Consumer Purchasing Power Prediction of Interest E-Commerce Based on Cost-Sensitive Support Vector Machine
Abstract
:1. Introduction
2. Related Work
3. Theoretical Basis
3.1. Cost-Sensitive Support Vector Machine
3.2. New Swarm Intelligence Algorithm
3.2.1. Whale Optimization Algorithm
3.2.2. Grey Wolf Optimization
3.2.3. Salp Swarm Algorithm
3.3. Cost-Sensitive Support Vector Machine Optimized Using New Swarm Intelligence Algorithm
3.3.1. Evaluation Index
3.3.2. Model Evaluation
- (1)
- A cost-sensitive support vector machine optimized using WOA, GWO and SSA performs better than SVM, and than the model optimized using GS, in accuracy, recall, precision, G-mean and F1-score.
- (2)
- Compared with the cost-sensitive support vector machine optimized using GA and PSO, although the recall of the model optimized using WOA, GWO and SSA is poor, the accuracy, precision, G-mean and F1-score are improved
- (3)
- The classification performance of the cost-sensitive support vector machine optimized using WOA, GWO and SSA is still stable when the model optimized using SVM and GS have reached high accuracy.
- (4)
- A cost-sensitive support vector machine optimized using WOA, GWO and SSA is slightly better than the one optimized using DBO in accuracy, recall, G-mean and F1-score.
4. Consumer Purchasing Power Prediction of Interest E-Commerce
4.1. Data Description
4.2. Feature Selection
4.2.1. Variance Homogeneity Test
4.2.2. Two-Sample Mean Test
4.3. Prediction of Consumer Purchasing Power
- (1)
- Compared with the GS-CSSVM model, WOA-CSSVM, GWO-CSSVM and SSA-CSSVM improved the prediction accuracy by 0.0625 to 0.1667, where the accuracy of WOA-CSSVM and GWO-CSSVM models increased to 0.9375 and 0.1667 for IR = 1.5.
- (2)
- The prediction accuracy of WOA-CSSVM, GWO-CSSVM and SSA-CSSVM can reach the same or better than GA-CSSVM and PSO-CSSVM models, except that the prediction accuracy of SSA-CSSVM model decreases slightly at IR = 1.5 and 4. When the sample imbalanced rate is high, WOA-CSSVM, GWO-CSSVM and SSA-CSSVM can effectively alleviate the problem that the model prediction is biased towards a single sample, and the F1-score is increased by 0.1197, 0.1399 and 0.1197, respectively.
- (3)
- The WOA-CSSVM, GWO-CSSVM and SSA-CSSVM models have an accuracy of more than 0.9, with a maximum of 0.9792. Meanwhile, GWO-CSSVM outperforms WOA-CSSVM and SSA-CSSVM in the accuracy and F1-score. The specific results are shown in Figure 3.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.X.; Chai, Y.; Hu, Y.Q.; Yin, H.P. Review of imbalanced data classification methods. Control Decis. 2019, 34, 673–688. [Google Scholar] [CrossRef]
- Hu, H.J.; Zhu, D.J.; Wang, T.; He, C.; Sikder, J.; Jia, Y.C. User consumption behavior recognition based on SMOTE and improved AdaBoost. Int. J. Softw. Sci. Comput. Intell. (IJSSCI) 2022, 14, 1–20. [Google Scholar] [CrossRef]
