudi Arabia. Int. J. Climatol. 2014, 34, 808–826. [Google Scholar] [CrossRef]
- Donat, M.G.; Peterson, T.C.; Brunet, M.; King, A.D.; Almazroui, M.; Kolli, R.K.; Boucherf, D.; Al-Mulla, A.Y.; Nour, A.Y.; Aly, A.A.; et al. Changes in extreme temperature and precipi- tation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol. 2014, 34, 581–592. [Google Scholar] [CrossRef]
- Almazroui, M.; Nazrul Islam, M.; Athar, H.; Jones, P.D.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. 2012, 32, 953–966. [Google Scholar] [CrossRef]
- Youssef, A.M.; Sefry, S.A.; Pradhan, B.; Alfadail, E.A. Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS. Geomat. Nat. Hazards Risk 2016, 7, 1018–1042. [Google Scholar] [CrossRef]
- Alzahrani, F.; Seidou, O.; Alodah, A. Assessment and improvement of IDF generation algorithms used in the IDF_CC tool. Water Resour. Manag. 2022, 36, 4591–4606. [Google Scholar] [CrossRef]
- Athar, H. Trends in observed extreme climate indices in Saudi Arabia during 1979–2008. Int. J. Climatol. 2014, 34, 1561–1574. [Google Scholar] [CrossRef]
- Rehman, S. Temperature and rainfall variation over Dhahran, Saudi Arabia, (1970–2006). Int. J. Climatol. A J. R. Meteorol. Soc. 2010, 30, 445–449. [Google Scholar] [CrossRef]
- AlSarmi, S.; Washington, R. Recent observed climate change over the Arabian Peninsula. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Athar, H. Decadal variability of the observed daily temperature in Saudi Arabia during 1979–2008. Atmos. Sci. Let. 2012, 13, 244–249. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Moore, T.W. Analysis and comparison of trends in extreme temperature indices in Riyadh City, Kingdom of Saudi Arabia, 1985–2010. J. Climatol. 2014, 2014, 560985. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef]
- IPCC. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Chowdhury, S.; Al-Zahrani, M. Implications of Climate Change on Water Resources in Saudi Arabia. Arab. J. Sci. Eng. 2013, 38, 1959–1971. [Google Scholar] [CrossRef]
- Ozturk, T.; Turp, M.T.; Türkeş, M.; Kurnaz, M.L. Future projections of temperature and precipitation climatology for CORDEX-MENA domain using RegCM4.4. Atmos. Res. 2018, 206, 87–107. [Google Scholar] [CrossRef]
- Al Zawad, F.M.; Aksakal, A. Impacts of climate change on water resources in Saudi Arabia. In Global Warming; Springer: Boston, MA, USA, 2010; pp. 511–523. [Google Scholar] [CrossRef]
- El-Rawy, M.; Batelaan, O.; Al-Arifi, N.; Alotaibi, A.; Abdalla, F.; Gabr, M.E. Climate change impacts on water resources in arid and semi-arid regions: A case study in Saudi Arabia. Water 2023, 15, 606. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, S.; Saeed, F.; Islam, M.N.; Ismail, M. Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth. Syst. Environ. 2020, 4, 297–320. [Google Scholar] [CrossRef]
- Hejazizadeh, Z.; Hosseini, S.A.; Karbalaee, A.; Barabadi, R.P.; Mousavi, S.M. Spatiotemporal variations in precipitation extremes based on CMIP6 models and Shared Socioeconomic Pathway (SSP) scenarios over MENA. Arab. J. Geosci. 2022, 15, 1601. [Google Scholar] [CrossRef]
- Majdi, F.; Hosseini, S.A.; Karbalaee, A.; Kaseri, M.; Marjanian, S. Future projection of precipitation and temperature changes in the Middle East and North Africa (MENA) region based on CMIP6. Theor. Appl. Climatol. 2022, 147, 1249–1262. [Google Scholar] [CrossRef]
- Mesgari, E.; Hosseini, S.A.; Hemmesy, M.S.; Houshyar, M.; Partoo, L.G. Assessment of CMIP6 models’ performances and projection of precipitation based on SSP scenarios over the MENAP region. J. Water Clim. Chang. 2022, 13, 3607–3619. [Google Scholar] [CrossRef]
- Abderrahman, W.A.; Al-Harazin, I.M. Assessment of climate changes on water resources in the Kingdom of Saudi Arabia. In Proceedings of the GCC Environment and Sustainable Development Symposium, Dhahran, Saudi Arabia, 28–30 January 2008; pp. D-1-1–D-1-13. [Google Scholar]
- Sen, Z.; Al Alsheikh, A.; Al-Dakheel, A.M.; Alamoud, A.I.; Alhamid, A.A.; El-Sebaay, A.S.; Abu-Risheh, A.W. Climate change and Water Harvesting possibilities in arid regions. Int. J. Glob. Warm. 2011, 3, 355–371. [Google Scholar] [CrossRef]
- Ragab, R.; Prudhomme, C. Sw—Soil and Water: Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosyst. Eng. 2002, 81, 3–34. [Google Scholar] [CrossRef]
- Wabnitz, C.C.; Lam, V.W.; Reygondeau, G.; Teh, L.C.; Al-Abdulrazzak, D.; Khalfallah, M.; Pauly, D.; Palomares, M.L.D.; Zeller, D.; Cheung, W.W. Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf. PLoS ONE 2018, 13, e0194537. [Google Scholar] [CrossRef]
- Almazroui, M.; Şen, Z.; Mohorji, A.M.; Islam, M.N. Impacts of climate change on water engineering structures in arid regions: Case studies in Turkey and Saudi Arabia. Earth Syst. Environ. 2019, 3, 43–57. [Google Scholar] [CrossRef]
- Almaliki, A.H.; Zerouali, B.; Santos, C.A.G.; Almaliki, A.A.; da Silva, R.M.; Ghoneim, S.S.; Ali, E. Assessing coastal vulnerability and land use to sea level rise in Jeddah province, Kingdom of Saudi Arabia. Heliyon 2023, 9, e18508. [Google Scholar] [CrossRef]
- Hamid, M. Climate change in the Arab world: Threats and responses. Troubl. Waters Clim. Chang. Hydropolitics Transbound. Resour. 2009, 45–62. Available online: https://www.jstor.org/stable/pdf/resrep10999.9.pdf (accessed on 5 August 2023).
- Almutawa, A.A. Date production in the Al-Hassa region, Saudi Arabia in the face of climate change. J. Water Clim. Chang. 2022, 13, 2627–2647. [Google Scholar] [CrossRef]
- Rahman, M.M.; Akter, R.; Abdul Bari, J.B.; Hasan, M.A.; Rahman, M.S.; Abu Shoaib, S.; Shatnawi, Z.N.; Alshayeb, A.F.; Shalabi, F.I.; Rahman, A.; et al. Analysis of Climate Change Impacts on the Food System Security of Saudi Arabia. Sustainability 2022, 14, 14482. [Google Scholar] [CrossRef]
- Asadabadi, A.; Miller-Hooks, E. Assessing strategies for protecting transportation infrastructure from an uncertain climate future. Transp. Res. Part A Policy Pract. 2017, 105, 27–41. [Google Scholar] [CrossRef]
- José, R.S.; Pérez, J.L.; Pérez, L.; Barras, R.M.G. Effects of climate change on the health of citizens modelling urban weather and air pollution. Energy 2018, 165, 53–62. [Google Scholar] [CrossRef]
- Van Vliet, M.T.; Wiberg, D.; Leduc, S.; Riahi, K. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nat. Clim. Chang. 2016, 6, 375–380. [Google Scholar] [CrossRef]
- Vision 2030: Kingdom of Saudi Arabia, 2016. Kingdom of Saudi Arabia’s Vision 2030. Available online: http://vision2030.gov.sa/en (accessed on 27 February 2023).