- Liu, D.Q.; Chen, Z.J.; Xu, Y.; Li, F.T. Hybrid SVM algorithm oriented to classifying imbalanced datasets. Appl. Res. Comput. 2018, 35, 1023–1027. [Google Scholar]
- Zheng, E.H.; Li, P.; Song, Z.H. Cost sensitive support vector machine. Control Decis. 2006, 21, 473–476. [Google Scholar]
- Castro, C.L.; Braga, A.P. Novel cost-sensitive approach to improve the multilayer perceptron performance on imbalanced data. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 888–899. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, H.M.; Wang, S.W. NIBoost: New imbalanced datasets classification method on cost sensitive ensemble learning. J. Comput. Appl. 2019, 39, 629–633. [Google Scholar]
- Huang, W.C.; Liu, H.Y.; Zhang, Y.; Mi, R.W.; Tong, C.G.; Xiao, W.; Shuai, B. Railway dangerous goods transportation system risk identification: Comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM. Appl. Soft Comput. J. 2021, 109, 107541. [Google Scholar] [CrossRef]
- Mulyawan; Dwilestari, G.; Bahtiar, A.; Basysyar, F.M.; Suarna, N. Classification of human development index using particle swarm optimization based on support vector machine algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1088, 012033. [Google Scholar] [CrossRef]
- Sreedevi, G.; Anuradha, B. Feature extraction and classification of ECG signals with support vector machines and particle swarm optimisation. Int. J. Biomed. Eng. Technol. 2021, 35, 242–262. [Google Scholar] [CrossRef]
- Adnan, R.M.; Dai, H.L.; Mostafa, R.R.; Parmar, K.S.; Heddam, S.; Kisi, O. Modeling multistep ahead dissolved oxygen concentration using improved support vector machines by a hybrid metaheuristic algorithm. Sustainability 2022, 14, 3470. [Google Scholar] [CrossRef]
- Oh, M.S.; Chen, Z.Y.; Jahanshiri, E.; Isa, D.; Wong, Y.W. An economic feasibility assessment framework for underutilised crops using Support Vector Machine. Comput. Electron. Agric. 2020, 168, 105116. [Google Scholar] [CrossRef]
- Huo, W.W.; Li, W.E.; Sun, C.; Ren, Q.; Gong, G.Q. Research on fuel cell fault diagnosis based on genetic algorithm optimization of support vector machine. Energies 2022, 15, 2294. [Google Scholar] [CrossRef]
- Aalizadeh, R.; Von der Ohe, P.C.; Thomaidis, N.S. Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by ant colony optimization-support vector machine QSTR models. Environmental Science. Process. Impacts 2017, 19, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Huang, F.L.; Fu, Y.M.; Yang, X.L. Application of improved support vector machine algorithm optimized by artificial bee colony algorithm in intrusion detection. Comput. Appl. Softw. 2017, 34, 230–246. [Google Scholar]
- Bui, D.T.; Tran, A.T.; Nhat-Duc, H.; Nguyen, Q.T.; Duy, B.N.; Ngo, V.L.; Pradhan, B. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides 2017, 14, 447–458. [Google Scholar]
- Tharwat, A.; Hassanien, A.E.; Elnaghi, B.E. A BA-based algorithm for parameter optimization of support vector machine. Pattern Recognit. Lett. 2016, 93, 13–22. [Google Scholar] [CrossRef]