- UN SDGs: United Nations Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 7 May 2023).
- Al-Sarihi, A. Climate change and economic diversification in Saudi Arabia: Integrity, challenges, and opportunities. Policy Pap. 2019, 1, 11–12. [Google Scholar]
- Nahiduzzaman, K.M.; Aldosary, A.S.; Rahman, M.T. Flood induced vulnerability in strategic plan making process of Riyadh city. Habitat Int. 2015, 49, 375–385. [Google Scholar] [CrossRef]
- Jamoussi, B.; Abu-Rizaiza, A.; Al-Haij, A. Sustainable Building Standards, Codes and Certification Systems: The Status Quo and Future Directions in Saudi Arabia. Sustainability 2022, 14, 10314. [Google Scholar] [CrossRef]
- Gabr, S.S.; Farg, E.F.; Habeebullah, T.M.; Arafat, S.M. Irrigation water consumption and its impact on the groundwater aquifer of Wadi Uranah, Makkah, Saudi Arabia using remote sensing techniques. Egypt. J. Remote Sens. Space Sci. 2020, 23, 167–180. [Google Scholar] [CrossRef]
- Al-Omran, A.M.; Al-Khasha, A.; Eslamian, S. Irrigation water conservation in Saudi Arabia. In Handbook of Water Harvesting and Conservation: Case Studies and Application Examples; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; Chapter 25; pp. 373–383. [Google Scholar] [CrossRef]
- Al-Subaiee, F.S.; Al-Ghobari, H.M.; Baig, M.B.; Ei-Hag, E.A.; Abu-Riziga, M.T. Studies on adoption of irrigation methods by the date palm farmers in Al-Qassim area-Kingdom of Saudi Arabia. Bulg. J. Agric. Sci. 2013, 19, 1337–1345. [Google Scholar]
- Postel, S.; Polak, P.; Gonzales, F.; Keller, J. Drip irrigation for small farmers: A new initiative to alleviate hunger and poverty. Water Int. 2001, 26, 3–13. [Google Scholar] [CrossRef]
- Kreutzberger, W.; Robinson, J.; Bkayrat, R.; Bacon, E. Comprehensive study of water reuse role in integrated water resources management—Kingdom of Saudi Arabia. In Proceedings of the World Environmental and Water Resources Congress 2012: Crossing Boundaries, Albuquerque, NM, USA, 20–24 May 2012; pp. 3366–3377. [Google Scholar] [CrossRef]
- UN-WWAP (United Nations World Water Assessment Programme). The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. Paris, UNESCO. 2017. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000247153 (accessed on 3 July 2023).