- Deepa, R.; Venkataraman, R. Enhancing whale optimization algorithm with Levy flight for coverage optimization in wireless sensor networks. Comput. Electr. Eng. 2021, 94, 107359. [Google Scholar] [CrossRef]
- He, X.L.; Zhang, G.; Chen, Y.H.; Yang, S.Z. Multi-class algorithm of WOA-SVM using Levy flight and elite opposition-based learning. Appl. Res. Comput. 2021, 38, 3640–3645. [Google Scholar]
- Ji, Y.J.; Fan, C.J. Short-term power load prediction based on WNR-CLSSA-LSTM. Intell. Comput. Appl. 2023, 13, 76–84+88. [Google Scholar]
- Fan, X.Z.; Yu, M. Coverage optimization of WSN based on improved grey wolf optimizer. Comput. Sci. 2022, 49, 628–631. [Google Scholar]
- Prasad, D.; Mukherjee, A.; Mukherjee, V. Temperature dependent optimal power flow using chaotic whale optimization algorithm. Expert Syst. 2021, 38, 12685. [Google Scholar] [CrossRef]
- Kohli, M.; Arora, S. Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. 2017, 5, 458–472. [Google Scholar] [CrossRef]
- Li, J.H.; Guo, H. A hybrid whale optimization algorithm for plane block parallel blocking flowline scheduling optimization with deterioration effect in lean shipbuilding. IEEE Access 2021, 9, 131893–131905. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Appl. Soft Comput. J. 2020, 97, 106761. [Google Scholar] [CrossRef]
- Too, J.; Mafarja, M.; Mirjalili, S. Spatial bound whale optimization algorithm: An efficient high-dimensional feature selection approach. Neural Comput. Appl. 2021, 33, 16229–16250. [Google Scholar] [CrossRef]
- Khaire, U.M.; Dhanalakshmi, R. Stability investigation of improved whale optimization algorithm in the process of feature selection. IETE Tech. Rev. 2022, 39, 286–300. [Google Scholar] [CrossRef]
- Pan, H.Y.; Chen, S.X.; Xiong, H.L. A high-dimensional feature selection method based on modified gray wolf optimization. Appl. Soft Comput. J. 2023, 135, 110031. [Google Scholar] [CrossRef]
- Cui, X.W.; E, S.J.; Niu, D.X.; Chen, B.S.; Feng, J.Q. Forecasting of carbon emission in China based on gradient boosting decision tree optimized by modified whale optimization algorithm. Sustainability 2021, 13, 12302. [Google Scholar] [CrossRef]
- Yang, J.X.; Lan, X.P.; Feng, Y.D.; Yang, Y.M.; Guo, Z.M. An ammunition quality evaluation method based on least squares support vector machine. Acta Armamentarii 2022, 43, 1012–1022. [Google Scholar]
- He, P.; Wu, W.J. Levy flight-improved grey wolf optimizer algorithm-based support vector regression model for dam deformation prediction. Front. Earth Sci. 2023, 11, 1122937. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Chandran, V.; Mohapatra, P. Enhanced opposition-based grey wolf optimizer for global optimization and engineering design problems. Alex. Eng. J. 2023, 76, 429–467. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Abualigah, L.; Abd, E.M.; Oliva, D. EWOA-OPF: Effective whale optimization algorithm to solve optimal power flow problem. Electronics 2021, 10, 2975. [Google Scholar] [CrossRef]
- Bathina, V.; Devarapalli, R.; García, M.F.P. Hybrid approach with combining cuckoo-search and grey wolf optimizer for solving optimal power flow problems. J. Electr. Eng. Technol. 2022, 18, 1637–1653. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, L.; Zhao, J.; Wu, L. Application of salp swarm algorithm in optimal power flow calculation for power system. Distrib. Energy 2021, 6, 35–43. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hofmann, T.; Schölkopf, B.; Smola, A.J. Kernel methods in machine learning. Ann. Stat. Off. J. Inst. Math. Stat. 2008, 36, 1171–1220. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Xue, J.K.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2022, 79, 7305–7336. [Google Scholar] [CrossRef]
- Triguero, I.; González, S.; Moyano, J.M.; García, S.; Alcalá-Fdez, J.; Luengo, J.; Fernández, A.; del Jesús, M.J.; Sánchez, L.; Herrera, F. KEEL 3.0: An open source software for multi-stage analysis in data mining. Int. J. Comput. Intell. Syst. 2017, 10, 1238–1249. [Google Scholar] [CrossRef]
Method | Strategy | Optimal Point | Characteristic |
---|---|---|---|
Lévy Whale Optimization Algorithm [17] | Adjusting Flight Strategy | Lévy flight is embedded in the exploration process of the whale optimization algorithm. | It easily leaps out of the optimum local position and increases the speed of convergence. |
Cubic Lévy Salp Swarm Algorithm [18] | Lévy flight is added to the position update strategy of the leader and follower in the salp swarm algorithm. | It expands the search range of the population and increases the optimum speed, but does not render reliable and consistent results. | |
Lévy Grey Wolf Optimization [19] | An improved Lévy flight strategy is used to update the position of the grey wolf. | It effectively balances the global and local capabilities. | |
Chaotic Whale Optimization Algorithm [21] | Integrating Chaotic Strategy | It generates the initial population through a logistic chaotic map. | Its exploration in the search space is more dynamic and global. |
Chaotic Grey Wolf Optimization [22] | The ten most relevant chaotic maps are used to update the position of the grey wolf. | It finds the optimal solution faster and improves the convergence speed of the algorithm. | |
Lévy Flight and Elite Opposition-based Whale Optimization Algorithm [20] | Multiple Strategies | It uses Lévy flight instead of the spiral strategy to update the position and introduces elite opposition-based learning to increase population diversity. | It quickly leaps out of the optimum local position and greatly improves the probability of the algorithm searching for the global optimal solution. |