- Mu’azu, N.D.; Abubakar, I.R.; Blaisi, N.I. Public acceptability of treated wastewater reuse in Saudi Arabia: Implications for water management policy. Sci. Total Environ. 2020, 721, 137659. [Google Scholar] [CrossRef] [PubMed]
- Al-Yamani, M.S.; Sen, Z. Regional variation in monthly rainfall amounts in the Kingdom of Saudi Arabia. Earth Sci. 1993, 6, 113–133. [Google Scholar]
- Elsebaie, I.H.; Fouli, H.; Amin, M. Evaporation reduction from open water tanks using palm-frond covers: Effects of tank shape and coverage pattern. KSCE J. Civ. Eng. 2017, 21, 2977–2983. [Google Scholar] [CrossRef]
- Craig, I.; Aravinthan, V.; Joseph, P.; Baili, C.; Beswick, A. Evaporation, seepage and water quality management in storage dams: A review of research methods. J. Environ. Health 2007, 7, 84–97. [Google Scholar]
- Yao, X.; Zhang, H.; Lemckert, C.; Brook, A.; Schouten, P. Evaporation Reduction by Suspended and Floating Covers: Overview, Modelling and Efficiency; Urban Water Security Research Alliance Technical Report No 28; Urban Water Security Research Alliance: Brisbane, Australia, 2011; ISSN 1836-5566. [Google Scholar]
- Abdelal, Q. Floating PV; an assessment of water quality and evaporation reduction in semi-arid regions. Int. J. Low-Carbon Technol. 2021, 16, 732–739. [Google Scholar] [CrossRef]
- Baradei, S.E.; Sadeq, M.A. Effect of solar canals on evaporation, water quality, and power production: An optimization study. Water 2020, 12, 2103. [Google Scholar] [CrossRef]
- McKuin, B.; Zumkehr, A.; Ta, J.; Bales, R.; Viers, J.H.; Pathak, T.; Campbell, J.E. Energy and water co-benefits from covering canals with solar panels. Nat. Sustain. 2021, 4, 609–617. [Google Scholar] [CrossRef]
- Khan, I.; Guanghua, L.; Sahito, A.A.; Memon, A.A.; Hao, C.; Soomro, A.H.; Shah, S.H.H. Analysis of Jamrao canal for potential of hybrid photovoltaic/hydrokinetic turbine system. Energy Rep. 2023, 10, 419–430. [Google Scholar] [CrossRef]
- Al-Juruf, R.S.; Ahmed, F.A.; Alam, I.A. Development of heat insulating material using date palm leaves. J. Therm. Insul. 1988, 11, 158–159. [Google Scholar] [CrossRef]
- Alam, S.; AlShaikh, A.A. Use of palm fronds as shaded cover for evaporation reduction to improve water storage efficiency. J. King Saud Univ.-Eng. Sci. 2013, 25, 55–58. [Google Scholar] [CrossRef]
- Al-Hassoun, S.A.; Mohammed, T.A.; Nurdin, J. Evaporation reduction from impounding reservoirs in arid areas using palm leaves. J. Eng. Appl. Sci. 2009, 4, 247–250. [Google Scholar]
- Al-Hassoun, S.A.; AlShaikh, A.A.; Al Rehaili, A.M.; Misbahuddin, M. Effectiveness of using palm fronds in reducing water evaporation. Can. J. Civ. Eng. 2011, 38, 1170–1174. [Google Scholar] [CrossRef]
- McJannet, D.; Cook, F.; Knight, J.; Burn, S. Evaporation reduction by monolayers: Overview, modelling and effectiveness. Urban Water Secur. Res. Alliance Tech. Rep. 2008, 6, 1–32. [Google Scholar]