Hybrid Whale Optimization Algorithm [23] | A tent chaotic map is introduced to initialize the population. An adaptive weight factor is used to update the position, and the Lévy flight strategy is applied to the current optimal individuals. | It improves the diversity of the initial population. And it balances the strong global exploration ability and the efficiency of local search. |
Kernel Functions | Representation | Parameter Explaining |
---|---|---|
Polynomial Kernel | is the degree of the polynomial and degenerates to a linear kernel when | |
Gaussian Kernel | is the bandwidth of the Gaussian kernel | |
Sigmoid Kernel |
Dataset | IR | Attributes | Examples |
---|---|---|---|
ionosphere | 1.79 | 33 | 351 |
glass1 | 1.82 | 9 | 214 |
ecoli-0vs1 | 1.86 | 7 | 220 |
iris0 | 2.00 | 4 | 150 |
glass0 | 2.06 | 9 | 214 |
ecoli1 | 3.36 | 7 | 336 |
appendictis | 4.05 | 7 | 106 |
ecoli2 | 5.46 | 7 | 336 |
ecoli3 | 8.60 | 7 | 336 |
vowel0 | 9.98 | 13 | 988 |
Dataset | IR | SVM | GS | GA | PSO | WOA | GWO | SSA | DBO |
---|---|---|---|---|---|---|---|---|---|
ionosphere | 1.79 | 0.8714 | 0.9000 | 0.8857 | 0.9000 | 0.9000 | 0.9000 | 0.9000 | 0.9000 |
glass1 | 1.82 | 0.6512 | 0.6512 | 0.6977 | 0.6744 | 0.6744 | 0.6744 | 0.6744 | 0.6744 |
ecoli-0vs1 | 1.86 | 0.9545 | 0.9773 | 0.9773 | 0.9773 | 0.9773 | 0.9773 | 0.9773 | 0.9773 |
iris0 | 2.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
glass0 | 2.06 | 0.6744 | 0.6744 | 0.6744 | 0.7907 | 0.7907 | 0.8140 | 0.7907 | 0.7907 |
ecoli1 | 3.36 | 0.8657 | 0.8209 | 0.8806 | 0.8657 | 0.8657 | 0.8657 | 0.8806 | 0.8806 |
appendictis | 4.05 | 0.8095 | 0.8095 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.8095 |
ecoli2 | 5.46 | 0.9403 | 0.9701 | 0.9701 | 0.9701 | 0.9701 | 0.9701 | 0.9701 | 0.9701 |
ecoli3 | 8.60 | 0.8955 | 0.8955 | 0.9104 | 0.8955 | 0.9104 | 0.8955 | 0.9104 | 0.9104 |
vowel0 | 9.98 | 0.9949 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Dataset | IR | SVM | GS | GA | PSO | WOA | GWO | SSA | DBO |
---|---|---|---|---|---|---|---|---|---|
ionosphere | 1.79 | 0.6800 | 0.9200 | 0.9600 | 0.9600 | 0.9200 | 0.9600 | 0.9200 | 0.9600 |
glass1 | 1.82 | 0.0000 | 0.0000 | 0.5333 | 0.4667 | 0.4667 | 0.4667 | 0.4667 | 0.2667 |
ecoli-0vs1 | 1.86 | 0.8667 | 0.9333 | 0.9333 | 0.9333 | 0.9333 | 0.9333 | 0.9333 | 0.9333 |
iris0 | 2.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
glass0 | 2.06 | 0.0714 | 0.0000 | 1.0000 | 0.7857 | 0.7857 | 0.8571 | 0.7857 | 0.5000 |
ecoli1 | 3.36 | 0.4667 | 0.2667 | 0.5333 | 0.4667 | 0.4667 | 0.4667 | 0.5333 | 0.5333 |
appendictis | 4.05 | 0.2500 | 0.0000 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 | 0.2500 |
ecoli2 | 5.46 | 0.7000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
ecoli3 | 8.60 | 0.0000 | 0.0000 | 0.4286 | 0.0000 | 0.4286 | 0.0000 | 0.4286 | 0.4286 |
vowel0 | 9.98 | 0.9444 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Dataset | IR | SVM | GS | GA | PSO | WOA | GWO | SSA | DBO |
---|---|---|---|---|---|---|---|---|---|
ionosphere | 1.79 | 0.9444 | 0.8214 | 0.7742 | 0.8000 | 0.8214 | 0.8000 | 0.8214 | 0.8000 |
glass1 | 1.82 | 0.0000 | 0.0000 | 0.5714 | 0.5385 | 0.5385 | 0.5385 | 0.5385 | 0.5714 |
ecoli-0vs1 | 1.86 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
iris0 | 2.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
glass0 | 2.06 | 0.5000 | 0.0000 | 0.5000 | 0.6471 | 0.6471 | 0.6667 | 0.6471 | 0.7778 |
ecoli1 | 3.36 | 0.8750 | 0.8000 | 0.8889 | 0.8750 | 0.8750 | 0.8750 | 0.8889 | 0.8889 |
appendictis | 4.05 | 0.5000 | 0.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5000 |
ecoli2 | 5.46 | 0.8750 | 0.8333 | 0.8333 | 0.8333 | 0.8333 | 0.8333 | 0.8333 | 0.8333 |
ecoli3 | 8.60 | 0.0000 | 0.0000 | 0.6000 | 0.0000 | 0.6000 | 0.0000 | 0.6000 | 0.6000 |
vowel0 | 9.98 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Dataset | IR | SVM | GS | GA | PSO | WOA | GWO | SSA | DBO |
---|---|---|---|---|---|---|---|---|---|
ionosphere | 1.79 | 0.8154 | 0.9043 | 0.9004 | 0.9121 | 0.9043 | 0.9121 | 0.9043 | 0.9121 |
glass1 | 1.82 | / | / | 0.6473 | 0.6055 | 0.6055 | 0.6055 | 0.6055 | 0.4880 |
ecoli-0vs1 | 1.86 | 0.9309 | 0.9661 | 0.9661 | 0.9661 | 0.9661 | 0.9661 | 0.9661 | 0.9661 |
iris0 | 2.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
glass0 | 2.06 | 0.2626 | / | 0.7192 | 0.7894 | 0.7894 | 0.8245 | 0.7894 | 0.6823 |
ecoli1 | 3.36 | 0.6765 | 0.5114 | 0.7323 | 0.6765 | 0.6765 | 0.6765 | 0.7232 | 0.7232 |
appendictis | 4.05 | 0.4851 | / | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.4851 |
ecoli2 | 5.46 | 0.8293 | 0.9823 | 0.9823 | 0.9823 | 0.9823 | 0.9823 | 0.9823 | 0.9823 |
ecoli3 | 8.60 | / | / | 0.6437 | / | 0.6437 | / | 0.6437 | 0.6437 |
vowel0 | 9.98 | 0.9718 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Dataset | IR | SVM | GS | GA | PSO | WOA | GWO | SSA | DBO |
---|---|---|---|---|---|---|---|---|---|
ionosphere | 1.79 | 0.7907 | 0.8679 | 0.8571 | 0.8727 | 0.8679 | 0.8727 | 0.8679 | 0.8727 |
glass1 | 1.82 | / | / | 0.5517 | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.3636 |
ecoli-0vs1 | 1.86 | 0.9286 | 0.9655 | 0.9655 | 0.9655 | 0.9655 | 0.9655 | 0.9655 | 0.9655 |
iris0 | 2.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
glass0 | 2.06 | 0.1250 | / | 0.6667 | 0.7097 | 0.7097 | 0.7500 | 0.7097 | 0.6087 |
ecoli1 | 3.36 | 0.6087 | 0.4000 | 0.6667 | 0.6087 | 0.6087 | 0.6087 | 0.6667 | 0.6667 |
appendictis | 4.05 | 0.3333 | / | 0.4000 | 0.4000 | 0.4000 | 0.4000 | 0.4000 | 0.3333 |
ecoli2 | 5.46 | 0.7778 | 0.9091 | 0.9091 | 0.9091 | 0.9091 | 0.9091 | 0.9091 | 0.9091 |
ecoli3 | 8.60 | / | / | 0.5000 | / | 0.5000 | / | 0.5000 | 0.5000 |
vowel0 | 9.98 | 0.9714 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Feature Variable | Standard Deviation | Homogeneity of Variance | ||
---|---|---|---|---|
Positive Samples | Negative Samples | F Statistic | p-Value | |
Fashion | 2.22 | 11.00 | 0.04 | 0.00 |
Food | 1.77 | 8.23 | 0.05 | 0.00 |
Cultural Education | 0.92 | 8.57 | 0.01 | 0.00 |
Sports | 1.84 | 8.67 | 0.04 | 0.00 |
Travel | 2.74 | 11.63 | 0.06 | 0.00 |
Photography | 2.56 | 8.24 | 0.10 | 0.00 |