- Saggaï, S.; Bachi, O.E.K. Evaporation reduction from water reservoirs in arid lands using monolayers: Algerian experience. Water Resour. 2018, 45, 280–288. [Google Scholar] [CrossRef]
- Maestre-Valeroa, J.; Martinez-Alvarez, V.; Gallego-Elvira, B.; Pittaway, P. Effects of a suspended shade cloth cover on water quality of an agricultural reservoir for irrigation. Agric. Water Manag. 2011, 100, 70–75. [Google Scholar] [CrossRef]
- Maestre-Valero, J.; Martinez-Alvarez, V.; Nicolasb, E. Physical, chemical and microbiological effects of suspended shade cloth covers on stored water for irrigation. Agric. Water Manag. 2013, 118, 70–78. [Google Scholar] [CrossRef]
- Bakhtiar, M.; Aminzadeh, M.; Taheriyoun, M.; Or, D.; Mashayekh, E. Effects of floating covers used for evaporation suppression on reservoir physical, chemical and biological water quality parameters. Ecohydrology 2022, 15, e2470. [Google Scholar] [CrossRef]
- Baig, M.B.; Alotibi, Y.; Straquadine, G.S.; Alataway, A. Water resources in the kingdom of Saudi Arabia: Challenges and strategies for improvement. In Global Issues in Water Policy; Springer: Berlin/Heidelberg, Germany, 2020; Volume 23, pp. 135–160. [Google Scholar]
- Al Qahtani, S.; Ismaiel, S.; Sofian, B. The impact of reforming municipal water tariff on water rationing and consumer welfare in Saudi Arabia. J. Water Clim. Chang. 2016, 7, 788–795. [Google Scholar] [CrossRef]
- Taleb, H.M.; Sharples, S. Developing sustainable residential buildings in Saudi Arabia: A case study. Appl. Energy 2011, 88, 383–391. [Google Scholar] [CrossRef]
- Ouda, O.K. Review of Saudi Arabia municipal water tariff. World Environ. 2013, 3, 66–70. [Google Scholar]
- Almazroui, M.; Islam, M.N.; Balkhair, K.S.; Şen, Z.; Masood, A. Rainwater harvesting possibility under climate change: A basin-scale case study over western province of Saudi Arabia. Atmos. Res. 2017, 189, 11–23. [Google Scholar] [CrossRef]
- Khalid, B.; Alodah, A. Multivariate Analysis of Harvested Rainwater Quality Utilizing Sustainable Solar-Energy-Driven Water Treatment. Sustainability 2023, 15, 14568. [Google Scholar] [CrossRef]
- Ghazaw, Y. Harvesting runoff from rainfall for groundwater recharge in Saudi Arabia. In The International Conference on Water Conservation in Arid Regions ICWCAR09; King Abdulaziz University, Water Research Center: Jeddah, Saudi Arabia, 2009; pp. 12–14. [Google Scholar]
- Masoud, M.H.; Basahi, J.M.; Rajmohan, N. Impact of flash flood recharge on groundwater quality and its suitability in the Wadi Baysh Basin, Western Saudi Arabia: An integrated approach. Environ. Earth Sci. 2018, 77, 395. [Google Scholar] [CrossRef]
- Chandrasekharam, D.; Lashin, A.; Al Arifi, N.; Al Bassam, A.; Varun, C. Desalination of seawater using geothermal energy to meet future fresh water demand of Saudi Arabia. Water Resour. Manag. 2017, 31, 781–792. [Google Scholar] [CrossRef]
- ALQahtani, M.; Alhuzaymi, T. A Cost Analysis Study of Nuclear Reactor Powered Desalination Process by DEEP Analysis—A Case Study of Saudi Arabia. In Sustainable Development of Water and Environment: Proceedings of the ICSDWE2022; Springer: Cham, Switzerland, 2022; pp. 179–190. [Google Scholar]