Interpretation | 4.69 | 10.89 | 0.19 | 0.00 |
Originality | 4.53 | 8.78 | 0.27 | 0.01 |
Animals and Plants | 1.66 | 8.25 | 0.04 | 0.00 |
Film and Television | 3.13 | 8.14 | 0.15 | 0.00 |
Life | 1.69 | 8.92 | 0.04 | 0.00 |
Parent–child | 12.80 | 10.37 | 1.52 | 0.21 |
Automobile | 2.48 | 8.92 | 0.08 | 0.00 |
News | 16.35 | 12.15 | 1.81 | 0.08 |
2D | 1.89 | 6.18 | 0.09 | 0.00 |
Game | 12.65 | 9.69 | 1.70 | 0.11 |
Dance | 1.35 | 9.72 | 0.02 | 0.00 |
Military Politics Legislation Police | 1.94 | 9.27 | 0.04 | 0.00 |
Emotion | 16.17 | 7.25 | 4.98 | 0.00 |
Music | 2.08 | 11.07 | 0.04 | 0.00 |
Science and Technology | 2.22 | 14.17 | 0.02 | 0.00 |
Finance | 6.30 | 11.93 | 0.28 | 0.01 |
Medical Treatment | 2.17 | 8.18 | 0.07 | 0.00 |
Countryside | 9.69 | 19.96 | 0.24 | 0.00 |
Feature Variable | Mean | Mean Hypothesis Test | ||
---|---|---|---|---|
Positive Samples | Negative Samples | T Statistic | p-Value | |
Fashion | 125.82 | 108.92 | 15.79 | 0.00 |
Food | 105.97 | 105.29 | 0.84 | 0.40 |
Cultural Education | 99.63 | 101.71 | −2.77 | 0.01 |
Sports | 106.59 | 105.57 | 1.19 | 0.24 |
Travel | 101.99 | 103.70 | −1.44 | 0.15 |
Photography | 98.43 | 100.65 | −2.36 | 0.02 |
Interpretation | 90.79 | 99.85 | −6.11 | 0.00 |
Originality | 101.06 | 103.61 | −1.89 | 0.07 |
Animals and Plants | 100.37 | 101.23 | −1.08 | 0.28 |
Film and Television | 97.23 | 104.48 | −7.00 | 0.00 |
Life | 92.22 | 102.68 | −12.25 | 0.00 |
Parent–child | 91.30 | 102.25 | −3.91 | 0.00 |
Automobile | 101.47 | 105.80 | −4.47 | 0.00 |
News | 99.39 | 102.21 | −0.85 | 0.40 |
2D | 111.02 | 105.15 | 8.40 | 0.00 |
Game | 132.97 | 108.25 | 9.37 | 0.00 |
Dance | 108.04 | 102.82 | 5.96 | 0.00 |
Military Politics Legislation Police | 95.96 | 102.86 | −7.58 | 0.00 |
Emotion | 111.03 | 103.92 | 1.74 | 0.10 |
Music | 105.04 | 102.88 | 2.04 | 0.04 |
Science and Technology | 137.47 | 110.60 | 20.59 | 0.00 |
Finance | 92.40 | 101.89 | −5.10 | 0.00 |
Medical Treatment | 106.82 | 105.58 | 1.42 | 0.16 |
Countryside | 77.85 | 98.08 | −6.88 | 0.00 |
Feature Variable | IR = 1 | IR = 1.5 | IR = 2.3 | IR = 4 | ||||
---|---|---|---|---|---|---|---|---|
Statistic | p-Value | Statistic | p-Value | Statistic | p-Value | Statistic | p-Value | |
Fashion | 6.15 | 0.00 | 6.34 | 0.00 | 7.18 | 0.00 | 8.52 | 0.00 |
Food | 0.68 | 0.50 | 0.96 | 0.34 | −0.32 | 0.75 | 0.13 | 0.90 |
Cultural education | −1.81 | 0.07 | −1.31 | 0.19 | −2.30 | 0.02 | −1.96 | 0.05 |
Sports | 0.17 | 0.87 | 0.43 | 0.67 | −0.20 | 0.84 | 0.03 | 0.98 |
Travel | −1.33 | 0.19 | −1.51 | 0.13 | −1.98 | 0.05 | −2.32 | 0.02 |
photography | −3.77 | 0.00 | −3.21 | 0.00 | −3.35 | 0.00 | −3.46 | 0.00 |
interpretation | −3.66 | 0.00 | −3.69 | 0.00 | −5.16 | 0.00 | −5.73 | 0.00 |
Originality | −2.01 | 0.05 | −1.80 | 0.07 | −3.12 | 0.00 | −2.84 | 0.01 |
Animals and Plants | −1.40 | 0.17 | −0.92 | 0.36 | −1.22 | 0.22 | −1.13 | 0.26 |
movies and television | −2.76 | 0.01 | −2.34 | 0.02 | −3.74 | 0.00 | −3.48 | 0.00 |