- Khan, S.U.-D.; Najib, A.; Orfi, J. Performance analysis of nuclear powered desalination unit based on MED-TVC: A case study for Saudi Arabia. Kerntechnik 2023, 88, 302–315. [Google Scholar] [CrossRef]
- Sowers, J.; Vengosh, A.; Weinthal, E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim. Chang. 2011, 104, 599–627. [Google Scholar] [CrossRef]
- Ouda, O.K.; Shawesh, A.; Al-Olabi, T.; Younes, F.; Al-Waked, R. Review of domestic water conservation practices in Saudi Arabia. Appl. Water Sci. 2013, 3, 689–699. [Google Scholar] [CrossRef]
- Zaharani, K.H.; Al-Shayaa, M.S.; Baig, M.B. Water conservation in the Kingdom of Saudi Arabia for better environment: Implications for extension and education. Bulg. J. Agric. Sci. 2011, 17, 389–395. [Google Scholar]
- Al-Zubari, W.; Al-Turbak, A.; Zahid, W.; Al-Ruwis, K.; Al-Tkhais, A.; Al-Muataz, I.; Abdelwahab, A.; Murad, A.; Al-Harbi, M.; Al-Sulaymani, Z. An overview of the GCC unified water strategy (2016–2035). Desalination Water Treat. 2017, 81, 1–18. [Google Scholar] [CrossRef]
- Abderrahman, W.A. Water demand management in Saudi Arabia. Water Manag. Islam 2001, 1, 61. [Google Scholar]
- Haider, H.; Al-Salamah, I.S.; Ghazaw, Y.M.; Abdel-Maguid, R.H.; Shafiquzzaman, M.; Ghumman, A.R. Framework to establish economic level of leakage for intermittent water supplies in arid environments. J. Water Resour. Plan. Manag. 2019, 145, 05018018. [Google Scholar] [CrossRef]
- Haider, H.; Almutlaq, M.A.; Alodah, A.; Ghumman, A.R.; AlSalamah, I.S.; Ghazaw, Y.M.; Shafiquzzaman, M. Risk-Based Inspection and Rehabilitation Planning of Service Connections in Intermittent Water Supply Systems for Leakage Management in Arid Regions. Water 2022, 14, 3994. [Google Scholar] [CrossRef]
- National Academy of Sciences. Carbon Dioxide and Climate: A Scientific Assessment; National Academy of Sciences: Washington, DC, USA, 1979. [Google Scholar]
- Bruun, J.; Young, P.; Allen, P.G.; Collins, M. A discussion of Earth’s climate sensitivity and its long term dynamics. In Proceedings of the EGU General Assembly Conference Abstracts; EGU General Assembly 2022, Vienna, Austria, 23–28 April 2022; p. EGU22-6540. [Google Scholar] [CrossRef]
- Li, S.; Huang, P. An exponential-interval sampling method for evaluating equilibrium climate sensitivity via reducing internal variability noise. Geosci. Lett. 2022, 9, 34. [Google Scholar] [CrossRef]
- Williams, J.W.; Huntley, B.; Seddon, A.W. Climate Sensitivity and Ecoclimate Sensitivity: Theory, Usage, and Past Implications for Future Biospheric Responses. Curr. Clim. Change Rep. 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Lewis, N. Objectively combining climate sensitivity evidence. Clim. Dyn. 2023, 60, 3139–3165. [Google Scholar] [CrossRef]
Sector | Quantity (BCM per Year) | Percentage (%) |
---|---|---|
Agricultural 1 | 11.4 | 79.9% |
Domestic 2 | 3.556 | 24.9% |
Industrial 3 | 0.628 | 4.4% |
Total water demand | 14.264 | 100.0% |
1 Initial estimations from renewable, non-renewable, and reused treated wastewater. 2 Initial estimations based on the National Water Strategy 2030. 3 Initial estimations based on a daily demand of 1.72 MCM/day at the beginning of 2022. |
Variable: Tmean | SSP1-1.9 | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 |
---|---|---|---|---|---|
Short Period | |||||
Mean | 26.55 | 26.70 | 26.79 | 26.81 | 27.08 |
Anomaly | 1.08 | 1.23 | 1.32 | 1.34 | 1.61 |
10th Percentile | 25.61 | 25.85 | 25.98 | 26.06 | 26.16 |
Anomaly | 0.73 | 0.97 | 1.10 | 1.18 | 1.28 |
90th Percentile | 27.25 | 27.46 | 27.54 | 27.56 | 27.98 |
Anomaly | 1.24 | 1.46 | 1.53 | 1.55 | 1.97 |
Mid Period | |||||
Mean | 26.54 | 27.00 | 27.65 | 28.11 | 28.81 |
Anomaly | 1.07 | 1.53 | 2.18 | 2.64 | 3.34 |
10th Percentile | 25.29 | 26.07 | 26.71 | 27.27 | 27.65 |
Anomaly | 0.42 | 1.19 | 1.83 | 2.39 | 2.77 |
90th Percentile | 27.27 | 27.90 | 28.61 | 29.13 | 30.05 |
Anomaly | 1.27 | 1.90 | 2.60 | 3.13 | 4.04 |
Long Period | |||||
Mean | 26.29 | 26.95 | 28.20 | 29.59 | 30.84 |
Anomaly | 0.82 | 1.48 | 2.73 | 4.12 | 5.37 |
10th Percentile | 25.31 | 25.97 | 27.22 | 28.56 | 29.31 |
Anomaly | 0.43 | 1.09 | 2.34 | 3.68 | 4.43 |
90th Percentile | 27.09 | 27.97 | 29.42 | 30.93 | 32.61 |
Anomaly | 1.08 | 1.96 | 3.41 | 4.92 | 6.60 |
TMAX | SSP1-1.9 | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 |
---|---|---|---|---|---|
Short Period | |||||
MEAN | 32.84 | 33.00 | 33.11 | 33.10 | 33.33 |
ANOMALY | 1.06 | 1.22 | 1.33 | 1.32 | 1.55 |
10TH PERCENTILE | 31.77 | 32.14 | 32.23 | 32.37 | 32.18 |
ANOMALY | 0.62 | 0.99 | 1.07 | 1.21 | 1.02 |
90TH PERCENTILE | 33.62 | 33.80 | 33.89 | 33.91 | 34.24 |
ANOMALY | 1.26 | 1.44 | 1.53 | 1.55 | 1.88 |
Mid Period | |||||
MEAN | 32.87 | 33.34 | 33.97 | 34.35 | 34.99 |
ANOMALY | 1.09 | 1.56 | 2.19 | 2.57 | 3.21 |
10TH PERCENTILE | 31.49 | 32.35 | 32.94 | 33.46 | 33.53 |
ANOMALY | 0.34 | 1.19 | 1.79 | 2.30 | 2.38 |
90TH PERCENTILE | 33.64 | 34.25 | 34.88 | 35.41 | 36.15 |
ANOMALY | 1.27 | 1.89 | 2.52 | 3.05 | 3.79 |
Long Period | |||||
MEAN | 32.64 | 33.32 | 34.52 | 35.73 | 36.88 |
ANOMALY | 0.86 | 1.54 | 2.74 | 3.95 | 5.10 |
10TH PERCENTILE | 31.50 | 32.28 | 33.42 | 34.61 | 35.02 |
ANOMALY | 0.34 | 1.12 | 2.26 | 3.45 | 3.86 |
90TH PERCENTILE | 33.51 | 34.29 | 35.61 | 37.11 | 38.50 |
ANOMALY | 1.15 | 1.93 | 3.25 | 4.74 | 6.14 |
Variable: Tmin | SSP1-1.9 | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 |
---|---|---|---|---|---|
Short Period | |||||
Mean | 20.40 | 20.42 | 20.56 | 20.59 | 20.92 |
Anomaly | 1.18 | 1.20 | 1.34 | 1.37 | 1.70 |
10th Percentile | 19.42 | 19.35 | 19.53 | 19.63 | 19.95 |
Anomaly | 0.83 | 0.75 | 0.94 | 1.03 | 1.36 |
90th Percentile | 21.01 | 21.25 | 21.38 | 21.40 | 21.88 |
Anomaly | 1.27 | 1.50 | 1.64 | 1.66 | 2.13 |
Mid Period | |||||
Mean | 20.30 | 20.67 | 21.42 | 21.97 | 22.72 |
Anomaly | 1.08 | 1.45 | 2.20 | 2.75 | 3.50 |