Life | −4.45 | 0.00 | −4.08 | 0.00 | −6.49 | 0.00 | −7.92 | 0.00 |
Parent–child | −4.40 | 0.00 | −4.31 | 0.00 | −5.46 | 0.00 | −4.95 | 0.00 |
Automobile | −2.01 | 0.05 | −2.56 | 0.01 | −3.87 | 0.00 | −4.79 | 0.00 |
News | −2.31 | 0.02 | −1.61 | 0.11 | −2.05 | 0.04 | −1.09 | 0.28 |
2D | 2.43 | 0.02 | 3.35 | 0.00 | 2.48 | 0.01 | 3.23 | 0.00 |
Game | 10.74 | 0.00 | 10.23 | 0.00 | 9.36 | 0.00 | 8.25 | 0.00 |
Dance | 1.40 | 0.16 | 1.97 | 0.05 | 2.56 | 0.01 | 4.09 | 0.00 |
Military Politics Legislation Police | −3.83 | 0.00 | −3.83 | 0.00 | −5.55 | 0.00 | −5.64 | 0.00 |
Emotion | 3.73 | 0.00 | 4.00 | 0.00 | 3.41 | 0.00 | 2.60 | 0.01 |
Music | −0.96 | 0.34 | −0.58 | 0.56 | −0.66 | 0.51 | 0.31 | 0.75 |
Science and Technology | 8.07 | 0.00 | 7.61 | 0.00 | 8.78 | 0.00 | 8.93 | 0.00 |
Finance | −1.73 | 0.08 | −1.48 | 0.14 | −3.03 | 0.00 | −4.19 | 0.00 |
Medical Treatment | 1.20 | 0.23 | 1.59 | 0.11 | 0.34 | 0.73 | 0.39 | 0.70 |
Countryside | −4.65 | 0.00 | −5.16 | 0.00 | −7.12 | 0.00 | −8.24 | 0.00 |
Model | Evaluation Index | IR = 1 | IR = 1.5 | IR = 2.3 | IR = 4 | IR = 9 |
---|---|---|---|---|---|---|
SVM | Accuracy | 0.7500 | 0.7500 | 0.8125 | 0.8542 | 0.8958 |
F1-score | 0.7500 | 0.6000 | 0.5714 | 0.6316 | / | |
GS-CSSVM | Accuracy | 0.8333 | 0.7708 | 0.8125 | 0.8542 | 0.8958 |
F1-score | 0.8519 | 0.5926 | 0.5263 | 0.6667 | / | |
GA-CSSVM | Accuracy | 0.9167 | 0.9375 | 0.9167 | 0.9167 | 0.9375 |
F1-score | 0.9091 | 0.9143 | 0.8667 | 0.8182 | 0.7692 | |
PSO-CSSVM | Accuracy | 0.9167 | 0.9167 | 0.9167 | 0.9375 | 0.9375 |
F1-score | 0.9130 | 0.8889 | 0.8333 | 0.8235 | 0.7692 | |
WOA-CSSVM | Accuracy | 0.9167 | 0.9375 | 0.9167 | 0.9375 | 0.9792 |
F1-score | 0.9200 | 0.9189 | 0.8667 | 0.8571 | 0.8889 | |
GWO-CSSVM | Accuracy | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9792 |
F1-score | 0.9362 | 0.9231 | 0.8966 | 0.8571 | 0.9091 | |
SSA-CSSVM | Accuracy | 0.9375 | 0.9167 | 0.9375 | 0.9167 | 0.9792 |
F1-score | 0.9388 | 0.9000 | 0.8889 | 0.8182 | 0.8889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, R.; Yang, M.; Sun, P. Consumer Purchasing Power Prediction of Interest E-Commerce Based on Cost-Sensitive Support Vector Machine. Sustainability 2023, 15, 14693. https://doi.org/10.3390/su152014693
Ye R, Yang M, Sun P. Consumer Purchasing Power Prediction of Interest E-Commerce Based on Cost-Sensitive Support Vector Machine. Sustainability. 2023; 15(20):14693. https://doi.org/10.3390/su152014693
Chicago/Turabian StyleYe, Rendao, Mengyao Yang, and Peng Sun. 2023. "Consumer Purchasing Power Prediction of Interest E-Commerce Based on Cost-Sensitive Support Vector Machine" Sustainability 15, no. 20: 14693. https://doi.org/10.3390/su152014693
APA StyleYe, R., Yang, M., & Sun, P. (2023). Consumer Purchasing Power Prediction of Interest E-Commerce Based on Cost-Sensitive Support Vector Machine. Sustainability, 15(20), 14693. https://doi.org/10.3390/su152014693