10th Percentile | 19.04 | 19.55 | 20.28 | 20.92 | 21.59 |
Anomaly | 0.45 | 0.95 | 1.68 | 2.33 | 2.99 |
90th Percentile | 21.03 | 21.65 | 22.44 | 23.10 | 24.13 |
Anomaly | 1.29 | 1.90 | 2.69 | 3.35 | 4.38 |
Long Period | |||||
Mean | 20.03 | 20.58 | 21.97 | 23.50 | 24.80 |
Anomaly | 0.81 | 1.36 | 2.75 | 4.28 | 5.58 |
10th Percentile | 19.05 | 19.41 | 20.74 | 22.31 | 23.31 |
Anomaly | 0.45 | 0.81 | 2.14 | 3.71 | 4.71 |
90th Percentile | 20.79 | 21.70 | 23.30 | 25.04 | 26.98 |
Anomaly | 1.04 | 1.96 | 3.56 | 5.29 | 7.23 |
Variable: PCPannual | SSP1-1.9 | SSP1-2.6 | SSP2-4.5 | SSP3-7.0 | SSP5-8.5 |
---|---|---|---|---|---|
Short Period | |||||
Mean | 56.37 | 47.81 | 48.01 | 50.79 | 49.25 |
Change (%) | 31.0% | 11.1% | 11.6% | 18.0% | 14.4% |
10th Percentile | 11.05 | 7.92 | 7.74 | 10.13 | 8.85 |
Change (%) | 39.9% | 0.3% | −2.0% | 28.3% | 12.1% |
90th Percentile | 145.57 | 140.16 | 148.93 | 141.85 | 149.36 |
Change (%) | 11.6% | 7.5% | 14.2% | 8.8% | 14.5% |
Mid Period | |||||
Mean | 55.19 | 48.25 | 49.64 | 56.80 | 54.09 |
Change (%) | 28.2% | 12.1% | 15.3% | 32.0% | 25.7% |
10th Percentile | 10.67 | 8.46 | 8.24 | 11.10 | 8.95 |
Change (%) | 35.1% | 7.1% | 4.4% | 40.5% | 13.3% |
90th Percentile | 146.57 | 144.32 | 148.32 | 159.12 | 164.46 |
Change (%) | 12.4% | 10.7% | 13.7% | 22.0% | 26.1% |
Long Period | |||||
Mean | 55.35 | 48.58 | 53.32 | 62.73 | 61.24 |
Change (%) | 28.6% | 12.9% | 23.9% | 45.8% | 42.3% |
10th Percentile | 10.79 | 7.99 | 8.75 | 11.90 | 9.90 |
Change (%) | 36.6% | 1.1% | 10.8% | 50.7% | 25.4% |
90th Percentile | 141.23 | 143.62 | 160.73 | 177.19 | 189.83 |
Change (%) | 8.3% | 10.1% | 23.2% | 35.9% | 45.6% |
Old Tariff A | New Tariff B | ||
---|---|---|---|
Tier (m3/Month) | Consumption Tariff (SAR/m3/Month) | Tier (m3/Month) | Consumption Tariff (SAR/m3/Month) |
Up to 50 | 0.1 (0.03) | Up to 15 | 0.15 (0.04) |
>50–100 | 0.15 (0.04) | >15–30 | 1.5 (0.4) |
>100–200 | 2 (0.53) | >30–45 | 4.5 (1.2) |
>200–300 | 4 (1.07) | >45–60 | 6 (1.6) |
More than 300 | 6 (1.60) | More than 60 | 9 (2.4) |
A There is no sewer consumption charge. B The sewer consumption rate is included (as 50% of the water consumption rate). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alodah, A. Towards Sustainable Water Resources Management Considering Climate Change in the Case of Saudi Arabia. Sustainability 2023, 15, 14674. https://doi.org/10.3390/su152014674
Alodah A. Towards Sustainable Water Resources Management Considering Climate Change in the Case of Saudi Arabia. Sustainability. 2023; 15(20):14674. https://doi.org/10.3390/su152014674
Chicago/Turabian StyleAlodah, Abdullah. 2023. "Towards Sustainable Water Resources Management Considering Climate Change in the Case of Saudi Arabia" Sustainability 15, no. 20: 14674. https://doi.org/10.3390/su152014674
APA StyleAlodah, A. (2023). Towards Sustainable Water Resources Management Considering Climate Change in the Case of Saudi Arabia. Sustainability, 15(20), 14674. https://doi.org/10.3390/su152014674